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Abstract: In this article, the five-parameter beta Kumaraswamy exponential distribution (BKw-E) is
introduced, and some characterizations of this distribution are obtained. The shape of the hazard
function and some other important properties—such as median, mode, quantile function, and
mean—are studied. In addition, the moments, skewness, and kurtosis are found. Furthermore,
important measures such as Rényi entropy and order statistics are obtained; these have applications
in many fields. An example of a real data set is discussed.
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1. Introduction

The Kumaraswamy distribution was originally called the double-bounded distribution. It was
introduced by [1]. This distribution has a closed-form cumulative distribution function (cdf). It has
been found that the Kumaraswamy distribution fits hydrological data in simulations (see [1]) and is
more computationally tractable (see [2]). Reference [3] proposed a new procedure for building a new
distribution known as the Kumaraswamy-H distribution (Kw-H). The Kw-H can be constructed for
any continuous baseline cumulative function H(x), with the cdf given by

G(x) = 1− {1− [H(x)]a}b, (1)

where a, b > 0 are the shape parameters.
Putting the cdf of exponential distribution (H(x) = 1− e−λx) in Equation (1), we obtain the

Kumaraswamy exponential (Kw-E) distribution, whose cdf is given by

G(x) = 1− {1− (1− e−λx)a}b, x > 0, (2)

where a, b > 0 are the shape parameters and λ > 0 is the scale parameter.
In recent years, there were several studies about generalized Kumaraswamy distribution and

its generalizations. Reference [4] derived a simple representation for the Kw-H density function as
a linear combination of exponentiated-H distributions. They obtained its mathematical properties.
In addition, they proposed some new distributions as sub-models. Moreover, they discussed the
estimation of maximum likelihood and applied the model to a real data set. Reference [5] considered an
exponentiated Kumaraswamy distribution. They discussed its properties. In addition, they proposed
the log-exponentiated Kumaraswamy distribution and obtained the maximum likelihood estimators
of the log-exponentiated Kumaraswamy distribution. Reference [6] introduced the Kumaraswamy
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linear exponential distribution with four parameters and obtained some of its mathematical properties.
In addition, the estimations of the unknown parameters were derived by using the maximum likelihood
estimation. Reference [7] introduced the the maximum likelihood of the unknown parameters for
Kumaraswamy exponential distribution. In addition, they obtained the information matrix and applied
the model to a real data set. Reference [8] introduced the exponentiated Kumaraswamy exponential
distribution (Expk-E). They considered its characterization and properties. In addition, they obtained
the estimation of the parameters by applying the maximum likelihood estimation; the application
showed that the model proposed can be very useful in fitting real data. Reference [9] introduced the
estimation of the parameters for Kumaraswamy exponential distribution under progressive type-II
censored samples. In addition, the estimators of the parameters were obtained using maximum
likelihood and Bayes estimates under different loss functions. Furthermore, the Monte Carlo simulation
was applied for numerical comparison between various estimates.

On the other hand, Reference [10] proposed a class of generalized distributions as follows:

F(x) =
1

B(l, m)

∫ G(x)

0
wl−1(1− w)m−1dw, (3)

where l, m > 0 are the shape parameters. The cdf G(x) could represent any baseline cumulative
function, while F(x) is named the beta-G(x) distribution.

Many authors have studied the generalized beta distribution and its generalizations.
Reference [10] proposed a general class of distributions generated from the beta distribution with
two extra parameters. They introduced the beta-normal distribution as a special model. They
obtained moments and discussed the estimation of the maximum likelihood estimators. Furthermore,
Reference [11] considered the beta exponential distribution. They studied some of its properties and
derived the first four moments, the moment-generating function, and the extreme order statistics.
In addition, they obtained the maximum likelihood estimation. Reference [12] proposed the beta
generalized exponential distribution. They provided a comprehensive mathematical treatment for
the distribution and derived the moment-generating function, including the densities of the order
statistic. They discussed the estimation of the parameters by maximum likelihood and provided
the information matrix. In addition, they applied the model to a real data set. Furthermore,
Reference [13] considered the beta generalized inverted exponential distribution. Various properties of
the distribution were obtained. In addition, the Fisher information matrix, the maximum likelihood
estimators, and the confidence interval were found. Furthermore, they discussed the Monte Carlo
simulation, and applications with real data were provided. Reference [14] proposed the beta-generated
Kumaraswamy-G family. They obtained some of its properties; the order statistics, probability
weighted moments, moment-generating function, and Rényi entropy were also derived. Moreover, two
methods of estimation were discussed. Reference [15] continued some studies on the beta generated
Kumaraswamy-G family by proposing the beta generated Kumaraswamy Burr type X distribution.
Some properties of the distribution were provided; the maximum likelihood estimation was also
obtained, and the model was applied to a real data set.

In this article, a new distribution is introduced by taking the cdf of the Kw-E distribution as
the baseline of the beta distribution. We refer to the new distribution as the beta Kumaraswamy
exponential (BKw-E) distribution. This model is a generalization of the Kw-E distribution. In the
further sections, we first present our model BKw-E distribution, as well as the reliability and the hazard
functions in Section 2. The properties of the distribution—such as moments, quntile function, median,
and other important properties—are studied in Section 3. The Rényi entropy is discussed in Section 4.
Order statistics are discussed in Section 5, and an application on a real data set is provided in Section 6.
Finally, conclusions are presented in Section 7.
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2. The BKw-E Distribution

In this section, we introduce the five-parameter beta Kumaraswamy exponential (BKw-E)
distribution. By subtitling Equation (2) as a baseline cumulative function in Equation (3), the cdf of
BKw-E is obtained as follows :

F(x) =
1

B(l, m)

∫ 1−{1−(1−e−λx)a}b

0
wl−1(1− w)m−1dw, x > 0, l, m, a, b, λ > 0, (4)

and the corresponding probability density function (pdf) of the BKw-E takes the form

f (x) = aλb
B(l,m)

e−λx(1− e−λx)a−1 [1− (1− e−λx)a]mb−1
[
1−

[
1− (1− e−λx)a]b

]l−1
,

x > 0, a, b, λ, l, m > 0.
(5)

Equation (5) can be rewritten as an infinite power series in the form

f (x) = aλb ∑∞
k=0

(−1)ke−λx

lB(k+1,l−k)B(l,m)
(1− e−λx)a−1 [1− (1− e−λx)a]b(m+k)−1 , x > 0, a, b, λ, l, m > 0, (6)

or it can be rewritten as a mixture of exponential distribution, which has the form

f (x) = λ
∞

∑
i=0

(i + 1)ψie−λ(i+1)x, x > 0, l, m, a, b, λ > 0, (7)

where
ψi = ∑∞

k=0 ∑∞
j=0

(−1)k+j+i

l(m+k)(j+1)B(k+1,l−k)B(l,m)B(b(m+k)−j,j+1)(i+1)B(a(j+1)−i,i+1) . (8)

From Equation (6), the corresponding cdf is given as

F(x) = ∑∞
k=0

(−1)k

l(m+k)B(k+1,l−k)B(l,m)

[
1−

[
1− (1− e−λx)a]b(m+k)

]
, x > 0, a, b, λ, l, m > 0. (9)

From the pdf in Equation (7), the cdf can be written in the form

F(x) =
∞

∑
i=0

ψi

[
1− e−λ(i+1)x

]
, x > 0, l, m, a, b, λ > 0, (10)

where ψi is defined in Equation (8).
We can get the pdf of the Kw-E distribution as a special case from the BKw-E distribution, when

l = m = 1 in Equation (5) as follow:

f (x) = aλbe−λx(1− e−λx)a−1
[
1− (1− e−λx)a

]b−1
, x > 0, a, b, λ > 0. (11)

In addition, we can assume that all of the properties of ExpK-E by [8] still hold when m = 1 in
Equation (5), and the pdf is given by

f (x) = (laλb)e−λx(1− e−λx)a−1 [1− (1− e−λx)a]b−1
[
1−

[
1− (1− e−λx)a]b

]l−1
, x > 0, a, b, λ, l > 0. (12)

Furthermore, the exponential (Exp) distribution can be found when m = l = b = a = 1.

f (x) = λe−λx, x > 0, λ > 0. (13)

There are many sub-models that we can generate from the BKw-E, such as the beta
generalized exponential distribution which was proposed by [12] or the Beta exponential distribution.
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The proposed model shows diversity and flexibility, which can be useful for goodness of fit tests and
applications of real data, as we will discuss in Section 6.

Figure 1 shows that the shape of the probability density function is uni-modal and is positively
skewed for different values of the parameters.

Figure 1. The probability density function (pdf) curves of the beta Kumaraswamy exponential
distribution (BKw-E) with (a, b, λ, l, m).

The Hazard and Reliability Functions

The hazard function is the instant rate of failure at a given time t, while the reliability function
is the probability of the non-failure occurring before time t. The reliability function of the BKw-E
distribution is given by:

R(x) = 1−∑∞
k=0

(−1)k

l(k+m)B(k+1,l−k)B(l,m)

[
1−

[
1− (1− e−λx)a]b(m+k)

]
, x > 0, a, b, λ, l, m > 0, (14)

and the corresponding hazard function of the BKw-E distribution takes the form

h(x) =
aλb ∑∞

k=0
(−1)ke−λx

lB(k+1,l−k)B(l,m)
(1− e−λx)a−1 [1− (1− e−λx)a]b(m+k)−1

1−∑∞
k=0

(−1)k

l(k+m)B(k+1l−k)B(l,m)

[
1−

[
1− (1− e−λx)a

]b(m+k)
] , x > 0, a, b, λ, l, m > 0. (15)

Figure 2 shows the reliability curves for different values of the parameters for the BKw-E
distribution, while Figure 3 shows that the hazard function of the BKw-E distribution increases
for different values of (a, b, λ, l, m). The BKw-E distribution shows good statistical behavior based on
these two functions.

Figure 2. The reliability curves of the BKw-E distribution with (a, b, λ, l, m).
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Figure 3. The hazard curves of the BKw-E distribution with (a, b, λ, l, m).

3. Statistical Properties

3.1. Moments

The rth moment of the BKw-E distribution random variable X is given by

E(Xr) =
∫ ∞

0
xr aλb

B(l, m)
e−λx(1− e−λx)a−1

[
1− (1− e−λx)a

]mb−1
[

1−
[
1− (1− e−λx)a

]b
]l−1

dx.

By using the pdf in Equation (7)

E(Xr) = λ
∞

∑
i=0

(i + 1)ψi

∫ ∞

0
xre−λ(i+1)x, (16)

the closed form for the moment is given by

µ
′
r =

∞

∑
i=0

ψi
r!

λr(i + 1)r , (17)

and for r = 1, we obtain the mean:

µ =
∞

∑
i=0

ψi
1

λ(i + 1)
· (18)

3.2. Quantile Function

Let u = F(x) where U follows uniform (0, 1). By using the transformation method, we consider
the random variable X of Bkw-E as follows:

x = Q(u) = − 1
λ

log

1−
[

1−
[
1− I−1

u (l, m)
] 1

θ

] 1
a

 , (19)

where I−1
u (l, m) is the inverted incomplete beta function with parameters l and m. The quantile

function in Equation (19) is an important function in the simulation study for generating random
numbers from the Bkw-E distribution.

3.3. Median

The median (med) of the BKw-E distribution can be found using the cdf in Equation (9).
Substituting l = 1 in Equation (9), we have[

1−
[
1− (1− e−λmed)a

]b(m+k)
]
=

1
2
· (20)
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After solving Equation (20), the median is given by

med = − 1
λ

log
[

1−
[
1− (0.5)

1
bm

] 1
α

]
· (21)

3.4. Mode

The mode of the BKw-E distribution can be found by solving the following equation:

d f (x)
dx

= 0·

Using Equation (5), we have

f (x)
[

λ

[
− 1 + e−λx(1− e−λx)−1

[
(a− 1)− a(1− e−λx)a

[
1− (1− e−λx)a

]−1

×[
(mb− 1)− b(a− 1)

[
1− (1− e−λx)a

]b[[
1− (1− e−λx)a

]b]−1]]]]
= 0.

(22)

Since f (x) > 0, the mode is the solution of the following equation:

λ

[
− 1 + e−λx(1− e−λx)−1

[
(a− 1)− a(1− e−λx)a

[
1− (1− e−λx)a

]−1

×
[
(mb− 1)− b(a− 1)

[
1− (1− e−λx)a

]b[[
1− (1− e−λx)a

]b]−1]]]
= 0.

(23)

Equation (23) is a nonlinear equation, and its solution cannot be found analytically. Furthermore,
it can be found numerically by using Newton–Raphson method.

3.5. Skewness and Kurtosis

By using quantiles, the skewness and kurtosis of the BKw-E can be calculated. Bowley’s skewness
is based on quartiles (see [16]), and it takes the form

B =
Q(3/4)− 2Q(1/2) + Q(1/4)

Q(3/4)−Q(1/4)
.

Moors’ kurtosis (see [17]) is based on octiles, and could be written as

M =
Q(7/8)−Q(5/8) + Q(3/8)−Q(1/8)

Q(6/8)−Q(2/8)
,

where Q(.) is the quantile function defined in Equation (19).
The behavior of the BKw-E distribution can be studied in Table 1 and Figure 1. The curve of

the distribution approaches the normal shape when the value of a increases, which explains why the
value of the skewness is near to zero. On the other hand, the curve of the distribution is positively
skewed as the value of b decreases. By increasing b, the mean, mode, and median decrease. Further, by
increasing the scale parameter λ, the values of kurtosis and skewness remain constant, although the
mode, median, and mean decrease. In addition, as we increase the value of l, the values of the mode,
median, kurtosis, and skewness remain constant while the mean increases. Moreover, the mean, mode,
and median decrease with the increase of the value of m.
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Table 1. The mean, mode, median, skewness, and kurtosis for different values of the parameters.

a b λ l m Mean Mode Median Skewness Kurtosis

1.5 3 0.8 3 1 1.101 0.474 0.536 0.186 1.263

3.5 3 0.8 3 1 1.950 1.784 1.267 0.106 1.245

4 3 0.8 3 1 2.095 2.007 1.401 0.099 1.245

2 0.5 0.8 3 1 1.860 2.728 2.513 0.217 1.304

2 0.8 0.8 3 1 2.964 1.999 1.791 0.197 1.289

2 1.5 0.8 3 1 2.376 1.346 1.172 0.172 1.269

2 3 0.9 3 1 1.219 0.791 0.673 0.1496 1.251

2 3 1.3 3 1 0.844 0.546 0.466 0.1496 1.251

2 3 2 3 1 0.549 0.356 0.303 0.1496 1.251

2 3 0.8 4 1 1.505 0.8896 0.757 0.1496 1.251

2 3 0.8 5 1 1.608 0.8896 0.757 0.1496 1.251

2 3 0.8 3 0.2 2.785 1.631 2.198 0.1496 1.251

2 3 0.8 3 2 0.970 0.650 0.501 0.1496 1.251

3.6. The Mean Deviation

The mean deviation is a measure of dispersion derived by computing the mean of the absolute
values of the differences between the observed values of a variable and the mean or the median of the
variable. The mean deviation about the mean and the median are, respectively, defined by:

D(µ) = E(|x− µ|)

and
D(m) = E(|x−m|),

where µ = E(X) and m = Q( 1
2 ).

The mean deviation about the mean can be obtained from the following theorem:

Theorem 1. The mean deviation about the mean of the BKw-E distribution is in the form

D(µ) = 2
∞

∑
i=0

ψi

[
µ− 1

λ(i + 1)
(1− e−µλ(i+1))

]
.

Proof. The mean deviation about the mean can be defined as

D(µ) = E(|x− µ|) =
∫ ∞

0 |x− µ| f (x)dx
=
∫ µ

0 (µ− x) f (x)dx +
∫ ∞

µ (x− µ) f (x)
= 2

∫ µ
0 (µ− x) f (x)dx

= 2µF(µ)− 2
∫ µ

0 xF(x)dx
= 2

∫ µ
0 F(x)dx·

(24)

By using the cdf in Equation (10), the mean deviation of the BKw-E distribution can be derived as:

D(µ) = 2
∞

∑
i=0

ψi

∫ µ

0

[
1− e−λ(i+1)x

]
dx
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= 2
∞

∑
i=0

ψi ×
[∫ µ

0
dx−

∫ µ

0
e−λ(i+1)xdx

]
.

Then, the mean deviation about the mean is given by:

D(µ) = 2
∞

∑
i=0

ψi

[
µ− 1

λ(i + 1)
(1− e−µλ(i+1))

]
· (25)

Hence, the theorem is proved.

Next, the mean deviation about the median can be obtained from the following theorem:

Theorem 2. The mean deviation about the median of BKw-E distribution is given by

D(med) = µ−med + 2
∞

∑
i=0

ψi

[
med− 1

λ(i + 1)
(1− e−medλ(i+1))

]
.

Proof. The mean deviation from the median can be defined as

D(med) = E(|x−med|) =
∫ ∞

0
|x−med| f (x)dx

= 2
∫ med

0
(med− x) f (x)dx−

∫ med

0
(med− x) f (x)dx +

∫ ∞

med
(x−med) f (x)dx

= 2
∫ med

0
(med− x) f (x)dx +

∫ ∞

0
(x−med) f (x)dx

= µ− 2
[

medF(x)−
∫ med

0
F(x)dx

]
= µ−med + 2

∫ med

0
F(x)dx.

By using the cdf in Equation (10), we obtain

D(med) = µ−med + 2
∞

∑
i=0

ψi

∫ med

0

[
1− e−λ(i+1)x

]
dx· (26)

The third term in Equation (26) is the same as that in Equation (24), with upper limit med instead of
µ. Hence, the mean deviation about the median of BKw-E distribution can be obtained as the following:

D(med) = µ−med + 2
∞

∑
i=0

ψi

[
med− 1

λ(i + 1)
(1− e−medλ(i+1))

]
. (27)

Hence, the theorem is proved.

4. Rényi Entropy

The Rényi entropy was introduced by [18], and is one of the several generalizations of Shannon’s
entropy [19]. The entropy of a random variable is a measure of uncertainty or randomness of a system.
In addition, the theory of entropy has been successfully used in various of applications such as in
information theory, engineering, and physics [20]. It is useful in describing a nonlinear dynamical
or disordered system [21], and in statistics for testing hypotheses in parametric models and lifetime
distributions (see [18,22]).
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Theorem 3. The Rényi entropy of order β for the BKw-E distribution is in the form

Rβ(X) = 1
1−β log

[
aλb

B(l,m)

β
∑∞

k=0 ∑∞
j=0 ∑∞

i=0 (
β(l−1)

k )× (bk+β(mb−1)
j )(aj+β(a−1)

i ) (−1)k+j+i

λ(i+β)

]
. (28)

Proof. For the density function f (x), the Rényi entropy is defined as:

Rβ(X) =
1

1− β
log [J(β)] , (29)

where J(β) =
∫ ∞

0 f β(x)dx, β > 0 and β 6= 1. By using the pdf in Equation (5), we have

J(β) =
(

aλb
B(l,m)

)β ∫ ∞
0 e−βλx(1− e−λx)β(a−1) [1− (1− e−λx)a]β(mb−1)

[
1−

[
1− (1− e−λx)a]b

]β(l−1)
dx.

Now, by applying the binomial expansion, we get

J(β) =
(

aλb
B(l,m)

)β
∑∞

i=0 (
β(l−1)

k )(−1)k(β(l−1)
k )

∫ ∞
0 e−βλx(1− e−λx)β(a−1)

×
[
1− (1− e−λx)a]bk+β(mb−1) dx.

Using the binomial expansion again, we have

J(β) =
(

aλb
B(l,m)

)β
∑∞

k=0 ∑∞
j=0 ∑∞

i=0 (
β(l−1)

k )(bk+β(mb−1)
j )(aj+β(a−1)

i )(−1)k+j+i ∫ ∞
0 e−λ(I+β)xdx.

After integrating, we get

J(β) =

(
aλb

B(l, m)

)β ∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

(
β(l − 1)

k

)(
bk + β(mb− 1)

j

)(
aj + β(a− 1)

i

)
(−1)k+j+i

λ(i + β)
.

Then, by taking the logarithm, we have

log [J(β)] = log
[(

aλb
B(l,m)

)β
∑∞

k=0 ∑∞
j=0 ∑∞

i=0 (
β(l−1)

k )(bk+β(mb−1)
j )(aj+β(a−1)

i ) (−1)k+j+i

λ(i+β)

]
. (30)

Substituting Equation (30) into (29), we get the Rényi entropy for BKw-E as

Rβ(X) =
1

1− β
log

[(
aλb

B(l, m)

)β ∞

∑
k=0

∞

∑
j=0

∞

∑
i=0

(
β(l − 1)

k

)(
bk + β(mb− 1)

j

)(
αj + β(a− 1)

i

)
(−1)k+j+i

λ(i + β)

]
.

Hence, the theorem is proved.

5. Order Statistics

Considering that x(1) ≤ x(2) ≤ x(3) ≤. . .≤ x(n) denotes the order statistic of a random sample
X1, X2, X3,. . . , Xn from the BKw-E distribution with cdf F(x) and pdf f (x), the pdf of X(r) can be
written as (see [23])

fr(x(r)) =
n!

(r− 1)!(n− r)!
f (x) [F(x)]r−1 [1− F(x)]n−r . (31)
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By using the pdf in Equation (7) and the cdf in the Equation (10), we get

fr(x(r)) =
n!

(r−1)!(n−r)! λ ∑∞
i=0(i + 1)ψie

−λ(i+1)x(r)
[
∑∞

i=0 ψi

[
1− e−λ(i+1)x(r)

]]r−1

×
[
1−

[
∑∞

i=0 ψi

[
1− e−λ(i+1)x(r)

]]]n−r
,

x(r) > 0. (32)

The pdf of the largest order statistic X(n) is given by

fn(x(r)) = nλ
∞

∑
i=0

(i + 1)ψie
−λ(i+1)x(n)

[
∞

∑
i=0

ψi

[
1− e−λ(i+1)x(n)

]]n−1

, x(n) > 0. (33)

The pdf of the smallest order statistic X(1) is

f1(x(1)) = nλ
∞

∑
i=0

(i + 1)ψie
−λ(i+1)x(1)

[
1−

[
∞

∑
i=0

ψi

[
1− e−λ(i+1)x(1)

]]]n−1

, x(1) > 0. (34)

6. Application with a Real Data Set

In this section, we present an example of a real data set. A comparison between the presented
model (BKw-E) distribution and other sub-models is provided, using the maximum likelihood
method of estimation (MLEs) to estimate the parameters. To establish that our model could be
superior, we compared the models employing the Akaike information criterion (AIC), corrected
Akaike information criterion (CAIC), Hannan–Quinn information criterion (HQIC) (see, [13]), and the
negative log-likelihood function under the considered models. The data set we considered (see [24])
represents 40 patients suffering from blood cancer (Leukemia) from one Ministry of Health hospital in
Saudi Arabia and the order values in years.

Table 2 shows the estimates of the MLEs for the parameters of the presented models along with
their (-2logl, AIC, CAIC, HQIC) values. According to the criteria used for the goodness of fit, the
proposed model (BKw-E) fits such data better because it has the smallest values of (AIC, CAIC, HQIC).
Furthermore, the cdfs of the fitted models with the cumulative frequency of observed data in Figure 4
indicate that the BKw-E distribution provides a closer fit to the observed data set.

Table 2. The MLEs for the parameters of the models, log-likelihood, Akaike information criterion (AIC),
corrected Akaike information criterion (CAIC), and Hannan–Quinn information criterion (HQIC) of
patients suffering from blood cancer.

Model MLEs −2logL AIC CAIC HQIC

Exp λ̂ = 0.321 170.917 172.917 173.022 173.528

ExpK-E
â = 0.0250 b̂ = 0.227

145.405 153.405 154.548 155.847
λ̂ = 3.005 l̂ = 11.125

Kw-E
â = 2.959 b̂ = 5.619

142.758 148.758 149.414 150.58
λ̂ = 0.227

BKw-E

â = 10.138 b̂ = 4.420

132.04 142.04 143.804 145.093l̂ = 0.224 m̂ = 32.859

λ̂ = 0.189
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Figure 4. Plot of the cdf for Exp, Kumaraswamy exponential distribution (Kw-E), exponentiated
Kumaraswamy exponential distribution (ExpK-E), BKw-E, and the empirical distribution.

7. Conclusions

We introduced the five-parameter beta Kumaraswamy exponential (BKw-E) distribution, which
generalizes the beta generalized exponential distribution proposed by [12] and the beta exponential
distribution which was discussed by [11]. In addition, the BKw-E distribution has sub-models, such as
the Kumaraswamy exponential introduced by [8] and the exponentiated Kumaraswamy exponential
discussed by [9]. For our study, we provided the pdf, the cdf, and the shape of the hazard function.
The shape of the pdf of the BKw-E distribution is uni-modal and positively skewed, while the hazard
function of the BKw-E distribution is increasing. In addition, some important properties of the
Bkw-E—such as the moments, mode, and median—are proven. The order statistics were provided, as
well as the Rényi entropy, which is suitable in many applications. Finally, a real data set was presented
using the maximum likelihood estimation; we can show that the proposed model is a good fit for
lifetime data.
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