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Abstract: A unit geodesic vector field on a Riemannian manifold is a vector field whose integral curves
are geodesics, or in other worlds have zero acceleration. A geodesic vector field on a Riemannian
manifold is a smooth vector field with acceleration of each of its integral curves is proportional to
velocity. In this paper, we show that the presence of a geodesic vector field on a Riemannian manifold
influences its geometry. We find characterizations of n-spheres as well as Euclidean spaces using
geodesic vector fields.
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1. Introduction

Let (M, g) be an n-dimensional Riemannian manifold. We call a smooth vector field ξ on M
geodesic vector field if

∇ξ ξ = ρξ, (1)

where ∇ is the covariant derivative operator with respect to the Riemannian connection on (M, g)
and ρ : M → R is a smooth function called the potential function of the geodesic vector field ξ. If
the potential function ρ = 0, then ξ is called a unit geodesic vector field (as in this case the integral
curves of ξ are geodesics). By a non-trivial geodesic vector field, we mean nonzero geodesic vector
field for which the potential function ρ 6= 0. Physically, a geodesic vector field has integral curves
with an acceleration vector always proportional to the velocity vector. These fields are connected with
generalized Fermi coordinates [1]. Geodesic vector fields naturally appear in many situations as seen
in the following examples:

1. On Euclidean space (Rn, 〈, 〉), the position vector field ξ =
n

∑
i=1

ui ∂

∂ui , satisfies ∇ξ ξ = ξ, therefore

ξ is a geodesic vector field with potential function ρ = 1.
2. Consider unit hypersphere Sn in the Euclidean space (Rn+1, 〈, 〉). Then, the restriction of

coordinate vector field ∂
∂u1 on Rn+1 to Sn can be expressed as

∂

∂u1 = ξ + ρN,
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where ρ =
〈

∂
∂u1 , N

〉
, N being unit normal to Sn and ξ is vector field on Sn, which is the tangential

component of ∂
∂u1 . Then it is easy to see that on Sn, we have ∇ξ ξ = ρξ, that is, ξ is a geodesic

vector field on Sn.
3. Concircular vector fields on Riemannian manifolds have been introduced by A. Fialkow (cf.

[2,3]). A vector field ξ on a Riemannian manifold (M, g) is said to be a concircular vector field
if ∇Xξ = ρX for any smooth vector field X on M, where ρ is a smooth function on M. Thus, a
concircular vector field ξ satisfies∇ξ ξ = ρξ, that is, a concircular vector field ξ is a geodesic vector
field. It is well known that concircular vector fields play a vital role in the theory of projective
and conformal transformations. Moreover, concircular vector fields have applications in general
relativity, as for instance trajectories of time-like concircular fields in the de Sitter space determine
the world lines of receding or colliding galaxies satisfying the Weyl hypothesis (cf. [4]). Therefore,
we could expect that geodesic vector fields also have the scope of applications in general relativity.
For example, global questions about the existence of these vector fields were studied in [5–10].

4. Another interesting example comes from Yamabe solitons (cf. [11,12]). Let (M, g, ξ, λ) be an
n-dimensional Yamabe soliton. Then the soliton field ξ satisfies

1
2

£ξ g = (S− λ)g,

where £ξ g is the Lie-derivative of metric g, S is the scalar curvature and λ is a constant. If the
soliton field ξ is a gradient of a smooth function, then (M, g, ξ, λ) is called a gradient Yamabe
soliton. On gradient Yamabe soliton the soliton field satisfies ∇ξ ξ = (S − λ)ξ, that is, ξ is a
geodesic field with potential function ρ = S− λ.

5. Recall that an Eikonal equation is a nonlinear partial differential equation

‖∇u‖ = 1
f

where on a non-compact Riemannian manifold (M, g), which is encountered in problems of wave
propagation, where f is a positive function (cf. [13,14]). A straight forward observation shows
that, above equation gives ∇∇u∇u = − 1

f 3∇ f , which on choosing u = 1
f , gives ∇∇u∇u = u∇u,

that is, an Eikonal equation gives a non-trivial geodesic vector field ∇u with potential function u.
Note that Eikonal equations are also used in tumor invasion margin on Riemannian manifolds of
brain fibers (cf. [15]).

It is worth noting that the main tools in studying the geometry of a Riemannian manifold are
geodesics, immersions, and special vector fields. For instance, geodesics give rise to the exponential
mapping and Jacobi fields, which are used in proving many global theorems for a Riemannian manifold.
Immersions are used to study the geometry of submanifolds. Similarly, special vector fields such as
unit geodesic vector fields, Killing vector fields, concircular vector fields, conformal vector fields are
used in studying geometry as well as topology of a Riemannian manifold (cf. [1–4,6–11,16–29]).

Geodesic vector fields first time appeared in [12] as generalization of unit geodesic vector fields,
where they are used for finding conditions under which a Yamabe soliton is trivial. As observed
through above examples, geodesic vector fields have widespread appearance as compared to Killing
vector fields and conformal vector fields, which suggests that they may have a role not only in the
geometry of a Riemannian manifolds, but also in theory of relativity as well as medical imaging
via the Eikonal equation. In this paper, we concentrate on the first two examples of geodesic vector
fields mentioned above. Example 1 shows that the Euclidean space (Rn, 〈, 〉) possesses a geodesic
vector field, naturally raises a question: “Under what conditions does a Riemannian manifold have a
geodesic vector field necessarily isometric to the Euclidean space?” A similar question is raised through
Example 2 mentioned above. In this paper, we address these questions and find characterizations of
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the n-sphere Sn(c) as well of the Euclidean space (Rn, 〈, 〉) using geodesic vector fields (cf. Theorems 1
and 2).

2. Preliminaries

Let ξ be a geodesic vector field on an n-dimensional Riemannian manifold (M, g) with potential
function ρ. We denote by α the smooth 1-form dual to ξ. Then we have

dα(X, Y) = g (∇Xξ, Y)− g (∇Yξ, X) , (2)(
£ξ g
)
(X, Y) = g (∇Xξ, Y) + g (∇Yξ, X) , X, Y ∈ X(M), (3)

where ∇ is the covariant derivative operator with respect the Riemannian connection on (M, g)
and X(M) is the Lie algebra of smooth vector fields on M. Note that the Lie derivative £ξ g is
symmetric, while the smooth 2-form dα is skew-symmetric, which give a symmetric operator B
and a skew-symmetric operator ψ on M defined by

(
£ξ g
)
(X, Y) = 2g(BX, Y), dα(X, Y) = 2g(ψX, Y).

Then using Equations (2) and (3), we conclude

∇Xξ = BX + ψX, X ∈ X(M). (4)

Using the defining Equation (1) of geodesic vector field in Equation (4), we get

Bξ + ψξ = ρξ. (5)

The curvature tensor field R and the Ricci tensor Ric of the Riemannian manifold (M, g),
are given by

R(X, Y)Z = ∇X∇YZ−∇Y∇XZ−∇[X ,Y] Z, (6)

and

Ric(X, Y) =
n

∑
i=1

g (R(ei, X)Y, ei) , (7)

where {e1, .., en} is a local orthonormal frame on M. The Ricci operator Q of the Riemannian manifold
(M, g) is a symmetric operator defined by

g(QX, Y) = Ric(X, Y), X, Y ∈ X(M).

The scalar curvature S of the Riemannian manifold is defined by S = TrQ the trace of the Ricci
operator Q. The gradient ∇S of the scalar curvature satisfies (cf, [30])

1
2
∇S =

n

∑
i=1

(∇Q) (ei, ei), (8)

where the covariant derivative

(∇Q) (X, Y) = ∇XQY−Q∇XY.

Choosing Y = Z = ξ in Equation (6) and using Equations (1) and (4), we conclude

R(X, ξ)ξ = X (ρ) ξ + ρ (BX + ψX)− (∇B) (ξ, X)− (∇ψ) (ξ, X)

− B2X− ψ2X− (Bψ + ψB) (X). (9)



Mathematics 2020, 8, 137 4 of 11

Taking X = ei in above equation and the inner product with ei, on summing the resulting equation
over an orthonormal frame {e1, .., en}, we get

Ric (ξ, ξ) = ξ (ρ) + ρ f − ξ ( f )− ‖B‖2 + ‖ψ‖2 , (10)

where f = TrB the trace of the symmetric operator B, we have used Trψ = 0 (ψ being skew-symmetric)
and the fact that Bψ + ψB is a skew-symmetric operator and

‖B‖2 =
n

∑
i=1

g(Bei, Bei), ‖ψ‖2 =
n

∑
i=1

g(ψei, ψei).

We associate one more smooth function h : M→ R on a Riemannian manifold (M, g) to geodesic
vector field ξ, defined by

h =
1
2
‖ξ‖2 . (11)

Then, using Equation (4), we get the following expression for the gradient ∇h of the smooth
function h,

∇h = Bξ − ψξ. (12)

Note that for a smooth function F : M → R on a Riemannian manifold (M, g), the Hessian
operator AF and the Laplacian ∆F are defined by

AFX = ∇X∇F, ∆F = div∇F, (13)

where

divX =
n

∑
i=1

g (∇ei X, ei) .

The Hessian Hess(F) is defined by

Hess(F)(X, Y) = g (AFX, Y) , X, Y ∈ X(M). (14)

3. A Characterization of Euclidean Spaces

In this section, we use a non-trivial geodesic vector field on a connected Riemannian manifold to
find a characterization of the Euclidean spaces. We have seen through Example-1 in the introduction
that the Euclidean space (Rn, 〈, 〉) admits a geodesic vector field ξ with potential function ρ a constant.
Recall that a geodesic vector field ξ with potential function ρ is said to be a non-trivial geodesic vector
field if ξ is nonzero and ρ 6= 0.

Theorem 1. Let (M, g) be an n-dimensional complete and connected Riemannian manifold. The following two
statements are equivalent:

1. There exists a non-trivial geodesic vector field ξ with potential function ρ with the properties that Tr£ξ g is
constant along the integral curves of ξ and Ricci curvature Ric(ξ, ξ) satisfies

Ric(ξ, ξ) ≥ 1
4
‖dα‖2 +

1
4
(
Tr£ξ g

) (
2ρ− 1

n
Tr£ξ g

)
+ ξ (ρ) .

2. (M, g) is isometric to Euclidean space (Rn, 〈, 〉).

Proof. Suppose that ξ is a non-trivial geodesic vector field on the connected Riemannian manifold
(M, g), such that ξ( f ) = 0, where f = 1

2 Tr£ξ g = TrB and the Ricci curvature Ric (ξ, ξ) satisfies
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Ric(ξ, ξ) ≥ 1
4
‖dα‖2 +

1
4
(
Tr£ξ g

) (
2ρ− 1

n
Tr£ξ g

)
+ ξ (ρ) .

Now, as dα(X, Y) = 2g (ψX, Y), we get 1
4 ‖dα‖2 = ‖ψ‖2 and the above inequality takes the form

Ric(ξ, ξ) ≥ ‖ψ‖2 + f
(

ρ− 1
n

f
)
+ ξ(ρ). (15)

Using Equation (10) with ξ( f ) = 0, we get

Ric(ξ, ξ) = ξ(ρ) + ρ f − ‖B‖2 + ‖ψ‖2 ,

that is,

‖B‖2 − 1
n

f 2 = ‖ψ‖2 + f
(

ρ− 1
n

f
)
+ ξ(ρ)− Ric(ξ, ξ). (16)

Now, using the inequality (15) in the above equation, we conclude

‖B‖2 − 1
n

f 2 ≤ 0. (17)

However, by Schwartz’s inequality, we have ‖B‖2 ≥ 1
n f 2 and the equality holds if and only if

B = f
n I. Thus, inequality (17), implies

B =
f
n

I. (18)

Using Equations (5) and (18), we conclude

ψξ =

(
ρ− f

n

)
ξ,

and taking the inner product with ξ in the above equation and noting that ψ is skew-symmetric, we get(
ρ− f

n

)
‖ξ‖2 = 0.

As ξ is non-trivial, ‖ξ‖ 6= 0 and consequently, on connected M above two equations give

ρ =
f
n

, ψξ = 0. (19)

Combining Equations (12), (18) and (19), we conclude∇h = f
n ξ, which on using Equation (4), gives

AhX =
1
n

X( f )ξ +
f
n

(
1
n

X + ψX
)

.

Thus, the Hessian Hess(h) is given by

Hess(h)(X, Y) =
1
n

X( f )α(Y) +
f 2

n2 g(X, Y) +
f
n

g(ψX, Y). (20)

Now, using the facts that Hess(h) is symmetric and the operator ψ is skew-symmetric in above
equation, we conclude

0 =
1
n
(X( f )α(Y)−Y( f )α(X)) +

2 f
n

g (ψX, Y) ,

that is,

2 f ψX = α (X)∇ f − X( f )ξ, X ∈ X(M). (21)
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Taking X = ξ in above equation and using Equation (19), we get ‖ξ‖2∇ f = ξ( f )ξ = 0 by the
assumption in the statement. Since, ξ is non-trivial geodesic vector field, the equation ‖ξ‖2∇ f = 0
on connected M, implies ∇ f = 0, that is, f is a constant. Note that the constant f has to be a nonzero
constant, for if f = 0, then Equation (19) would imply ρ = 0, which is a contradiction to the fact that ξ

is a non-trivial geodesic vector field. Using this fact that f is a nonzero constant in Equation (21), we
conclude ψ = 0. Hence, Equation (20), takes the form

Hess(h) = cg, (22)

where c is a nonzero constant. Finally, we observe that the smooth function h is not a constant, for
if not, then the Equation (12), would imply ξ = 0, a contradiction to the fact that ξ is a non-trivial
geodesic vector field. Hence, Equation (22) on a complete and connected Riemannian manifold (M, g)
implies that (M, g) is isometric to the Euclidean space (Rn, 〈, 〉) (cf. [31], Theorem 1, p. 778, [14]).

Conversely, on the Euclidean space (Rn, 〈, 〉), we have the position vector field

ξ =
n

∑
i=1

ui ∂

∂ui ,

which satisfies∇Xξ = X, X ∈ X(Rn), where∇ is the covariant derivative with respect to the Euclidean
connection. Then, it follows that ξ is the non-trivial geodesic vector field with potential function ρ = 1
and corresponding operators B = I and ψ = 0. Thus, f = TrB = n is a constant and Ric (ξ, ξ) = 0,
that is, we get

Ric(ξ, ξ) = ‖ψ‖2 + f
(

ρ− 1
n

f
)
+ ξ(ρ),

which meet the requirements in the statement.

4. A Characterization of n-Spheres

In this section, we use non-trivial geodesic vector field on a compact and connected Riemannian
manifold to find a characterization of a n-sphere Sn(c). Indeed we prove the following:

Theorem 2. Let (M, g) be an n-dimensional compact and connected Riemannian manifold of positive Ricci
curvature and constant scalar curvature. The following two statements are equivalent:

1. There exists a non-trivial geodesic vector field ξ with potential function ρ and Ricci curvature
Ric(ξ, ξ) satisfies ∫

M
Ric(ξ, ξ) ≥

∫
M

(
n− 1

4n
(
Tr£ξ g

)2
+

1
4
‖dα‖2

)
.

2. (M, g) is isometric to n-sphere Sn(c).

Proof. Let ξ be a non-trivial geodesic vector field on an n-dimensional compact and connected
Riemannian manifold (M, g) of constant scalar curvature, with potential function ρ satisfying the
condition in the statement. Since, f = TrB = 1

2 Tr£ξ g and ‖ψ‖2 = 1
4 ‖dα‖2, the condition in the

statement reads ∫
M

Ric(ξ, ξ) ≥
∫

M

(
n− 1

n
f 2 + ‖ψ‖2

)
. (23)

Using Equation (4), we get divξ = f and consequently,

div f ξ = ξ( f ) + f 2 and divρξ = ξ(ρ) + ρ f .

Integrating these equations, we conclude∫
M

ξ( f ) = −
∫

M
f 2 and

∫
M
(ξ(ρ) + ρ f ) = 0. (24)
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Now, integrating Equation (10) and using Equation (24), we get∫
M

(
Ric(ξ, ξ) + ‖B‖2 − ‖ψ‖2 − f 2

)
= 0,

which gives ∫
M

(
‖B‖2 − 1

n
f 2
)
=
∫

M

(
n− 1

n
f 2 + ‖ψ‖2 − Ric(ξ, ξ)

)
. (25)

Next, we use the inequality (23) in the above equation, to conclude∫
M

(
‖B‖2 − 1

n
f 2
)
≤ 0. (26)

However, by Schwartz’s inequality, we have ‖B‖2 ≥ 1
n f 2, that is,∫

M

(
‖B‖2 − 1

n
f 2
)
≥ 0

and combining this inequality with inequality (26), we conclude∫
M

(
‖B‖2 − 1

n
f 2
)
= 0.

Thus, using Schwartz’s inequality, we get ‖B‖2 = 1
n f 2 and this equality holds if and only if

B = 1
n f . Moreover, Equation (25) implies∫

M

((
n− 1

n

)
f 2 + ‖ψ‖2 − Ric (ξ, ξ)

)
= 0. (27)

Using B = f
n I, and following the proof of Theorem 1, through Equations (18)–(21), we conclude

2 f ψX = α(X)∇ f − X( f )ξ. (28)

Taking X = ξ in above equation and using ψξ = 0, we have ‖ξ‖2∇ f = ξ( f )ξ, which on taking
the inner product with ∇ f , gives

‖ξ‖2 ‖∇ f ‖2 = (ξ( f ))2 . (29)

Using a local orthonormal frame {e1, .., en} on M, Equation (28), gives

4 f 2g (ψei, ψei) = g (α(ei)∇ f − ei( f )ξ, α(ei)∇ f − ei( f )ξ)

and summing these equations, leads to

4 f 2 ‖ψ‖2 = 2 ‖ξ‖2 ‖∇ f ‖2 − 2 (ξ( f ))2 .

Thus, using Equation (29), we conclude f 2 ‖ψ‖2 = 0. Note that if f = 0, then Equation (19),
gives ρ = 0, which is contrary to our assumption that ξ is non-trivial geodesic vector field. Hence, on
connected M equation f 2 ‖ψ‖2 = 0 implies that ψ = 0. Now, Equation (5) transforms to

∇Xξ =
f
n

X, X ∈ X(M), (30)

which on using Equation (6), gives the following expression for the curvature tensor

R(X, Y)ξ =
1
n
(X( f )Y−Y( f )X) , X, Y ∈ X(M).
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We use this equation to find

Ric(Y, ξ) = −n− 1
n

Y( f ),

which gives

Q(ξ) = −n− 1
n
∇ f . (31)

Since, the scalar curvature S is a constant, we find divergence divQξ using Equations (8) and (30),
a straight forward computation gives divQξ = f

n S. Inserting this in Equation (31), we conclude

∆ f = − S
n− 1

f . (32)

Now, the Equation (30), gives divξ = f , that is,∫
M

f = 0.

If f is a constant, then above equation would imply f = 0, which we have seen above, gives a
contradiction. Hence, Equation (32) suggests that the non-constant function f is an eigenfunction of
the Laplace operator ∆ on compact M with eigenvalue S

n−1 , which confirms that the constant S > 0.
Moreover, Equation (32), implies

1
2

∆ f 2 = f ∆ f + ‖∇ f ‖2 = ‖∇ f ‖2 − S
n− 1

f 2,

which, after integration, gives ∫
M
‖∇ f ‖2 =

S
n− 1

∫
M

f 2. (33)

Next, using ψ = 0 in Equation (27), we have∫
M

Ric(ξ, ξ) =
n− 1

n

∫
M

f 2, (34)

and taking the inner product with ∇ f in Equation (31), we conclude

Ric(∇ f , ξ) = −n− 1
n
‖∇ f ‖2 . (35)

Recall that the Bochner’s formula states that∫
M

(
Ric(∇ f ,∇ f ) +

∥∥∥A f

∥∥∥2
− (∆ f )2

)
= 0. (36)

We compute

Ric
(
∇ f +

S
n− 1

ξ,∇ f +
S

n− 1
ξ

)
= Ric(∇ f ,∇ f ) +

2S
n− 1

Ric (∇ f , ξ)

+
S2

(n− 1)2 Ric(ξ, ξ),

which on integration and the use of Equations (34)–(36), leads to

∫
M

Ric
(
∇ f +

S
n− 1

ξ,∇ f +
S

n− 1
ξ

)
=
∫

M

(
−
∥∥∥A f

∥∥∥2
+ (∆ f )2 − 2S

n
‖∇ f ‖2 +

S2

n(n− 1)
f 2
)

.
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Using Equation (33) in above equation, we get

∫
M

Ric
(
∇ f +

S
n− 1

ξ,∇ f +
S

n− 1
ξ

)
=
∫

M

(
−
∥∥∥A f

∥∥∥2
+ (∆ f )2

− S2

n(n− 1)
f 2
)

. (37)

Note that Equation (32), gives

(∆ f )2 − S2

n(n− 1)
f 2 =

S2

n(n− 1)2 f 2 =
1
n
(∆ f )2 .

Inserting this equation in Equation (37), leads to∫
M

Ric
(
∇ f +

S
n− 1

ξ,∇ f +
S

n− 1
ξ

)
= −

∫
M

(∥∥∥A f

∥∥∥2
− 1

n
(∆ f )2

)
.

In this equation, we use the facts that Ric > 0 and the Schwartz’s inequality
∥∥∥A f

∥∥∥2
≥ 1

n (∆ f )2,
to conclude

∇ f = − S
n− 1

ξ and A f =
∆ f
n

I. (38)

Taking the covariant derivative in the first equation of Equation (38) with respect to X ∈ X(M)

and using Equation (30), we get

∇X∇ f = −c f X, X ∈ X(M), (39)

where c is a positive constant given by S = n(n− 1)c. Note that, we have ruled out above that f can be
a constant. Hence, the non-constant function f satisfies the Obata’s differential Equation (39) (cf. [26])
and consequently, the Riemannian manifold (M, g) is isometric to the sphere Sn(c).

Conversely, if (M, g) is isometric to Sn(c), then the Ricci curvature for any smooth vector field
X on Sn(c) is given by Ric(X, X) = (n− 1)c ‖X‖2. We treat Sn(c) as hypersurface of the Euclidean
space

(
Rn+1, 〈, 〉

)
with unit normal vector field N and the shape operator A = −

√
cI. Now, choosing a

nonzero constant vector field w ∈ X(Rn+1), we express its restriction to the sphere Sn(c) as w = ξ + sN,
where ξ is tangential component of w to Sn(c) and s = 〈w, N〉 is the smooth function on Sn(c). Taking
covariant derivative with respect to X ∈ X(Sn(c)) of the equation w = ξ + sN and using Gauss and
Weingarten formulas for the hypersurface, we get

0 = ∇Xξ −
√

cg(X, ξ)N + X(s)N +
√

csX.

Equating tangential and normal components in the above equation, we get

∇Xξ = −
√

csX, ∇s =
√

cξ. (40)

The first equation in Equation (40) gives ∇ξ ξ = ρξ, where ρ = −
√

cs. This proves that ξ is a
geodesic vector field with potential function ρ. Suppose ρ = 0, this will mean s = 0 and consequently,
the second equation in Equation (40) will imply that ξ = 0. Thus, w = 0 on Sn(c), but as w is a constant
vector field, we get w = 0 on Rn+1, contrary to our assumption that w is a nonzero constant vector
field. Hence, ρ 6= 0. Similarly, we can show that ξ is a nonzero vector field. Hence, ξ is a non-trivial
geodesic vector field on Sn(c). Next, by second equation in the Equation (40), we have c ‖ξ‖2 = ‖∇s‖2,
and that ∫

Sn(c)
Ric(ξ, ξ) = (n− 1)c

∫
Sn(c)
‖ξ‖2 = (n− 1)

∫
Sn(c)
‖∇s‖2 . (41)
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Also, by the first equation in (40), for the geodesic vector field ξ, the operators B and ψ are
B = −

√
csI and ψ = 0, and that f = TrB = −n

√
cs. Moreover, using Equation (40), we find

divξ = −n
√

cs and ∆s = −ncs. Thus, we get∫
Sn(c)
‖∇s‖2 = nc

∫
Sn(c)

s2 =
1
n

∫
Sn(c)

f 2. (42)

Finally, using Equations (41) and (42), we conclude∫
Sn(c)

Ric(ξ, ξ) =
n− 1

n

∫
Sn(c)

f 2 =
∫

Sn(c)

(
n− 1

n
f 2 + ‖ψ‖2

)
,

which is the equation in (23), that is, all the requirements in the statement are met.
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