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Abstract: A secant-type method is designed for approximating the inverse and some generalized
inverses of a complex matrix A. For a nonsingular matrix, the proposed method gives us
an approximation of the inverse and, when the matrix is singular, an approximation of the
Moore-Penrose inverse and Drazin inverse are obtained. The convergence and the order of
convergence is presented in each case. Some numerical tests allowed us to confirm the theoretical
results and to compare the performance of our method with other known ones. With these results,
the iterative methods with memory appear for the first time for estimating the solution of a nonlinear
matrix equations.

Keywords: nonlinear matrix equation; iterative method; secant method; convergence; singular value
decomposition

1. Introduction

Recently, many iterative methods without memory have been published for approximating the
inverse or some generalized inverse of a complex matrix A of arbitrary order (see, for example, [1-6]
and the references therein). This topic has a significant role to play in many areas in applied sciences
and engineering, such as multivariate analysis, image and signal processing, approximation theory,
cryptography, etc. (see [7]).

The discretization process of boundary problems or partial differential equations by means of
divided difference technique or finite elements yields to an important number of linear systems
being solved. This statement is applicable both in equations with integer derivatives and in the case
of fractional derivatives (see, for example, [8,9]). In these linear problems, usually the matrix of
coefficients is too big or ill-conditioned to be solved analytically. Thus, iterative methods can play a
key role.

The main purpose of this manuscript is to design a secant-type iterative scheme with memory,
free for inverse operators and efficient under the point of view of CPU-time, for estimating the inverse
of a non-singular complex matrix. We also argue the generalization of the proposed scheme for
approximating the Drazin inverse of singular square matrices and the Moore-Penrose inverse of
complex rectangular matrices. As far as we know, this is the first time that this kind of methods
with memory is applied to estimate generalized inverses. This might be the first step to develop
higher-order methods with memory in the future. This kind of schemes has proven to be very stable
for scalar equations; we expect a similar performance in the case of matrix equations.
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Let us consider a non-singular complex matrix A of size n x n. The extension of the iterative
methods for the real equation g(x) = ax — 1 = 0 to obtain the inverse of A, that is the zero of the
matrix function G(X) = X! — A, gives us the so-called Schulz-type schemes.

The most known of these schemes to estimate A~! is the Newton-Schulz method [10],
whose iterative expression is

X = Xe(2I — AXy), k=0,1,..., )

where I denotes the identity matrix of order n. Schulz [11] demonstrated that the eigenvalues of
matrix I — AXp must be less than 1 to assure the convergence of the scheme in Equation (1). Taking
into account that the residuals Ex = I — AX} in each iteration of Equation (1) satisfy || Ex_1 || < ||Exl|?
Newton-Schulz method has quadratic convergence. In general, it is known that this scheme converges
to A~! with Xg = aA* or Xog = A, where 0 < a < 2/p(A*A), p(-) denotes the spectral radius, and A*
is the conjugate transpose of A. Such schemes are also used for sensitivity analysis when accurate
approximate inverses are needed for both square and rectangular matrices.
On the other hand, for a nonsingular matrix A € C"*", Lij et al. [12] suggested the scheme

m(m—1)(m—2)
3!

X1 = X (ml - @AX;( + — (—1)’”1(AXk)’”l) , m=22,...,
with Xy = aA*. They proved the convergence of m-order of { Xy} to the inverse of A. This result
was extended by Chen et al. [13] for computing the Moore-Penrose inverse. Other iterative schemes
without memory have been designed for approximating the inverse or some generalized inverses.

In this paper, we construct an iterative method with memory (that is, k 4 1 iterate is obtained
not only from the iterate k but also from other previous iterates) for computing the inverse of a
nonsingular matrix. In the iterative expression of the designed method, inverse operators do not
appear. We prove the order of convergence of the proposed scheme and we extend it for approximating
the Moore-Penrose inverse of rectangular matrices and the Drazin inverse of singular square matrices.

For analyzing the order of convergence of an iterative method with memory, we use the concept
of R-order introduced in [14] by Ortega and Rheinboldt and the following result.

Let us consider an iterative method with memory (IM) that generates a sequence {Xy} of
estimations to the solution ¢, and let us also assume that this sequence converges to ¢. If there
exists a nonzero constant # and nonnegative numbers ¢;, 0 < i < m such that the inequality

m
lexsa| < ] lex—il" @)
=0

1

holds, where ¢y is the error of iterate Xj, then the R-order of convergence of (IM) satisfies

Or((IM),8) = s%, ®)

where s* is the unique positive root of the polynomial
m .
s Y s =0 4
i=0

The proof of this result can be found in [14].

From here, the work is organized as follows. In the next section, we describe how a secant-type
method, free of inverse operators, is constructed for estimating the inverse of a nonsingular complex
matrix, proving its order of convergence. In Sections 3 and 4, we study the generalization of the
proposed methods for computing the Moore-Penrose inverse of a rectangular complex matrix and the
Drazin inverse of a singular square matrix. Section 5 is devoted to the numerical test for analyzing
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the performance of the proposed schemes and to confirm the theoretical results. With a section of
conclusions, the paper is finished.

2. A Secant-Type Method for Matrix Inversion

Let us recall that, for an scalar nonlinear equation g(x) = 0, the secant method is an iterative
scheme with memory such that

Xk
Xk+1 = Xk — M/
X

with ay satisfying g(xx) — g(xx_1) = ax(xx — x¢_1), k > 0, given xp and x_; as initial approximations.
For a nonlinear matrix equation G(X) = 0, where G : C"*" — C"*", the secant method can be
described as
Xip1 = X — A 'G(Xy), k>0,

where Xy and X_ are initial estimations and being Ay a suitable linear operator satisfying
Apin (X = Xp) = G(Xpp1) = G(Xy) & AppaSe =Y

where Sy = X1 — X and Yy = G(Xjy1) — G(Xy). Thus, it is necessary to solve, at each iteration, the
linear system Ay 1Sk = Y. It is proven in [15] that, with this formulation, secant method converges to
the solution of G(X) = 0.

Let us consider an n X n nonsingular complex matrix A. We want to construct iterative schemes
for computing the inverse A~! of A, that is, iterative methods for solving the matrix equation

GX)=X1-A=0. (5)

The secant method was adapted by Monsalve et al. [15] to estimate the solution of Equation (5), that is
the inverse of A, when the matrix is diagonalizable. The secant method applied to G(X) = X! — A
(see [15]) gives us:

X1 = Xe—Sk1[G(Xp) — G(Xe1)] ' G(X) (6)

-1
= Xi— (X — Xj_1) [Xk_l - Xk_,ll] (X1 - A).

Now, we extend the result presented in [15] to any nonsingular matrix, not necessarily
diagonalizable. If A is a nonsingular complex matrix of size n x 1, then there exist unitary matrices U
and V, of size n x n, such that

U AV =% = diag(oy,02,...,04), (7)

being 01 > 0p > ... > 0y, > 0 the singular values of A.
Let us define Dy = V*X U, that is X; = VD, U*. Then, from Equation (6),

VD U* = VDU* — (VD U* — VD, U*)(UD 'V — UD, !, V*) " (UD, 'V — UZV™).
Several algebraic manipulations allow us to assure that
Dyt1 = Dy — (Dg — D) (D' = D) " (D - 2). ®)

If we choose initial estimations, X_; and Xj, such that D_1 = V*X_,U and Dy = V*XpU are
diagonal matrices, then all matrices Dy are diagonal and therefore D,-D]- = DjDi, for all i,j. Thus,
from Equation (8), we assure

D1 = Dg-1+ Dy — D1 2D,
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and, from this expression, we propose the secant-type method:
Xiy1 = Xp—1 + X — X4 1AXy, k=0,1,2,... )

being Xy and X_ initial approximations given.
The analysis of the convergence of the iterative method with memory in Equation (9) is presented
in the following result.

Theorem 1. Let A € C™ be a nonsingular matrix, with singular value decomposition U*AV = Z. Let X
and X_q be such that V*X_1U and V*XoU are diagonal matrices. Then, sequence {X}, obtained by
Equation (9), converges to A~ with super-linear convergence.

Proof. Let us consider U and V unitary matrices such that the singular values decomposition in
Equation (7) is satisfied, where oy > 0, > ... > 0y, > 0 are the singular values of A.
We define Dy = V* XU, that is X = VDU, for k > —1. From Equation (9), we have

VDy 1 U" = VD 1 U* + VD U* — VD (U ULV*VD U,
then
VDy U" = V(Dg1 + Dy — Dy 1 ZD)U”
and therefore
Dyt1 = D1 + Dy — Dx1ZDx,
where Dy = diag(di,d%,. o dy).
Then, component by component, we obtain

di =di_+d,—d_ dio;, j=1,2,...,n (10)
By subtracting % from both sides of Equation (10) and denoting e?{ = d;{ —1/0j, we get

]

o1 = Ghg Hd— A dioj - - (11)
j

= _‘714;4;71

From Equation (11), we conclude that, for each value of j from 1 to n, d{( 41 in Equation (10)

1
converges to o with order of convergence of the unique positive root of A2 — A — 1 = 0, that is,

]
A = 1.618 (by using the result of Ortega—Rheinboldt mentioned in the Introduction).

Then, for each j, 1 < j < n, there exist a {c{(}k satisfying c{( > 0, Vk and (Ci) « tends to zero when k
tends to infinity. Moreover,

‘e{<+1‘<ck’ek ,1<j<n
Thus,
—1||? =i 3 JN2(,0\2 2 —1?
[P =27 = Yoteen)? < Yo()Ael)? < mm [ De— 27
j=1 j=1
where
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Therefore,

HX,{H—A*1H2 - HVDkHu*—VZ*lu*

2

|v(Dea -2,

< V2 [P == )| Itz = || (Deer =7
< Vamy|(D—z )|
< Vi |- A7),

which allows us to affirm that { X} } converges to A~!. [

On the other hand, Highan in [10] introduced the following definition for the stability of the
iterative process Zy 1 = H(Zy), with a fixed point Z,. If we assume that H is Frechét differentiable
in Z,, the iteration is stable in a neighborhood of Z, if the Frechét derivative H'(Z.) has bounded
powers, that is, there exists a positive constant C such that

|H(Z.)¥|| < C, Yk > 0.
Therefore, the following result can be stated for the secant method.
Theorem 2. The secant method in Equation (9) for the estimation of inverse matrix is a stable iterative scheme.

Proof. The proof is made demonstrating that H'(Z,.) is an idempotent matrix.
The secant-type method described as a fixed point scheme, can be written as

H(Z,) = H X _ X1+ X — X1 AXg ‘
X1 X

It is easy to deduce that

/ Xk Q1+ Q2 — X 1AQ1 — QD AX
H = 7
() Jom (rangram e )

where Q = (Q1,Q2)T. Then, for Z = Z* = (A~1, A=1)T, we have

wee-( 0 )-(10)(%)

Thus, H'(Z,) is an idempotent matrix and the iteration is stable. [

3. A Secant-Type Method for Approximating the Moore-Penrose Inverse

Now, we would like to extend the proposed iterative scheme for computing the Moore-Penrose
inverse [7] of a m X n complex matrix A, denoted by At Itis the unique # X m matrix X satisfying
the equations

AXA=A, XAX=X, (AX)"=AX, (XA)"=XA.

If rank(A) = r < min{m, n}, by using the singular value decomposition of A, we obtain

> 0
0 0

A=U Vv*,
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being ¥ = diag(cq,09,...,04), 01 > 03,...,> 0 > 0. U and V are unitary matrices with U € C"*"
and V € C"*" It is also known that

» 1o

At =v*
0 0

u,

where 2! = diag(1/01,1/ 02, ...,1/07).
The convergence of the method in Equation (9) for Moore-Penrose inverse is established in the
following result.

Theorem 3. Let A € C™*" be a matrix with rank(A) = r, with singular value decomposition

z 0
U AV = .

Let X_q and X be initial estimations such that

. ¥4 0 i T 0
X_ = X = ,
1% 1U < 0 0) and 'V oll (0 0>

being ¥._1 and ¥y diagonal matrices of size r X r. Then, sequence { Xy}, obtained by Equation (9), converges to
A with super-linear order of convergence.

Proof. Given the singular value decomposition of A, for any fixed arbitrary value of k, we define
matrix Dy as
> 0
Dy =V*X, U= ,
= VX, ( : 0)

being ¥ € C"*". Thus, by using the iterative expression in Equation (9), we obtain

2k+1 O _ Yp 1+ X — XXX O
0 0 0 0/

Therefore, as ¥._1 and X are diagonal matrices, so are all matrices ¥y, and the expression

Yip1 = g1 + X — L1 Xy

represents r scalar uncoupled iterations converging to o 1 <i < r with super-linear order, that is
i

to say,
=1 — Z7HIE < M| — =715
with My = max;<j<,{c?}, being ¢} > 0 such that sequence {c.} tends to zero for k tending to infinity.
With an analogous argument as in Theorem 1,
1Xis1 = Atll2 < Vemi| X = A2,

which allows us to affirm that { X;} converges to A, with the desired order of convergence. [

4. A Secant-Type Method for Approximating the Drazin Inverse

Drazin, in 1958 (see [10]), proposed a different kind of generalized inverse, in which some
conditions of the Moore-Penrose inverse and the index of the matrix appeared. The importance of this
inverse has motivated many researchers to propose algorithms for its calculation.
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It is known (see [10]) that the smallest nonnegative integer I, such that rank( A1) = rank(A?) is
called the index of A and it is denoted by ind(A). If A is a complex matrix of size n x n, the Drazin
inverse of A, denoted AP, is the unique matrix X satisfying

AFIX = Al XAX =X, (AX) = XA,

where [ is the index of A.

If ind(A) = 1, then X is called the g-inverse or group inverse of A, and, if ind(A) = 0, then A is
nonsingular and AP = A~1. Let us observe that the idempotent matrix AAP is the projector on R(A!)
along N'(A!), where R(A!) and N'(A!) denote the range and null spaces of A’, respectively.

In [16], the following result is presented, which is used in the proof of the main result.

Proposition 1. If P4 p is the projector on a space A along a space B, the following statements hold:

(1) PypC = Cifandonlyif R(C) C A.
(b) CPup = Cifandonlyif N(C) 2 B.

Li and Wei [1] proved that the Newton-Schulz method in Equation (1) can be used for
approximating the Drazin inverse, using as initial estimation Xy = a A/, where parameter & is chosen
so that condition ||[I — AXp|| < 11is satisfied. One way for selecting the initial matrix used by different

authors is

2 I
Xo=—"""7=74,
07 Hr(AlT)

where tr(-) is the trace of a square matrix. Another fruitful initial matrix is

2 !

Xo=—""7-A"
1
2|l A3

Using two initial matrices of these form, aA!, with « a constant, we want to prove that the
sequence obtained by the secant-type method in Equation (9) converges to the Drazin inverse AP.
In this case, we use a different type of demonstration than those used in the previous cases.

Theorem 4. Let A € C"*" be a square nonsingular matrix. We choose as initial estimations X = agA" and
X1 = a AN, with 1y, 1; > ind(A). Then, sequence { Xy }x>o generated by Equation (9) satisfies the following
error equation

1A = Xieall < [APIHAIPI AP = X [IAP = Xil.

Thus, { Xy }x>o converges to AP with order of convergence 1.618, that is, with super-linear convergence.
Proof. Letus define Ex =1 — AXy, k=0,1,.... Then,

Expp = 1-AXp =1 A(Xp + X1 (I - AXy))
[— AXy — AXp 1 (I — AX,)
(I = AX1)(I = AXp)
- E 1.
Therefore, ||Exy1|| < ||Ex—1||||Ek||. In addition, it is easy to prove that, if we choose Xy and X; such
that [|Eg|| < 1and ||E1]| <1, then ||E|| <1, Vk € N.

Now, we denote ¢, = AP — X, the error of iterate k. From the selection of Xy and X; and by
applying Proposition 1, we establish

APAX, = X = X, AAP, Yk > 0.
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Thus,
er = AP — X = AP — AP AX, = AP (I — AX;) = APE,.

From this identity, there exists kg € N such that
lexll < IAPHIEKN < IAPIIEol*IEll¥, K > ko.

Thus, {||ex|| }x>0 tends to zero and therefore { X }r>o tends to AP.
On the other hand,

leciall = X1 — AP = [|APAXyq — APAAP|
= ||AP(AXg1 — AAP)|| < | APl Aegiall (12)

Now, we analyze Aej .
— D _ D _ D _ D
Aegyq = A(A” — Xk+1) =AA" —I+1—-AXyy1 = AA” — I+ E 1 = AA” — T+ Ex_1E,
but

Ex_1Ex + AAP — 1 (I — AX_1)(I — AXy) + AAP — 1

(I — AAD 4 AAP — AX_1)(I— AAP + AAP — AX;) + AAP — 1

(I — AAP + Aep_1)(I — AAP + Aep) + AAP — 1

(I — AAP)? (I — AAP)Aep + Aer_1(I — AAP) 4 Aey_1 Aep + AAP — 1

= Aek,lAek.
In the last equality, we use that (I — AAP)? = I — AAP, in fact (I — AAP)" = [ — AAP, vm € N.

In addition, (I — AAP)Ae; = 0and Ae,_;(I — AAP) = 0.
Therefore,

IAPI| Aeisr || = AP | Ex—1Ex + AAP — ]|
LAPIHIAIP lex—1 el

llexral

IN A

Finally, by applying the theorem of convergence for iterative methods with memory, as mentioned in
the Introduction, we assure that the order of convergence of secant-type method is the unique positive
root of A2 — A —1=0, thatis A = 1.618. [

5. Numerical Experiments

In this section, we check the behavior for the calculation of the inverse, Moore—Penrose inverse
and Drazin inverse, of different test matrices A, using the secant method, which we compared with the
Newton-Schulz scheme in Equation (1). Numerical computations were carried out in Matlab R2018b
(MathWorks, Natick, USA) with a processor Intel(R) Xeon(R) CPU E5-2420 v2 at 2.20 GHz. As stopping
criterion, we used || X;1 — Xill2 < 107¢ or ||F(Xi41)]]2 < 107°.

To numerically check the theoretical results, Jay [17] introduced the order of approximate
computational convergence (COC), defined as

In ([[F(Xi 1) [l2/[[F(Xk)||2)

order ~ COC = .
In (|| F(Xi)ll2/ | F(Xk-1)ll2)
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In a similar way, the authors presented in [18] another numerical approximation of the theoretical
order, denoted by ACOC, and defined as

In (|| Xg1 — Xill2/[| X — Xi—1l2)

order ~ ACOC = .
In (|| X — Xx_1l2/ [ X1 — Xi—21l2)

We use indistinctly any of these computational order estimates, to show the accuracy of these
approximations on the proposed method. In the case of vector COC (or ACOC) is not stable, we write
“-” in the corresponding table.

Example 1. In this example, matrix A is a n X n random matrix with n = 10,100,200, 300,400, 500.

The initial estimation used for the Newton-Schulz scheme is Xo = AT /||A|*> and for the secant method
T T

X 1= Af and Xy =

AR O>ape

In Table 1, we show the results obtained by Newton-Schulz and secant-type method for the
different random matrices, the number of iterations, the residuals, and the value of COC. The results
are in concordance with the order of convergence of each scheme. All obtained random matrices are
nonsingular and both methods give us an approximation of the inverse of A. Newton method needs
lower number of iterations than Secant scheme, as was expected, being the first one quadratic and the
latter one super-linear.

Table 1. Results for approximating the inverse of a random matrix (Example 1).

Method n  Iter [[Xpy1—Xkllz  ||[F(Xk4+1)[l2  COC
Newton-Schulz 10 19 52 x 1077 112 x 10~ 2.0005
Secant 10 22 54x107° 98x 1077  1.8660
Newton-Schulz 100 26 2.0x10°8 54x 10713 1.9988
Secant 100 36 1.3 x10°° 20x1077  1.6645
Newton-Schulz 200 32 2.5x 10712 46x10712 20012
Secant 200 40 1.6 x 10~° 1.8 x 1078  1.8866
Newton-Schulz 300 34 3.1x 1012 59x10712  1.8888
Secant 300 40 3.7x107° 36x1077  1.8865
Newton-Schulz 400 36 2.2 %1010 1.9 x 10711 2.0001
Secant 400 43 35x%x 1077 11x1078%  1.8222
Newton-Schulz 500 33 1.5 %1077 12x10711  1.9999
Secant 500 36 9.0x107° 26x1077  1.6666

Example 2. In this example, matrix A is a m x n random matrix for different values of m and n. The initial
matrices are calculated in the same way as in the previous example.

In Table 2, we show the results obtained by Newton-Schulz and secant-type method for the
different random matrices, the number of iterations, the residuals, and the value of ACOC. The results
are in concordance with the order of convergence of each scheme, despite being non-square matrices.
Both methods give us an approximation of the Moore-Penrose inverse of A.
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Table 2. Results for approximating the Moore-Penrose inverse of a rectangular random matrix

(Example 2).
Method m n Iter || Xpyq1— Xkll2 ACOC
Newton-Schulz 20 10 14 9.7 x 10712 2.0005
Secant 20 10 13 99 x 10710 1.6199
Newton-Schulz 200 100 17 4.1 x 10710 2.0018
Secant 200 100 17 2.02 x 1077 1.6210
Newton-Schulz 300 400 21 2.03 x 10~ 1 2.0007
Secant 300 400 27 1.4 x 1077 1.6267
Newton-Schulz 500 600 23 38x10°° 2.0028
Secant 500 600 31 52 x 10~10 1.6197
Newton-Schulz 1000 900 25 45x%x108 2.0055
Secant 1000 900 36 2.5x107° 1.6205

Example 3. In this example, we want to analyze the performance of the secant method for computing the Drazin
inverse of the following matrix A of size 6 x 6 with ind(A) = 2.

By using the initial matrix Xy =

1 -1 0
-1 1 ©
-1 -1 1
A:
-1 -1 -1
-1 -1 -1
-1 -1 0
Here, its Drazin inverse is expressed by
1/4 -1/4 0
-1/4 1/4 0
0 0 1/4
AP =
0 0 -1/4
0 0 -5/12
0 0 -7/12

tr(A3)

0 0 0
0 0 0
-1 0 0
1 0 0
0 2 -1
-1 -1 2
0 0

0 0
-1/4 0
1/4 0

0
0
0

0

-7/12 2/3 1/3
-5/12 1/3 2/3

Newton-Schulz method gives us the following information:

On the other hand, secant method is used with X_; =

ACOC = 2.0009;
iter = 11; and
Exact error ||AP — Xq1||2 = 7.7716 x 1071,

ACOC = 1.6225;
iter = 15; and
Exact error || AP — X5/ = 1.8539 x 10~ 13.

1
m and XO —

0.5
tr(A3)

, obtaining:

and the same stopping criterion as in the previous examples,
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Example 4. This is another example for computing the Drazin inverse of the following matrix B of size 12 x 12
(see [1]) with ind(B) = 3.

2 04 0 O O O O O 0 O 0 O
-2 04 0 0 O O O O 0 o0 0 O
-1 -1 1 -1 0 0 O 0 O 0 0 O
-1 -1 -1 1 0 O O O O O 0 O
o o0 o o0 1 1 -1 -1 0 0 -1 0
B o 0 o o0 1 1 -1 -1 0 0 0 O
- o 0 o0 -1 -204 0 O 0 0 0 O
o 0 o o0 204 0 O 0O 0 0 O
O -1 o 0o o0 O 0 O 1 -1 -1 -1
o 0 o o o0 O O 0 -1 1 -1 -1
o o0 o o o o o0 o 0 0 04 -2
o o0 o o o o o0 o 0 0 04 2
Now, its Drazin inverse is expressed by
0.25 -0.25 0 0 0 0 0 0 0 0 0 0
125 125 0 0 0 0 0 0 0 0 0 0
~16641  —09922 025 —025 0 0 0 0 —00625 —0.0625 0 0.1563
-11953 —06797 —025 025 0 0 0 0  —00625 01875 06875 13438
~27637 -10449 -1875 125 -125 -125 -125 -—125 14844 25781 33203  6.6406
AD —27637 —10449 -1875 —125 -125 125 -125 -125 14844 25781 45703 85156
| 14109 63008 6625 3375 5 -3 -5 -5 —41875 -85  —10.5078 —224609
-193242 85078 975 525 -75 45 75 75 6375 125625 159766  33.7891
~0.625  —03125 0 0 0 0 0 0 025  -025  —0875  —1625
-125 09375 0 0 0 0 0 0 —025 025 0875  -1625
0 0 0 0 0 0 0 0 0 0 1.25 125
0 0 0 0 0 0 0 0 0 0 ~0.25 0.25
By using the initial matrix Xy = m and the same stoping criterion as in the previous examples,

Newton-Schulz method gives us the following information:

e ACOC =2.0031;
e iter = 14;and
e Exacterror ||BP — X4 = 1.8354 x 10~°.

5
———, obtaining:

On the other hand, secant method is used with X_; = (A

(A and Xy =

e ACOC =1.6201;
o jter =20;and
e  Exacterror ||BP — Xy = 1.8453 x 1077,

Again, the numerical tests confirm the theoretical results.

Example 5. Finally, in this example, we test Newton—Schlutz and secant methods on several known square
matrices of size n X n, constructed by using different Matlab functions. Specifically, the test matrices are:

(a) A = gallery('ris’,n). Hankel matrix of size n x n.

(b) A = gallery('grcar’, n). Toeplitz matrix of size n X n.

(c) A = gallery('lehmer’, n). Symmetric and positive definite matrix of size n x n, a;; = i/j,Vi, j.

(d) A = gallery('leslie’,n). Leslie matrix of size n x n. This type of matrices appears in problems of
population models.

(e) A = gallery('invo’,n). Matrix ill-conditioned of size n x n, such that A> = I.



Mathematics 2020, 8, 2 12 of 13

By using the stopping criterion

X1 = Xell2 <2071 or [[F(Xyp)[2 <1077

o . T T . . .
and the initial matrix X_; = ng and Xy = O'SIIII?\W’ we obtain the numerical results that appear in

Table 3. In this cases, as in the previous ones, the proposed method shows good performance in terms
of stability, precision, and number of iterations needed. We must take into account that both schemes
have different orders of convergence, which is displayed in Table 3.

Table 3. Results for approximating the inverse of classical square matrices (Example 5)

Method Matrix n  Iter || X1 — Xill2  ||F(Xk+1)]]  COC
Newton-Schulz Lehmer 10 18 35x 1077 6.3x 10715 -
Secant Lehmer 10 20 39x107° 1.7x10711  1.6164
Newton-Schulz Hankel 100 8 11x10°° 12x 10711 1.9993
Secant Hankel 100 11 1.9 x 10712 44 %101 1.6180
Newton-Schulz ~ Toeplitz 200 9 1.6 x 1077 32x 1071 1.9976
Secant Toeplitz 200 11 6.3 x 10711 6.4x 1071 1.6182
Newton-Schulz ~ Toeplitz 300 9 1.7 x 107 25x 1071 1.9975
Secant Toeplitz 300 11 6.3 x 1011 6.4 x 1071 1.6182
Newton-Schulz  Leslie 400 22 43 x107° 23 %1013 1.9995
Secant Leslie 400 33 42 x 10712 1.0x 107 16177
Newton-Schulz  Leslie 500 23 1.6 x 106 1.4 %1071 2.0001
Secant Leslie 500 25 1.7 x 10712 38x 1071 1.6070

6. Conclusions

An iterative method with memory for approximating the inverse of nonsingular square complex
matrices, the Moore-Penrose inverse of rectangular complex matrices, and the Drazin inverse of
square singular matrices is presented. As far as we know, it is the first time that a scheme with
memory is employed to approximate the solution of nonlinear matrix equations. The proposed scheme
is free of inverse operators and its iterative expression is simple; therefore, it is computationally
efficient. From particular initial approximations, the convergence is guaranteed for all matrices,
without conditions. Numerical tests allowed us to analyze the performance of the proposed scheme
and confirm the theoretical results.
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