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Abstract: The new type degenerate of Bell polynomials and numbers were recently introduced,
which are a degenerate version of Bell polynomials and numbers and are different from the previously
introduced partially degenerate Bell polynomials and numbers. Several expressions and identities
on those polynomials and numbers were obtained. In this paper, as a further investigation of the
new type degenerate Bell polynomials, we derive several identities involving those degenerate Bell
polynomials, Stirling numbers of the second kind and Carlitz’s degenerate Bernoulli or degenerate
Euler polynomials. In addition, we obtain an identity connecting the degenerate Bell polynomials,
Cauchy polynomials, Bernoulli numbers, Stirling numbers of the second kind and degenerate Stirling
numbers of the second kind.

Keywords: new type degenerate Bell polynomials; degenerate Bernoulli polynomials; degenerate
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1. Introduction

For any nonzero λ ∈ R, the Carlitz’s degenerate Bernoulli polynomials are defined by (see [1])

t

(1 + λt)
1
λ − 1

(1 + λt)
x
λ =

∞

∑
n=0

βn,λ(x)
tn

n!
, (1)

When x = 0, βn,λ = βn,λ(0) are called the degenerate Bernoulli numbers.
Note that limλ→0 βn,λ(x) = Bn(x), (n ≥ 0). Here, Bn(x) are ordinary Bernoulli polynomials

which are defined by (see [1–13])

t
et − 1

ext =
∞

∑
n=0

Bn(x)
tn

n!
, (2)

The degenerate Euler polynomials are given by (see [1])

2

(1 + λt)
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λ + 1

(1 + λt)
x
λ =

∞

∑
n=0
En,λ(x)

tn

n!
, (3)

When x = 0, En,λ = En,λ(0) are called the degenerate Euler numbers.
For any nonzero real number λ, the degenerate exponential functions are defined by (see [8,10])

ex
λ(t) = (1 + λt)

x
λ , eλ(t) = e1

λ(t) = (1 + λt)
1
λ , (4)
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From (4), we note that (see [8,10])

ex
λ(t) =

∞

∑
n=0

(x)n,λ

n!
tn, (5)

where (x)0,λ = 1, (x)n,λ = x(x− λ) · · · (x− (n− 1)λ), (n ≥ 1).
The Stirling numbers of the first kind are defined by

(x)n = lim
λ→1

(x)n,λ =
n

∑
k=0

S1(n, k)xk, (n ≥ 0), (6)

and the Stirling numbers of the second kind are given by (see [12,13])

xn =
n

∑
k=0

S2(n, k)(x)k, (7)

As is well known, the Bell polynomials are defined by (see [5,12])

ex(et−1) =
∞

∑
n=0

Beln(x)
tn

n!
, (8)

When x = 1, Beln = Beln(1), (n ≥ 0), are called the Bell numbers.
We note that the left hand side of (8) is equal to

∞

∑
k=0

xk 1
k!
(et − 1)k =

∞

∑
k=0

xk
∞

∑
n=k

S2(n, k)
tn

n!

=
∞

∑
n=0

n

∑
k=0

S2(n, k)xk tn

n!
,

(9)

and hence we obtain

Beln(x) =
n

∑
k=0

S2(n, k)xk, (n ≥ 0). (10)

It is known that the Cauchy polynomials are given by the generating function (see [7])

t
log(1 + t)

(1 + t)x =
∞

∑
n=0

Cn(x)
tn

n!
, (11)

In view of (11), we may consider the degenerate Cauchy polynomials which are given by

t
logλ(1 + t)

(1 + t)x =
∞

∑
n=0

Cn,λ(x)
tn

n!
. (12)

Here, logλ t is the compositional inverse function of eλ(t) such that eλ(logλ(t)) = logλ(eλ(t)) = t.
Recently, the new type degenerate Bell polynomials are introduced by the generating function

as (see [10]).

ex
λ(e

t − 1) =
(

1 + λ(et − 1)
) x

λ

=
∞

∑
n=0

Beln,λ(x)
tn

n!
, (13)

When x = 1, Beln,λ = Beln,λ(1) are called the degenerate Bell numbers.
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Note that limλ→0 Beln,λ(x) = Beln(x), (n ≥ 0). We see that the middle term in (13) is equal to

∞

∑
k=0

( x
λ

)
k

λk 1
k!
(et − 1)k =

∞

∑
k=0

(x)k,λ

∞

∑
n=k

S2(n, k)
tn

n!

=
∞

∑
n=0

n

∑
k=0

S2(n, k)(x)k,λ
tn

n!
,

(14)

and hence we get

Beln,λ(x) =
n

∑
k=0

S2(n, k)(x)k,λ. (15)

Studying degenerate versions of some special polynomials has been very fruitful and regained
lively interest of many mathematicians in recent years. In [1], Carlitz initiated a study of degenerate
versions of some special polynomials, namely the degenerate Bernoulli and Euler polynomials
and numbers.

In the recent paper [10], the new type degenerate Bell polynomials Beln,λ(x) (see (13)) were
introduced and some interesting results about them were obtained, which are different from the
previously defined partially degenerate Bell polynomials (see [9]) and a degenerate version of the
ordinary Bell polynomials Beln(x) (see (8)).

As a further study of the new type degenerate Bell polynomials, we will obtain two expressions
involving these degenerate Bell polynomials, Carlitz’s degenerate Bernoulli polynomials and the
Stirling numbers of the second kind, two identities involving those degenerate Bell polynomials,
degenerate Euler polynomials and the Stirling numbers of the second kind. In additon, we will be
able to find an identity involving those degenerate Bell polynomials, Cauchy polynomials, Bernoulli
numbers, Stirling numbers of the second kind and degenerate Stirling numbers of the second kind.

2. Some Identities of Degenerate Bell Polynomials

The following equation can be easily derived from (13):

Beln,λ(x) =
n

∑
m=0

m

∑
l=0

xlλm−lS1(m, l)S2(n, m), (16)

where n ≥ 0.
Indeed, we see that the middle term in (13) is equal to

∞

∑
m=0

( x
λ

)
m

λm 1
m!

(et − 1)m =
∞

∑
m=0

m

∑
l=0

S1(m, l)
( x

λ

)l
λm

∞

∑
n=m

S2(n, m)
tn

n!

=
∞

∑
n=0

n

∑
m=0

m

∑
l=0

xlλm−lS1(m, l)S2(n, m)
tn

n!
.

(17)

By using (16), we can show that

Bel0,λ(x) = 1, Bel1,λ(x) = x, Bel2,λ(x) = −xλ + (x2 + x),
Bel3,λ(x) = 2xλ2 + (−3x2 − 3x)λ + (x3 + 3x2 + x),
Bel4,λ(x) = −6xλ3 + (11x2 + 12x)λ2 + (−6x3 − 18x2 − 7x)λ + (x4 + 6x3 + 7x2 + x),
Bel5,λ(x) = 24xλ4 + (−50x2 − 60x)λ3 + (35x3 + 110x2 + 50x)λ2

+(−10x4 − 60x3 − 75x2 − 15x)λ + (x5 + 10x4 + 25x3 + 15x2 + x).
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By replacing t by et − 1 in (1), we get

et − 1
eλ(et − 1)− 1

ex
λ(e
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On the other hand,
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n
k

) k
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βm,λS2(k, m)Beln−k,λ(x)
}

tn

n!
.

(19)

Therefore, by comparing the coefficients on both sides of (18) and (19), we obtain the
following theorem.

Theorem 1. For n ≥ 0, we have
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n
k
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Let us replace t by et − 1 in (3). Then we get
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(20)

The left hand side of (20) is also given by
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(21)

Therefore, from (20) and (21), we obtain the following theorem.
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Theorem 2. For n ≥ 0, we have

n

∑
m=0
Em,λ(x)S2(n, m) =

n

∑
k=0

(
n
k

) k

∑
m=0
Em,λS2(k, m)Beln−k,λ(x).

From (1), we have

tex
λ(t) =

∞

∑
l=0

βl,λ(x)
tl

l!
(eλ(t)− 1). (22)

Replacing t by et − 1 in (22), we get

(et − 1)ex
λ(e

t − 1) =
∞

∑
l=0

βl,λ(x)
(et − 1)l

l!
(eλ(et − 1)− 1). (23)

The right hand side of (23) is equal to

∞

∑
m=0

m

∑
l=0

βl,λ(x)S2(m, l)
tm

m!

∞

∑
k=1

Belk,λ
tk
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=
∞

∑
n=1

( n

∑
k=1

(
n
k

) n−k

∑
l=0

βl,λ(x)S2(n− k, l)Belk,λ

)
tn

n!
.

(24)

On the other hand, the left hand side of (23) is equal to

∞

∑
k=1

tk

k!

∞

∑
m=0

Belm,λ(x)
tm

m!
=

∞

∑
n=1

n

∑
k=1

(
n
k

)
Beln−k,λ(x)

tn

n!
. (25)

Therefore, by equating (24) and (25), we obtain the following theorem.

Theorem 3. For any n ∈ N, we have

n

∑
k=1

(
n
k

)
Beln−k,λ(x) =

n

∑
k=1

(
n
k

) n−k

∑
l=0

βl,λ(x)S2(n− k, l)Belk,λ.

Setting x = 0 in Theorem 3, we get the following corollary.

Corollary 1. For any n ∈ N, we have

n

∑
k=1

(
n
k

) n−k

∑
l=0

βl,λS2(n− k, l)Belk,λ = 1.

From (3), we note that

2 =
∞

∑
l=0
El,λ

tl

l!
(
eλ(t) + 1

)
. (26)
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By (26), we get

2 =
∞

∑
l=0
El,λ

1
l!
(et − 1)l

(
eλ(et − 1) + 1

)

=
∞

∑
k=0

k

∑
l=0
El,λS2(k, l)

tk

k!

( ∞

∑
m=0
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m!
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=
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∑
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n
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(27)

By comparing the coefficients on both sides of (27), we get

n

∑
k=0

(
n
k

) k

∑
l=0
El,λS2(k, l)Beln−k,λ +

n

∑
k=0
Ek,λS2(n, k) =

{
2, if n = 0,

0, if n ≥ 1.
(28)

Therefore, by (28), we obtain the following theorem.

Theorem 4. For n ∈ N, we have

n

∑
k=0

(
n
k

) k

∑
l=0
El,λS2(k, l)Beln−k,λ = −

n

∑
k=0
Ek,λS2(n, k).

In other words, for n ≥ 0, we have

n

∑
k=0

(
n
k

) k

∑
l=0
El,λS2(k, l)Beln−k,λ +

n

∑
k=0
Ek,λS2(n, k) = 2Beln,λ(0).

Let us replace t by eλ(et − 1)− 1 in (12). Then we have

eλ(et − 1)− 1
et − 1

ex
λ(e

t − 1) =
∞

∑
m=0

Cm,λ(x)
1

m!
(eλ(et − 1)− 1)m. (29)

As is well known, the degenerate Stirling numbers of second kind are defined by (see [8])

1
m!

(eλ(t)− 1)m =
∞

∑
k=m

S2,λ(k, m)
tk

k!
, (30)

By (29) and (30), we have

∞
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1
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∑
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k
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)
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n!
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(31)

Hence, by (29) and (31), we get

eλ(et − 1)− 1
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ex
λ(e
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∞
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On the other hand,

eλ(et − 1)− 1
et − 1

ex
λ(e

t − 1) =
ex+1

λ (et − 1)− ex
λ(e

t − 1)
et − 1

=

(
t

et − 1

)
1
t

(
ex+1

λ (et − 1)− ex
λ(e

t − 1)
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=

( ∞

∑
k=0

Bk
tk

k!

)
1
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∑
m=0

(
Belm,λ(x + 1)− Belm,λ(x)

)
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m!
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∞

∑
k=0
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∞

∑
m=0

(
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)
tm

m!

=
∞
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(
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)
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}
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,

(33)

where Bn are the ordinary Bernoulli numbers.
Therefore, by (32) and (33), we obtain the following theorem.

Theorem 5. For n ≥ 0, we have

n

∑
k=0

k

∑
m=0

Cm,λ(x)S2,λ(k, m)S2(n, k)

=
n

∑
m=0

(
n
m

)(
Belm+1,λ(x + 1)− Belm+1,λ(x)

m + 1

)
Bn−m.

3. Conclusions

As a further study of the new type degenerate Bell polynomials, we obtained two expressions
involving these degenerate Bell polynomials, Carlitz’s degenerate Bernoulli polynomials and the
Stirling numbers of the second kind, two identities involving those degenerate Bell polynomials,
degenerate Euler polynomials and the Stirling numbers of the second kind. In additon, we were able to
find an identity involving those degenerate Bell polynomials, Cauchy polynomials, Bernoulli numbers,
Stirling numbers of the second kind and degenerate Stirling numbers of the second kind.

In our previous works related to this paper, we studied various degenerate versions of many
special polynomials. They have been investigated by using several different means, such as generating
functions, combinatorial methods, umbral calculus techniques, probability theory, p-adic analysis,
differential equations, and so on. Further, q-analogues of those degenerate versions of special
polynomials were also introduced by using bosonic and fermionic p-adic q-integrals, and their number
theoretic and combinatorial properties were investigated.

It is one of our research projects to continue this line of study. Namely, we would like to
study various degenerate versions of special polynomials and numbers and also their q-analogues,
and investigate their possible applications to physics and engineering, as well as to mathematics.
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