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Abstract: The generalization of Rodrigues’ formula for orthogonal matrix polynomials has attracted
the attention of many researchers. This generalization provides new integral and differential
representations in addition to new mathematical results that are useful in theoretical and numerical
computations. Using a recently studied operational matrix for shifted Legendre polynomials with
the variable coefficients fractional differential equations, the present work introduces the shifted
Legendre-type matrix polynomials of arbitrary (fractional) orders utilizing some Rodrigues matrix
formulas. Many interesting mathematical properties of these matrix polynomials are investigated
and reported in this paper, including recurrence relations, differential properties, hypergeometric
function representation, and integral representation. Furthermore, the orthogonality property of
these polynomials is examined in some particular cases. The developed results provide a matrix
framework that generalizes and enhances the corresponding scalar version and introduces some new
properties with proposed applications. Some of these applications are explored in the present work.

Keywords: rodrigues-type formula; fractional calculus; Legendre matrix polynomials; the shifted
Legendre matrix polynomials

1. Introduction

The classic subject of special functions has emerged from a wide variety of practical problems
that interest not only mathematicians but also other researchers in science to study their properties,
characteristics, and applications.

Traditionally, the special functions of mathematical physics are defined using power series
representations. Many orthogonal polynomials are then generated by imposing different termination
conditions on these representations [1]. Another standard method to generate a sequence of orthogonal
polynomials is to use the Rodrigues’ formula (see, e.g., [1,2]). This method allows the attainment
of many mathematical properties for these polynomials. For that reason, the generalization of the
Rodrigues’ formulas for orthogonal matrix polynomials has occupied the researchers’ attention for the
past few decades (see, e.g., [3] and the references therein).

Special functions of fractional calculus, classified as generalized fractional integrals or derivatives,
currently receive growing attention due to its enormous applications in various disciplines of science
and engineering. For the historical development of fractional calculus, the reader is referred to the
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monograph [4]. Podlubny [5] wrote another book that focuses on the solution methods of the fractional
differential equations and some applications. The reader can also find, in [6,7], other applications
of the fractional calculus and fractional differential equations in model physical and engineering
processes. Therein, the authors of [6] investigated the numerical solutions of non-linear multi-term
of fractional differential equations, while the authors of [7] extended the applications of Legendre
polynomials to solve different fractional differential equations. It is worth noting that the uses of the
shifted Legendre polynomials of solving fractional differential equations proved to be much more
effective. Hence, several research papers have been published recently to study the applications
of shifted Legendre polynomials (see [8,9] and the cited references therein). Srivastava et al. [10]
studied the global exponential stability of the fractional-order cellular neural network. Different
applications of fractional calculus in engineering can be found in [11], where Tenreiro et al. explored
fractional calculus uses in the field of controller tuning, legged robots, redundant robots, heat diffusion,
and digital circuit synthesis.

The fractional-order analogs of the standard Rodrigues’ formulas were recently used to either
define new classes of special functions or to study and classify the special functions of fractional
calculus as generalized calculus operators of some basic functions [12–14] . Such an approach allows
for establishing several new integral and differential representations that can be useful in applications
and for examining related numerical algorithms. In this respect, a valuable use concerning fractional
percolation on random graphs was introduced by Shang [15] in dealing with the vulnerability of
networks. In [12,16], the authors gave several types of fractional generalizations of Rodrigues-type
formulas for a class of special functions that deal with Laguerre polynomials of two fractional (arbitrary)
orders. In [17], Rajković and Kiryakova used the fractional-order Rodrigues’ formula to investigate
Legendre type special functions.

In the past few years, matrix functions and polynomials defined in terms of power matrix
series [18–21] attracted the attention to new and exciting problems, specifically that involve the
generalized hypergeometric matrix functions and future directions. It is worth mentioning the recent
work of Shang [22] who uncovered some of the information of topological properties hidden in the
smaller eigenvalues of A in matrix functions of the form f (A) = ∑∞

k=0 ck Ak. The graph-theoretic index
introduced in [22] with the information encoded in the eigenvalues of the Hamiltonian near-zero plays
a fundamental role in molecular magnetic/stability properties when A delineates the tight-binding
Hamiltonian in the Hücked molecular orbited theory. This study provides some key tools to connect
the function theory of approximation with graph theory.

Analogously to the classical case, the Rodrigues matrix formulas [23–26] are useful to define
sequences of orthogonal matrix polynomials and the establishment of their mathematical properties.
Furthermore, the Rodrigues matrix formulas allow defining new classes of special matrix functions
and their fractional-order differentiation.

Recently, many authors (see, e.g., [18–21]) proposed the extension of the classical polynomials to
the matrix framework. The operational matrix of fractional derivatives has been studied for various
types of orthogonal polynomials, including Chebyshev polynomials [27]. Operational matrices for
solving fractional-order differential equations can be found in [28]. In [29], the authors introduced a
new operational matrix for shifted Legendre polynomials and fractional differential equations with
variable coefficients. The authors of [30,31] also contributed to the study of the Legendre matrix
polynomials and their properties. It is worth mentioning that, in [32], the authors used a shifted
Legendre spectral method to deal with fractional order multi-point boundary value problems.

Now, owing to the significance of the earlier work regarding to Legendre type functions and other
important special functions, one should record that many researchers became interested in analyzing
the scalar cases of the classical special functions in the matrix setting. Much of these recent studies
that signify the fractional setting and the matrix approach furnish a road to investigate the shifted
Legendre matrix polynomials further using fractional-order Rodrigues matrix formula [17,29,33].
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The fractional calculus, as a generalization of integer order integration and differentiation to its
non-integer (fractional) orders counterpart, has been proved to be a valuable tool in the modeling of
many phenomena in the fields of physics, chemistry, engineering, aerodynamic electrodynamics of
complex medium, and polymer rheology [32]. This tool allows for describing many problems more
accurately than in its classical setting. It is well-known that the integer-order differential operator is
a local operator, but the fractional-order differential operator is non-local. The nonlocality property
indicates that the next state of the system depends not only on its current state but also on all of its
historical states. This makes studying fractional-order systems an active area of research.

The purpose of the present work is to introduce and examine a new fractional-order Rodrigues’
formula for the shifted Legendre type matrix polynomials and functions starting by setting up the
analog of Rodrigues’ formula in matrix framework. Using this established formula, we investigate
several properties of these polynomials including the recurrence relations, differential relations,
integral representation, and hypergeometric representation. To our knowledge, the matrix framework
for the shifted Legendre-type polynomials is reported here for the first time, especially in the fractional
setting. The current study may open the door for further investigations concerning the practical
applications [32]. By adopting a matrix setting with the notion of the Hermitian matrices, we also
introduce a matricial inner product on CN×N that enables us to investigate the orthogonality property
of these polynomials under certain constraints. The given results develop and generalize those of [17,33]
by placing it in the matrix framework. In addition, we introduce some new results concerning fractional
differentiation and integral representations. This study will provide a tool in developing a suitable
technique to solve some multi-order fractional differential equations related to the boundary-value
problems. More precisely and owing to the work [32,34–36], one can use the presented approach to
give an estimation of complex functions in terms of shifted Legendre-type matrix polynomials and
then applying it to some problems mentioned in [32].

The paper is organized as follows. In the next section, some basic notations and some algebraic
tools that are essential for the present work are introduced. In Section 3, we obtain the recurrence
relation and establish some generalizations. In Section 4, the different differential formulas of the
polynomials are achieved. In Section 5, a new representation of these matrix functions in terms of
the Gauss hypergeometric matrix function is given. A new integral representation is developed in
Section 6, and the orthogonality condition is proved in Section 7. Some applications are explored in
Section 8. The conclusions and further suggested practical problems are recorded in Section 9. We
should also mention that the present work is mostly analytic and designed to develop new properties
with proposed algorithm, which are necessary for the forthcoming applications.

2. Preliminaries

Throughout this paper, CN×N is a vector space of all N×N square matrices with complex number
entries z where the real and imaginary parts are Re(z) and Im(z), respectively. For any matrix A in
CN×N , the spectrum σ(A) is the set of all eigenvalues of A, for which we set

α(A) = max{Re(z) : z ∈ σ(A)} and β(A) = min{Re(z) : z ∈ σ(A)}, (1)

where α(A) refer to the spectral abscissa of A and for which α(−A) = −β(A). By definition, a matrix
A ∈ CN×N is said to be positive stable if and only if β(A) > 0.

The gamma and the beta matrix function are defined, respectively [26], as follows:

Γ(A) =
∫ ∞

0
e−ttA−Idt; tA−I = exp((A− I) ln t) (2)

and

B(A, B) =
∫ 1

0
tA−I(1− t)B−Idt. (3)
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Following the authors of [24,26], we always consider in the sequel that, for any matrix A ∈ CN×N ,
the following Pochhammer symbol, or shifted factorial, denoted by (A)n is

(A)0 = I, (A)n = A(A + I)...(A + (n− 1)I) = Γ(A + nI)Γ−1(A), n ≥ 1,

where Γ−1(A) is a well defined matrix, and invertible (see [23], p. 273) as well as

A + nI is invertible for all integers n ≥ 0. (4)

Note that [2], if A = −jI and j is a positive integer, then (A)n = 0 whenever n > j . Further, by
definition, if

A− nI is invertible for all integers n ≥ 0, (5)

then

(−A)n = (−1)n A(A− I) · · · (A− (n− 1)I)Γ(A− (n− 1)I)Γ−1(A− (n− 1)I)

= (−1)nΓ(A + I)Γ−1(A− (n− 1)I).

In accordance with [24], if A and B are commuting positive stable matrices in CN×N , then the
Beta matrix function defined in Equation (3) will satisfy B(A, B) = B(B, A); besides, if A + nI, B + nI,
and A + B + nI are invertible for all integers n ≥ 0, then

B(A, B) = Γ(A)Γ(B)[Γ(A + B)]−1. (6)

Definition 1 ([24]). For the positive integers p and q, the generalized hypergeometric matrix function is defined
by the matrix power series

pFq(Ai; Bj; z) = ∑
n≥0

p

∏
i=1

(Ai)n

[
q

∏
j=1

[(Bj)n]

]−1
zn

n!
, (p = q + 1, |z| < 1), (7)

where Ai, 1 ≤ i ≤ p and Bj, 1 ≤ j ≤ q in CN×N are commutative matrices and

Bj + n I are invertible for all integer n ≥ 0. (8)

In the case of p = 2 and q = 1, Equation (7) reduces to the Gauss hypergeometric matrix
function [24]

2F1(A1, A2; B1; z) =
∞

∑
n=0

(A1)n(A2)n[(B1)n]
−1 zn

n!
, |z| < 1. (9)

Assume that B1 A2 = A2B1 and B1, A2, B1 − A2 are a positive, stable, integral representation of
the Gauss hypergeometric matrix function. for |z| < 1, the following is given by ([24], Theorem 5,
p. 216):

2F1(A1, A2; B1; z) =
(∫ 1

0
(1− zt)−A1 tA2−I(1− t)B1−A2−Idt

)
Γ−1(A2)Γ−1(B1 − A2)Γ(B1). (10)

The fractional order integral and derivatives of Riemann–Liouville operator of order µ ∈ C,
Re(µ) > 0, are given (see [14,37,38]), respectively, as

(Iµ f )(z) =
1

Γ(µ)

∫ z

0
(z− t)µ−1 f (t)dt (11)
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and

Dµ f (z) = In−µDn f (z), µ ∈ (n− 1, n), n ∈ Z+, Re(z) > 0, D =
d
dz

. (12)

Definition 2 ([19]). Suppose that A ∈ CN×N is a positive stable matrix with µ ∈ C and Re(µ) > 0;
the Riemann–Liouville fractional integrals of order µ is defined by

Iµ
(

zA
)
=

1
Γ(µ)

∫ z

0
(z− t)(µ−1)I tA dt, A ∈ CN×N . (13)

Lemma 1 ([19]). Suppose that A ∈ CN×N is a positive stable matrix with µ ∈ C and Re(µ) > 0;
the Riemann–Liouville fractional integrals of order µ is given by

Iµ
(

zA−I
)
= Γ(A) Γ−1(A + µI) zA+(µ−1)I . (14)

This Lemma can be extended to:

Lemma 2. Let A be a positive stable matrix in CN×N , and let µ, λ ∈ C such that Re(µ − λ) > −1.
Then, the Riemann–Liouville fractional integrals of order µ can be written by

Iµ
(

zA−λI
)
= Γ(A− (λ− 1)I) Γ−1(A + (µ− λ + 1)I) zA+(µ−λ)I . (15)

Definition 3 ([12,39,40]). The Caputo type fractional derivative of a function f (z) of order ν ∈ R+ is
defined by:

(Dν f )(z) = (Iεν Ddνe f )(z), (16)

where dνe is the smallest integer greater than or equal to ν and εν ≥ 0, refer to the difference εν = dνe − ν.

If (Dν f )(z) and (Dνg)(z) exist for the differential functions f (z) and g(z), it is straightforward
to show that the Caputo type fractional derivative is a linear operator. For a detailed survey of the
fractional derivatives and integrals, we refer the interested reader to [40].

Following Rajkovic and Kiryakova’s [17] approach, we consider the functions of shifted Legendre
type in the matrix setting by means of Rodrigues’ formula as follows:

If A, B ∈ CN×N , and satisfy the spectral conditions

Re(z) > −1 ∀ z ∈ σ(A), Re(z) > −1 ∀ z ∈ σ(B) and AB = BA, (17)

then for the fractional order ν, the shifted Legendre matrix functions given by the Rodrigues’ formula as

Pν(A, B, z) =
1

Γ(ν + 1)
Dν
{

zA(1− z)B
}

. (18)

where DνzA = Γ(A+I)
Γ(A−(ν−1)I) zA−νI (in the Caputo sense). Noting that, for N = 1, taking A = B = ν =

n ∈ N0, these matrix functions reduce [17] to the shifted Legendre polynomials {Ln(z; 0, 1)} that are
orthogonal on the interval (0, 1).

The generalization of the scalar case of recurrence relations of the fractional shifted Legendre-type
function into the matrix framework is given in the following result.
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3. The Recurrence Relations

Theorem 1. The shifted Legendre matrix function {Pν(A, B, z)} given by Equation (18) with the assumption
in Equation (17) satisfies the following recurrence relations

Pν(A, B, z) = Pν(A, B− I, z)− Pν(A + I, B− I, z), (19)

Pν(A, B, z) = Pν(A− I, B, z)− Pν(A− I, B + I, z), (20)

ν Pν(A, B, z) = A Pν−1(A− I, B, z)− B Pν−1(A, B− I, z). (21)

Proof. Relying on Equation (18) with the assumption in Equation (17) on A and B and using the
linearity of the Caputo derivative operator, the assertion in Equation (19) follows from

Pν(A, B, z) =
1

Γ(ν + 1)
Dν
(

zA(1− z)B−I − zA+I(1− z)B−I
)

.

Similarly, using

Pν(A, B, z) =
1

Γ(ν + 1)
Dν
(

zA−I(1− z)B − zA−I(1− z)B+I
)

,

the assertion in Equation (20) follows directly using Equation (18). Finally, using the composition
property of derivative and Equation (18) again, it follows that:

Pν(A, B, z) =
1

Γ(ν + 1)
Dν−1

(
A zA−I(1− z)B − B zA(1− z)B−I

)
,

which complete the proof of the theorem.

Corollary 1. Let A and B be matrices in CN×N satisfying Equation (18) with the assumption in Equation (17), then

Pν(A + nI, B, z) =
n

∑
k=0

(−1)k
(

n
k

)
Pν(A, B + kI, z), n ≥ 0, (22)

Pν(A, B + mI, z) =
m

∑
k=0

(−1)k
(

m
k

)
Pν(A + kI, B, z), m ≥ 0, (23)

Pν(A + nI, B + mI, z) =
n

∑
k=0

m+k

∑
j=0

(−1)k+j
(

n
k

)(
m + k

j

)
Pν(A + jI, B, z),

=
m

∑
k=0

n+k

∑
j=0

(−1)k+j
(

m
k

)(
n + k

j

)
Pν(A, B + jI, z), n, m ≥ 0 (24)

Proof. By induction on n, shifting B to B + I, Equation (19) can be written as

Pν(A + I, B, z) = Pν(A, B, z)− Pν(A, B + I, z)

which proves Equation (22) when n = 1. Assume that Equation (22) is true for n = `, that is to say

Pν(A + `I, B, z) =
`

∑
k=0

(−1)k
(
`

k

)
Pν(A, B + kI, z)
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Using the binomial identity (`+1
k ) = (`k) + ( `

k−1), one can write for n = `+ 1 that

`+1

∑
k=0

(−1)k
(
`+ 1

k

)
Pν(A, B + kI, z) =

`+1

∑
k=0

(−1)k
(
`

k

)
Pν(A, B + kI, z) +

`+1

∑
k=0

(−1)k
(

`

k− 1

)
Pν(A, B + kI, z)

=
`

∑
k=0

(−1)k
(
`

k

)
Pν(A, B + kI, z) +

`+1

∑
k=1

(−1)k
(

`

k− 1

)
Pν(A, B + kI, z)

=
`

∑
k=0

(−1)k
(
`

k

)
Pν(A, B + kI, z)−

`

∑
k=0

(−1)k
(
`

k

)
Pν(A, B + I + kI, z)

= Pν(A + `I, B, z)− Pν(A + `I, B + I, z)

= Pν(A + (`+ 1)I, B, z),

as required. Here, we use the well-known formula for gamma function 1/Γ(−m) = 0, m = 0, 1, 2, · · · .
Equation (23) follows similarly. For Equation (24), we note that

Pν(A + nI, B + mI, z) =
n

∑
k=0

(−1)k
(

n
k

)
Pν(A, B + mI + kI, z)

=
n

∑
k=0

(−1)k
(

n
k

) m+k

∑
j=0

(−1)j
(

m + k
j

)
Pν(A + jI, B, z),

which complete the proof of the Corollary.

4. Differential Relations

Differentiation of the shifted Legendre matrix functions given by the Rodrigues’ formula has the
following interesting properties.

Theorem 2. For ν, ν1, ν2 ∈ (−1, n− 1), n, m ∈ N, we have the following differential formulas:

D Pν(A, B, z) = (ν + 1)Pν+1(A, B, z), (25)

Dn Pν(A, B, z) = (ν + 1)n Pν+n(A, B, z), (26)

Dν1+n Pν2(A, B, z) = (ν2 + 1)n Dν1Pν2+n(A, B, z), (27)

Dν1Pν2(A, B, z) =
Γ(ν1 + 1)
Γ(ν2 + 1)

Dν2Pν1(A, B, z), (28)

Dν1+n Pν2+m(A, B, z) =
(ν2 + m + 1)n

(ν2 + n + 1)m
Dν1+mPν2+n(A, B, z), (29)

Proof. Equation (25) follows from Equation (18) as

Pν+1(A, B, z) =
1

Γ(ν + 2)
Dν+1

{
zA(1− z)B

}
=

Γ(ν + 1)
Γ(ν + 2)

D

{
Dν
{

zA(1− z)B}
Γ(ν + 1)

}
,

while Equation (26) follows by applying Equation (25) recursively n times. Equation (27) is easily
deduced from Equation (26) by writing

Dν1+n Pν2(A, B, z) = Dν1 (Dn Pν2(A, B, z)) .
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Equation (28) follows using Equation (18) (with ν is replaced with ν2) followed by reversing the
order of ν1 and ν2, then applying Equation (18) once again (with ν is now replaced by ν1), thus

Dν1Pν2(A, B, z) = Dν1

{
Dν2

{
zA(1− z)B}

Γ(ν2 + 1)

}

=
Dν1+ν2

{
zA(1− z)B}

Γ(ν2 + 1)
=

Γ(ν1 + 1)
Γ(ν2 + 1)

Dν2

{
Dν1

{
zA(1− z)B}

Γ(ν1 + 1)

}
.

Finally, Equation (29) follow similarly.

5. Hypergeometric Representation

In this section, we present two interesting results as follows.

Theorem 3. The matrix function Pν(A, B, z) has the power series representation by means of the Gauss
hypergeometric matrix function in the form:

Pν(A, B, z) =(−1)n Γ(A + I)Γ(B + I)
Γ(ν + 1)

zA+εI
n

∑
k=0

(
n
k

)
Γ−1(A− (k− ε− 1)I)Γ−1(B− (n− k− 1)I)

× (−z)−kI
2F1(−B + (n− k)I, A− (k− 1)I; A + (ε− k + 1)I; z), (30)

where n = dνe and ε = n− ν.

Proof. Since

DnzA = Dn−1(DzA) = Γ(A + I)[Γ(A− (k− 1)I)]−1 Dn−kzA−kI , n ≥ k,

we have, for n = k,
DkzA = Γ(A + I)[Γ(A− (k− 1)I)]−1zA−kI ,

and, similarly,

Dn−k(1− z)B = (−1)n−kΓ(B + I)[Γ(B− (n− k− 1)I)]−1(1− z)A−(n−k)I .

By means of Leibniz formula, we have

Pν(A, B, z) =
1

Γ(ν + 1)
IεDn

{
zA(1− z)B

}
=

1
Γ(ν + 1)

Iε
n

∑
k=0

(
n
k

)(
DkzA

) (
Dn−k(1− z)B

)
=

1
Γ(ν + 1)

n

∑
k=0

(−1)n−k
(

n
k

)
Γ(A + I) [Γ(A− (k− 1)I)]−1

× Γ(B + I) [Γ(B− (n− k− 1)I)]−1 Iε
[
zA−kI(1− z)B−(n−k)I

]
.

However, using the Binomial theorem [20],

(1− z)B−(n−k)I =
∞

∑
s=0

(−B + (n− k)I)s

s!
zs,



Mathematics 2020, 8, 136 9 of 23

and Lemma 1, we have

Iε
(

zA−kI(1− z)B−(n+k)I
)
=

∞

∑
s=0

(−B + (n− k)I)s

s!
Iε(zA−(k−s)I)

=
∞

∑
s=0

(−B + (n− k)I)s

s!

× Γ(A− (k− s− 1)I)Γ−1(A− (k− s− ε− 1)I)zA−(k−s−ε)I

=
∞

∑
s=0

(−B + (n− k)I)s

s!
(A− (k− 1)I)sΓ(A− (k− 1)I)

× [(A− (k− ε− 1)I)sΓ(A− (k− ε− 1)I)]−1zA−(k−s−ε)I

= Γ(A− (k− 1)I)Γ−1(A− (k− ε− 1)I)zA−(k−ε)I

×
∞

∑
s=0

(−B + (n− k)I)s

s!
(A− (k− 1)I)s[(A− (k− ε− 1)I)s]

−1zsI

= Γ(A− (k− 1)I)Γ−1(A− (k− ε− 1)I)zA−(k−ε)I

× 2F1(−B + (n− k)I, A− (k− 1)I; A− (k− ε− 1)I; z).

Thus,

Pν(A, B, z) =
Γ(A + I)Γ(B + I)

Γ(ν + 1)

n

∑
k=0

(−1)n−k
(

n
k

)
Γ−1(B− (n− k− 1)I)Γ−1(A− (k− ε− 1)I) zA−(k−ε)I

× 2F1(−B + (n− k)I, A− (k− 1)I; A− (k− ε− 1)I; z),

as required.

Remark 1. Using the identities

Γ−1(A− (k− ε− 1)I) = (−1)kΓ−1(A + (ε + 1)I)(−A− ε)k (31)

and

Γ−1(B− (n− k− 1)I) = (−1)nΓ−1(B + I)(−B)n[(B− nI + I)k]
−1, (32)

Equation (30) can be written as

Pν(A, B, z) =
Γ(A + I)
Γ(ν + 1)

(−B)nΓ−1(A + (ε + 1)I)

×
n

∑
k=0

(−1)k(−n)k
k!

[(B− (n− 1)I)k]
−1(−A− ε)k zA−(k−ε)I

× 2F1(−B + (n− k)I, A− (k− 1)I; A− (k− ε− 1)I; z). (33)

Remark 2. When ν = n, a nonnegative integer, ε = 0 and, since 2F1(A, B; B; z) = 1F0(A; z), Equation (30) gives

Pn(A, B, z) =
Γ(A + I)Γ(B + I)

Γ(n + 1)

n

∑
k=0

(−1)n−k
(

n
k

)
Γ−1(A− (k− 1)I)Γ−1(B− (n− k− 1)I)

× zA−kI
1F0(−B + (n− k)I; z), (34)

However, by means of the identity

Γ(B− (n− k− 1)I) = (−1)n(B− (n− 1)I)k[(−B)n]
−1Γ(B + I), (35)
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it follow that

Pn(A, B, z) =
(−B)n

n!

n

∑
k=0

(−1)k(−n)k
k!

[(B− (n− 1)I)k]
−1(−A)k zA−kI

1F0(−B + (n− k)I;−; z). (36)

The following lemma is useful in the forthcoming result.

Lemma 3. For A ∈ CN×N ,

1F0 (−A; z) = (1− z)A.

Proof. Using Equation (7) with the matrix parameter A ∈ CN×N , we get the following reduced
hypergeometric function

1F0 (−A; z) =
∞

∑
n=0

(−A)n
zn

n!
.

However, by the Pochhammer symbol definition (−A)n = (−1)nΓ(A + I)Γ−1(A − (n − 1)),
the lemma follows.

Theorem 4. For nonnegative integer n, and A, B ∈ CN×N satisfying the assumption in Equation (17), if
ν = n, Equation (18) yields the representation

Pn(A, B, z) =
1
n!
(−B)n zA (1− z)B−nI

2F1

(
−nI,−A; B− (n− 1)I; 1− 1

z

)
. (37)

Proof. For ν = n, ε = 0 and due to lemma 3, Equation (36) can be written as

Pn(A, B, z) =(−1)n Γ(A + I)Γ(B + I)
n!

zA(1− z)B−nI

×
n

∑
k=0

(
n
k

)
Γ−1(A− (k− 1)I)Γ−1(B− (n− k− 1)I)

(
1− 1

z

)kI
.

Using the following identities

Γ(B− (n− 1)I + kI) = Γ(B− (n− 1)I)(B− (n− 1)I)k

and
Γ(A− kI + I) = (A + I)−kΓ(A + I) = (−1)k[(−A)k]

−1Γ(A + I),
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we have

Pn(A, B, z) = (−1)n Γ(A + I)Γ(B + I)
n!

zA(1− z)B−nI

×
n

∑
k=0

(
n
k

)
(−1)kΓ−1(A + I)(−A)kΓ−1(B− (n− 1)I)[(B− (n− 1)I)k]

−1
(

1− 1
z

)kI

= (−1)n Γ(B + I)Γ−1(B + I − nI)
n!

zA(1− z)B−nI
n

∑
k=0

(
n
k

)
(−1)k(−A)k[(B− (n− 1)I)k]

−1
(

1− 1
z

)kI

= (−1)n Γ(B + I)Γ−1(B + I − nI)
n!

zA(1− z)B−nI
2F1(−nI,−A; B− (n− 1)I; 1− 1

z
)

= (−1)n [(B + I)−n]−1

n!
zA(1− z)B−nI

2F1(−nI,−A; B− (n− 1)I; 1− 1
z
)

=
(−B)n

n!
zA(1− z)B−nI

2F1

(
−nI,−A; B− (n− 1)I; 1− 1

z

)
,

and the conclusion follows.

6. Integral Representation

Theorem 5. The matrix function Pν(A, B, z) given by Equation (18) with assumption in Equation (17) have
the following integral representation, by means of the hypergeometric function 2F1,

Pν(A, B, z) =
(−B)nΓ−1(ε)

Γ(ν + 1)
zA+εI

×
∫ 1

0
(1− tz)B−nI tA(1− t)(ε−1)I

2F1

(
−A,−nI; B− (n− 1)I; 1− 1

tz

)
dt, (38)

where n = dνe and ε = n− ν > 0.

Proof. Using the integral representation in Equation (10), we have

2F1(−B + (n− k)I, A− (k− 1)I;A + (ε− k + 1)I; z)

=

(∫ 1

0
(1− tz)B−(n−k)I tA−kI(1− t)(ε−1)Idt

)
× Γ−1(A− (k− 1)I)Γ−1(ε)Γ(A− (k− ε− 1)I).

Now, applying Equation (30), it follows that

Pν(A, B, z) =
Γ(A + I)Γ(B + I)

Γ(ν + 1)

n

∑
k=0

(−1)n−k
(

n
k

)
Γ−1(B− (n− k− 1)I)

× zA+(ε−k)I
(∫ 1

0
(1− tz)B−(n−k)I tA−kI(1− t)(ε−1)Idt

)
Γ−1(A− (k− 1)I)Γ−1(ε),

from which we can write

Pν(A, B, z) = (−1)n Γ(A + I)Γ(B + I)Γ−1(ε)

Γ(ν + 1)
zA+εI

∫ 1

0
(1− tz)B−nI tA(1− t)(ε−1)I

×
n

∑
k=0

(
n
k

)
Γ−1(B− (n− k− 1)I)Γ−1(A− (k− 1)I)(−zt)−kI(1− tz)kIdt.
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However, it is straightforward to show, using the series representation of 2F1, that

n

∑
k=0

(
n
k

)
Γ−1(B− (n− k− 1)I)Γ−1(A− (k− 1)I)(−zt)−kI(1− tz)kI

= Γ−1(A + I)Γ−1(B− (n− 1)I) 2F1

(
−A,−n; B− n + 1; 1− 1

tz

)
.

Thus,

Pν(A, B, z) = (−1)n Γ(A + I)Γ(B + I)Γ−1(ε)

Γ(ν + 1)
zA+εI

∫ 1

0
(1− tz)B−nI tA(1− t)(ε−1)I

× Γ−1(A + I)Γ−1(B− (n− 1)I) 2F1

(
−A,−n; B− n + 1; 1− 1

tz

)
dt

=
(−B)nΓ−1(ε)

Γ(ν + 1)
zA+εI

∫ 1

0
(1− tz)B−nI tA(1− t)(ε−1)I

2F1

(
−A,−nI; B− (n− 1)I; 1− 1

tz

)
dt

which complete the proof of the theorem. A similar technique in proving these results has been applied
in [41].

Corollary 2. For n ∈ N, the matrix function Pn(A, B, z) given by Equation (18) with assumption in
Equation (17) have the following integral representation, by means of the hypergeometric function 2F1,

Pn−1(A, B, z) =
(−B)n

Γ(n)
zA+I

∫ 1

0
tA(1− tz)B−nI

2F1

(
−A,−nI; B− (n− 1)I; 1− 1

tz

)
dt. (39)

Proof. The proof follows by shifting ε to ε + 1 in Equation (38), and then taking the limit as ε→ 0.

Remark 3. The change of variable tz = u allows writing Equation (39) as

Pn−1(A, B, z) =
(−B)n

Γ(n)

∫ z

0
uA(1− u)B−nI

2F1

(
−A,−nI; B− (n− 1)I; 1− 1

u

)
du (40)

which confirms Equation (37) using the fundamental theorem of calculus and Equation (25).

Remark 4. For positive integer n, and A, B ∈ CN×N satisfying the assumption in Equation (17), we have,
by means of Equations (37) and (40), for |z| < 1, the following identity

∫ z

0
uA(1− u)B−nI

2F1

(
−A,−nI; B− (n− 1)I; 1− 1

u

)
du

= (−B)n−1[(−B)n]
−1 zA (1− z)B−(n−1)I

2F1

(
−A,−(n− 1)I; B− (n− 2)I; 1− 1

z

)
. (41)

Remark 5. By the representation in Equation (37),

Pn(A, B, z) =
1
n!
(−B)n zA (1− z)B−nI

2F1

(
−nI,−A; B− (n− 1)I; 1− 1

z

)
, (42)

we have the following integral for the shifted Legendre type polynomials Pn(A, B, z):∫ z

0
Pn(A, B, u)du = −(B− (n− 1)I)−1 (1− z)Pn(A, B, z). (43)
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7. Orthogonality Relation

It is worth mentioning that orthogonal polynomials comprise an emerging field of study,
with important results in both theory and applications continuing to appear in the literature. Therefore,
development and generalization of orthogonality from the scalar case to matrix setting, for particular
cases, are given through the following result. From Equation (33), we have

Pν(A, B, z) =
Γ(A + I)(−B)nΓ−1(A + (ε + 1)I)

Γ(ν + 1)

n

∑
k=0

(−1)k(−n)k(−A− ε)k[(B− (n− 1)I)k]
−1

k!

× zA−kI+εI
2F1(−B + (n− k)I, A− (k− 1)I; A− (k− ε− 1)I; z)

where ε = n− ν and n = dνe. The orthogonality is studied by means of

∫ 1

0
Pν(A, B, z)Pν′(A, B, z)dz = Iνν′ .

From this,

Iνν′ =
Γ(A + I)(−B)nΓ−1(A + (ε + 1)I)

Γ(ν + 1)
Γ(A + I)(−B)mΓ−1(A + (ε′ + 1)I)

Γ(ν′ + 1)

×
n

∑
k=0

m

∑
`=0

(−1)k+`(−n)k(−A− ε)k[(B− (n− 1)I)k]
−1

k!
(−m)`(−A− ε′)`[(B− (m− 1)I)`]−1

`!

×
∫ 1

0
z2A−(k+`)I+(ε+ε′)I

2F1

(
−B + (n− k)I, A− (k− 1)I

A− (k− ε− 1)I
; z

)
2F1

(
−B + (m− `)I, A− (`− 1)I

A− (`− ε′ − 1)I
; z

)
dz

This equation can be written as

Iνν′ =
Γ(A + I)(−B)nΓ−1(A + (ε + 1)I)

Γ(ν + 1)
Γ(A + I)(−B)mΓ−1(A + (ε′ + 1)I)

Γ(ν′ + 1)

×
n

∑
k=0

m

∑
`=0

(−1)k+`(−n)k(−A− ε)k[(B− (n− 1)I)k]
−1

k!
(−m)`(−A− ε′)`[(B− (m− 1)I)`]−1

`!

×
∫ 1

0
z2A−(k+`)I+(ε+ε′)I (1− z)2B+(k+`)I+(ε+ε′)I−(m+n)I

× 2F1

(
A + B + (ε + 1− n)I, ε

A− (k− ε− 1)I
; z

)
2F1

(
A + B + (ε′ + 1−m)I, ε′

A− (`− ε′ − 1)I
; z

)
dz

Using the series representation of one of the 2F1 function and assuming the switch of the infinite
sum with the integral is permitted, one obtains

Iνν′ =
Γ(A + I)(−B)nΓ−1(A + (ε + 1)I)

Γ(ν + 1)
Γ(A + I)(−B)mΓ−1(A + (ε′ + 1)I)

Γ(ν′ + 1)

×
n

∑
k=0

m

∑
`=0

(−1)k+`(−n)k(−A− ε)k[(B− (n− 1)I)k]
−1

k!
(−m)`(−A− ε′)`[(B− (m− 1)I)`]−1

`!

×
∞

∑
s=0

(A + B + (ε′ + 1−m)I)s(ε′)s[(A− (`− ε′ − 1)I)s]−1

s!

×
∫ 1

0
z2A−(k+`)I+(ε+ε′)I+sI (1− z)2B+(k+`)I+(ε+ε′)I−(m+n)I

2F1

(
A + B + (ε + 1− n)I, ε

A + (ε + 1− k)I
; z

)
dz
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The definite integral can be computed, in terms of the beta function B, to yield

Iνν′ =
Γ(A + I)(−B)nΓ−1(A + (ε + 1)I)

Γ(ν + 1)
Γ(A + I)(−B)mΓ−1(A + (ε′ + 1)I)

Γ(ν′ + 1)

×
n

∑
k=0

m

∑
`=0

(−1)k+`(−n)k(−A− ε)k[(B− (n− 1)I)k]
−1

k!
(−m)`(−A− ε′)`[(B− (m− 1)I)`]−1

`!

×
∞

∑
s=0

(A + B + (ε′ + 1−m)I)s(ε′)s[(A− (`− ε′ − 1)I)s]−1

s!

× B(2A− (k + `)I + (ε + ε′)I + sI + I, 2B + (k + `)I + (ε + ε′)I − (m + n)I + I)

× 3F2

(
A + B + (ε + 1− n)I, ε, 2A− (k + `)I + (ε + ε′)I + sI

A + (ε + 1− k)I, 2(A + B)− (n + m)I + 2(ε + ε′)I + (s + 2)I
; 1

)
.

In the case ν = n, ν′ = m, ε = ε′ = 0, it follow that

In m =
(−B)n

Γ(ν + 1)
(−B)m

Γ(m + 1)
Γ−1(2(A + B)− (m + n)I + 2I)

×
n

∑
k=0

m

∑
`=0

(−1)k+`(−n)k(−A)k[(B− (n− 1)I)k]
−1

k!
(−m)`(−A)`[(B− (m− 1)I)`]−1

`!

× Γ(2A− (k + `)I + I)Γ(2B + (k + `)I − (m + n)I + I)

Using the Pochhammer identities

Γ(2A− (k + `)I + I) = (−1)k+`Γ(2A + 1)[(k− 2A)`]
−1[(−2A)k]

−1,

Γ(2B− (n + m)I + (k + `+ 1)I) = (2B− (n + m)I + (k + I)I)`(2B− (n + m) + I)kΓ(2B− (n + m) + I)

we have

In m =
(−B)n

Γ(ν + 1)
(−B)m

Γ(m + 1)
Γ−1(2(A + B)− (m + n)I + 2I)Γ(2A + I)Γ(2B− (n + m) + I)

×
n

∑
k=0

m

∑
`=0

(−n)k(−A)k[(B− (n− 1)I)k]
−1

k!
(−m)`(−A)`[(B− (m− 1)I)`]−1

`!

× [(k− 2A)`]
−1[(−2A)k]

−1(2B− (n + m)I + (k + I)I)`(2B− (n + m) + I)k

Finally, we obtain

In m(A, B) =
Γ(2A + I)(−B)m(−B)nΓ(2B− (m + n)I + I)

m! n!
(Γ(2(A + B)− (m + n)I + 2I))−1

×
n

∑
k=0

(−A)k(−n)k(2B− (m + n)I + I)k
k!

[(−2A)k]
−1[(B− nI + I)k]

−1

× 3F2(−A,−m, 2B + kI − (m + n)I + I; kI − 2A, B−mI + I; 1).

Conjecture. The shifted Legendre matrix functions {Pn(A, B, z)} are orthogonal on (0, 1) in the following
sense that:

In m(A, B) = 0.

when n + m is odd.
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Particular Case

It is not known even in the scalar case if the set of polynomials {Pν(A, B, z)} are orthogonal in
general but a trial for a particular case will be given through the following subsection. We prove the
following result.

Theorem 6. The shifted Legendre matrix functions {Pν(A, B, z)} are orthogonal on (0, 1) in the following way:

〈Pn(nI + Φ, nI + Φ; z),Pm(mI + Θ, mI + Θ; z)〉

=
∫ 1

0
[Pn(nI + Φ, nI + Φ; z)] [Pm(mI + Θ, mI + Θ; z)]∗ dz = 0

when m + n is odd where Φ, Θ are N × N matrices.

Proof. We consider the case where ν = n for which ε = 0, then by definition

Pn(A, B, z) =
Γ(A + I)Γ(B + I)

n!

×
n

∑
k=0

(−1)n+k
(

n
k

)
Γ−1(A− (k− 1)I)Γ−1(B− (n− k− 1)I)zA−kI(1− z)B−nI+kI .

In particular, for A = B, we have

Pn(A, A; z) =
[Γ(A + I)]2

Γ(n + 1)

×
n

∑
k=0

(−1)n+k
(

n
k

)
Γ−1(A− (k− 1)I)Γ−1(A− (n− k− 1)I)zA−kI(1− z)A−(n−k)I .

For A = nI + Φ, which is invertible, where Φ is a matrix of type N× N, that is Φ ∈ CN×N , we get

Pn(nI + Φ, nI + Φ; z) =
Γ2((n + 1)I + Φ)

Γ(n + 1)

n

∑
k=0

(
n
k

)
(−1)n+kzΦ+(n−k)I(1− z)(Φ+k)I

Γ(Φ− (−n + k− 1)I)Γ(Φ + (k + 1)I)
(44)

Similarly, for P = mI + Θ where Θ is an N × N matrix, we have

Pm(mI + Θ, mI + Θ; z) =
Γ2((m + 1)I + Θ)

Γ((m + 1)I)

m

∑
j=0

(
m
j

)
(−1)m+jzΘ+(m−j)I(1− z)(Θ+k)I

Γ(Θ− (−m + j− 1)I)Γ(Θ + (j + 1)I)
(45)

Noting that Pn(A, A; z) is Hermitian matrix, then following [42], define the matricial inner product
on CN×N for the two matrix functions Pn(nI + Φ, nI + Φ; z) and Pm(mI + Θ, mI + Θ; z) defined by
Equations (44) and (45) as follows.

〈Pn(nI + Φ, nI + Φ; z),Pm(mI + Θ, mI + Θ; z)〉

=
∫ 1

0
[Pn(nI + Φ, nI + Φ; z)] [Pm(mI + Θ, mI + Θ; z)]∗ dz

where [Pm(mI + Θ, mI + Θ; z)]∗ = [Pm(mI + Θ, mI + Θ; z)]T is the conjugate transpose matrix of
Pn(nI + Φ, nI + Φ; z). Then,

J =
∫ 1

0
Pn(nI + Φ, nI + Φ; z)Pm(mI + Θ, mI + Θ; z) dz,
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where

Pn(nI + Φ, nI + Φ; z)Pm(mI + Θ, mI + Θ; z) = (−1)m+n Γ2(n + Φ + I)Γ2(m + Θ + I)
n!m!

×
n

∑
k=0

m

∑
j=0

(−1)k+j
(

m
j

)(
n
k

)
zΦ+Θ+(n+m−j−k)I(1− z)(Φ+Θ+j+k)I

Γ(Φ− (−n + k− 1)I)Γ(Φ + (k + 1)I)Γ(Θ− (−m + j− 1)I)Γ(Θ + (j + 1)I)

Now, using the properties of the Gamma and Beta matrix functions, we conclude that the integral
J gives

J = (−1)m+n Γ2(n + Φ + I)Γ2(m + Θ + I)
n!m!Γ(2Φ + 2Θ + (m + n + 2)I)

×
n

∑
k=0

m

∑
j=0

(−1)k+j
(

m
j

)(
n
k

)
Γ(Φ + Θ + (n + m− j− k + 1)I)Γ(Φ + Θ + (j + k + 1)I)

Γ(Φ− (−n + k− 1)I)Γ(Φ + (k + 1)I)Γ(Θ− (−m + j− 1)I)Γ(Θ + (j + 1)I)
,

that allows us to write

J = (−1)m+n Γ2(nI + Φ + I)Γ2(mI + Θ + I)
n!m!Γ(2Φ + 2Θ + (m + n + 2)I)

n

∑
k=0

m

∑
j=0

Cj,k (46)

where

Cj,k = (−1)k+j
(

m
j

)(
n
k

)
Γ(Φ + Θ + (n + m− j− k + 1)I)Γ(Φ + Θ + (j + k + 1)I)

Γ(Φ− (−n + k− 1)I)Γ(Φ + (k + 1)I)Γ(Θ− (−m + j− 1)I)Γ(Θ + (j + 1)I)

For these coefficients, we observe that, if we replace j by m− j and k by n− k, we get a relation
between Cj,k and Cm−j,n−k as follows

Cm−j,n−k = (−1)n−k+m−j
(

m
m− j

)(
n

n− k

)
·

× Γ(Φ + Θ + (j + k + 1)I)Γ(Φ + Θ + (n + m− j− k + 1)I)
Γ(Φ + (k + 1)I)Γ(Φ− (−n + k− 1)I)Γ(Θ− (j + 1)I)Γ(Θ− (−m + j− 1)I)

= (−1)m+n(−1)k+j
(

m
j

)(
n
k

)
·

× Γ(Φ + Θ + (n + m− j− k + 1)I)Γ(Φ + Θ + (j + k + 1)I)
Γ(Φ− (−n + k− 1)I)Γ(Φ + (k + 1)I)Γ(Θ− (−m + j− 1)I)Γ(Θ + (j + 1)I)

= (−1)m+nCj,k, j = 0, 1, . . . , m; k = 0, 1, . . . , n

Note that, for m + n odd, we get, for instance, if m + n = 1, ∑k=0 ∑j=0 Cj,k = C0,0 + C0,1 = 0
where C0,0 = −C0,1. Similarly, we easily see that C0,0 + C1,0 = 0 where C0,0 = −C1,0. This means
that, taking m and n to be integers and letting m + n be odd, each summand Cj,k in ∑n

k=0 ∑m
j=0 Cj,k

has its opposite signed companion, therefore ∑n
k=0 ∑m

j=0 Cj,k = 0 and the orthogonality property is
verified.

Remark 6. Note that, for m+ n is odd, which means m 6= n and for m = n = 0, the relation in Equation (46) gives

J = β(2Θ + I, 2Θ + I). (47)

8. Some Applications

Nowadays, fractional differential equations (FDEs) have been stimulated due to their enormous
applications in several problems in science and engineering. Among these applications, we mention
viscoelasticity; bioengineering; dynamics of interfaces between nanoparticles and substrates;
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fluid-dynamic traffic; signal processing, solid mechanics, control theory, statistical mechanics,
economics; and nonlinear oscillations of earthquakes (see [43] and the references therein for more
details). In general, most FDEs do not have an exact solution, which is available only for a considerable
small class of FDEs. Sometimes it is challenging to obtain the exact analytic solutions of FDEs. In
some cases, it becomes impossible to arrive at the exact analytic solution. The reason for this difficulty
is the computational complexities of fractional calculus involving in these equations. Therefore,
finding numerical solutions has become the destination of many mathematicians. They introduced
many methods such as Laplace transforms, power series methods, collocation methods, Tau method,
Legendre operational matrix method, etc. (see [43], and reference therein).

Approaching the problems mentioned using the fractional shifted Legendre matrix polynomials
(FSLMPs) may provide new insights on solving some of these problems. With the aid of the given
condition of orthogonality and owing to the Legendre operational matrix method [43], a truncated
matrix shifted the Legendre series together with the Legendre operational matrix of the fractional
derivative are proposed. This approach allows us to deal with the numerical solution of a class of
FDEs (see [7]).

As practical applications, we mention two types of problems: the first is the initial and boundary
value problems for the fractional Bagley–Torvik differential equations [44] and the second possible
application is the time fractional coupled Korteweg–de Vries (KdV) system (see [45]), which is
considered to be one of the most important nonlinear evolution systems of equations for its several
applications in physics and engineering (see [45] and references therein).

8.1. Technical Scheme

The explicit analytical form of the shifted Legendre matrix polynomials Pn(A, B; z) of degree n
may be written as:

Pn(A, B; z) =
n

∑
k,s=0

Qk,szA−(k−s)I (48)

where

Qk,s =

(
n
k

)
(−1)n+k+s Γ(A + I)Γ(B + I)Γ(A + (s− k)I)

s!Γ(n + 1)Γ(B− (n + k− s− 1)I)Γ(A− (k− 1)I)Γ(A− kI)Γ(A− (k− s)I)

such that ‖A‖ < ‖(k− s)I‖. Theorem 6 leads to the orthogonality condition in the form:

J =
∫ 1

0
Pi(A, B; z)Pj(A, B; z)dz =

{
0, for i + j is odd, (i 6= j)

β(2Θ + I, 2Θ + I), for i = j = 0.

Thus, any square integrable function y(z) defined on (0, 1) may be expressed in terms of shifted
Legendre matrix polynomials as

y(z) =
∞

∑
j=0

cjPj(A, B; z)

from which the coefficients cj are given by

cj = β(2Θ + I, 2Θ + I)
∫ 1

0
y(z)Pj(A, B; z)dz

If we approximate y(z) by truncating the first (m + 1) terms, we have

ym(z) '
m

∑
j=0

cjPj(A, B, z),
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which alternatively may be written in the matrix form as

y(z) = CT∆m(A, B; z),

where the shifted Legendre coefficient (m+ 1)× 1 vector C and the shifted Legendre vector ∆m(A, B, z)
are given by

CT = [c0, c1, . . . , cm] (49)

and

∆m(A, B; z) = [P0(A, B; z), P1(A, B; z), . . . , Pm(A, B; z)]T , (50)

respectively.

8.2. Overview on Operational Matrix

Recently, various operational matrices for the polynomials have been developed to study the
numerical solution of differential equations. The main advantage of these operational matrices is that
they replace differential operators with some matrices. Consequently, they reduce such problems to
analyzing a system of algebraic equations, thus greatly simplifying the problem (see [43] and references
therein). This trend is out of the scope of the present paper. However, we proceed to explore a technical
scheme. Thus, the derivative of the vector ∆m(A, B; z) can be expressed by

d
dz

∆m(A, B; z) = D(1)∆m(A, B; z) (51)

where D(1) is the (m + 1)× (m + 1) operational matrix of derivatives given by

D(1) = (dij) =

{
2β(2Θ + I, 2Θ + I), for j = i− k, k = 1, 3, . . . , m if m odd

0, otherwise.

8.3. Legendre Operational Matrix in Fractional Setting

It is clear using Equation (51) that

dn∆m(A, B; z)
dzn = (D(1))n∆n(A, B; z) (52)

where n ∈ N and the subscript, in D(1), denotes matrix powers. Thus,

D(n) =
(
D(1)

)n
, n = 1, 2, . . . (53)

The generalization of Theorem 1 of [7] leads to the following scheme, which can be used to solve
multi-order fractional differential equations. Analog to the scalar case, we consider the generalized
linear multi-order fractional differential equation in the form:

Dαy(x) =
k

∑
s=1

AsDβs y(x) + Ak+1y(x) + Ak+2y(x) (54)

with initial conditions

y(i)(0) = di, i = 0, 1, . . . , n (55)
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where As for s = 1, 2, . . . , k + 2 are real coefficients and n < α ≤ n + 1, 0 < β1 < β2 < · · · < βk < α

and Dα refers to the Caputo fractional derivative of order α. To solve the problem in Equations (54)
and (55), it is required to approximate y(x) and g(x) by the shifted Legendre matrix polynomials
as follows.

y(z) '
m

∑
i=0

ciPi(A, B; z) = CT∆m(A, B; z) (56)

g(z) '
m

∑
i=0

giPi(A, B; z) = GT∆m(A, B; z) (57)

where the vector G = [g0, . . . , gm]
T is known but the vector C = [c0, . . . , cm]

T is unknown. Following
similar procedure as in the scalar case [7] leads to the following systems.

Dαy(x) ' CT Dα∆m(A, B; z) ' CT D(α)∆m(A, B; z) (58)

Dβ j y(x) ' CT Dβ j ∆m(A, B; z) ' CT D(β j)∆m(A, B; z), j = 1, . . . , k (59)

Using Equations (56)–(59), the residual Rm(z) for Equation (54) can be written as

Rm(A, B; z) '
[

CTD(α) − CT
k

∑
j=1

AjD(β j) − Ak+1CT − ak+2GT

]
∆m(A, B; z) (60)

Owing to Tau method [46], it follows that m− n linear equations can be generated by using

〈Rm(A, B; z), Pj(A, B; z)〉 =
∫ 1

0
Rm(A, B; z)Pj(A, B; z)dz = 0, j = 0, 1, . . . , m− n− 1 (61)

Using Equations (53) and (56) in Equation (55), we obtain

y(0) = CT∆m(0) = d0,

y (1)(0) = CTD(1)∆m(0) = d1

...

y(n)(0) = CTD(n)∆m(0) = dn. (62)

It is clear that Equations (61) and (62) generate (m − n) and (n + 1) set of linear equations,
respectively. These linear equations can be solved for unknown coefficients of the vector C, and hence
y(z) stated in Equation (56) can be established.

Remark 7. For the sake of simplicity, we restrict ourselves to the case when N = 1 (order of the matrices A and
B) and taking A = B = ν = n ∈ N0 which give the the technique used in [7]; however, our proposed approach
can be extended for application. The main characteristic behind the approach using this technique of Legendre
operational matrix is that it reduces the given problem to those of solving a system of algebraic equations. Thus,
it greatly simplifies the problem and this needs hard calculations which would be difficult to be recorded for
the moment.
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Example 1. We consider the following initial value problem in the case of inhomogeneous Bagley-Torvik
equation [47].

D2y(z) + D3/2y(z) + y(z) = 1 + z

y(0) = 1, y′(0) = 1
(63)

This problem has the exact solution in the form y(z) = 1 + z. By applying the technical scheme described above
with m = 2, A = B = ν = n ∈ N0 and N = 1, one can approximate solution as

y(z) = c0P0(z) + c1P1(z) + c2P2(z) = CT∆m(z)

Acting by fractional derivative, we get

D(1) =

0 0 0
2 0 0
0 6 0

 , D(2) =

 0 0 0
0 0 0
12 0 0

 , D(3/2) =
16√

π

0 0 0
2 0 0
1 3

5
−1
7

 , G =

 3
2
1
2
0


From this, one can deduce

c0 +

(
12 +

16√
π

)
c2 −

3
2
= 0

Applying Equation (62), we get

c0 − c1 + c2 − 1 = 0

2c1 − 6c2 − 1 = 0

Therefore, c0 = 3
2 , c1 = 1

2 , c2 = 0. Thus, we can write

y(z) =
[

3
2

1
2 0

]  1
2z− 1

6z2 − 6z + 1

 = z + 1

which is the exact solution. It can be expected that the above problem in Equation (63) may be generalized with
matrix parameters and the shifted Legendre matrix polynomials can be used to solve it. Such tools would have
made light for the forthcoming work besides numerical analysis technique.

Example 2. (The time-fractional coupled Kortewg–de Varies (KdV) system)
The KdV equation is considered as one of the most important nonlinear evolution equations for its several
applications in physics and engineering (see [45]). The presented shifted Legendre matrix polynomials can be
considered as a basic function to solve the KdV equation for the two types homogeneous and inhomogeneous. The
homogeneous problem is stated as

∂α1

∂tα1
u(x, t) =

−∂3

∂x3 u(x, t)− 6u(x, t)
∂

∂x
u(x, t) + 3v(x, t)

∂

∂x
v(x, t)

∂α2

∂tα2
u(x, t) =

−∂3

∂x3 u(x, t)− 3u(x, t)
∂

∂x
v(x, t)

with the initial condition u(x, 0) = 4c2ecx

(1+ecx)2 , v(x, 0) = 4c2ecx

(1+ecx)2 . The exact solution of this problem, for
α1 = α2 = 1, is

u(x, t) = v(x, t) =
4c2ec(x−c2t)

(1 + ec(x−c2t))2
.
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9. Conclusions

Classically, the Rodrigues differential formulas are often used as definitions of the orthogonal
polynomials and their generalizations in special functions. Many of the essential mathematical
properties of the orthogonal polynomials can be derived using these definitions.

Notably, the fractional-order analogs of the Rodrigues’ formulas were recently used to either define
new classes of special functions or to study and classify many of the special functions in fractional
calculus (see, e.g., [12,16]). The study developed in Sections 3–7 provides several mathematical
properties of the shifted Legendre-type matrix polynomials under the assumption in Equation (5) in
terms of the fractional-order Rodrigues’ formula.

It should be noted that the integral representation for the shifted Legendre matrix function has
been used in studying the delayed, scaled consensus problems in the work of Shang [41].

By adopting a matrix setting with the notion of the Hermitian matrices, we introduce the notion
of a matricial inner product on CN×N . This approach enabled us to establish an orthogonality property
in a matrix case for some particular cases. Although a general orthogonality condition in the matrix
setting was not entirely resolved in the present study, we hope the present work will encourage further
investigations in that direction.

To the best of our knowledge, the introduced fractional setting and matrix framework for shifted
Legendre-Type matrix polynomials is newly presented. Based on the earlier work related to the shifted
Legendre polynomials, we may suggest some possible applications to be studied using the approach
introduced in the present work.

1. Referring to the work given in [32], where the authors used the shifted Legendre collocation
method for non-linear multi-order fractional differential equations, a similar problem may be
treated through the matrix framework. More precisely, we may suggest the analog of FDE stated
as follows

Dν f (z) + ADν1 f (z) + BDν2 f (z) + C f (z) = g(z), z ∈ C, A, B, C ∈ CN×N

subject to some boundary conditions.
2. Another application is possible based on [34], where the authors applied shifted Legendre

polynomials to the state equations of a linear system. It is possible to investigate similar problems
utilizing fractional shifted Legendre polynomials in the sense of matrix framework, as discussed
in the present work. We may impose the following question: "Can the state and forcing functions be
expressed in terms of a series of fractional shifted Legendre polynomials with expansion coefficients?"

3. It is also an interesting problem to investigate the solution of a linear dynamic system with
initial or boundary value conditions by the proposed fractional shifted Legendre-type matrix
polynomials as a generalization of the work given by Wang et al. [35].

4. As the operational matrix of shifted Legendre polynomials in the scalar case has been employed
to approach the identification problem (see [36]), a similar problem may be investigated in the
sense of our proposed approach.

The results given in Section 7 are obtained for a particular case. A general orthogonality relation
in the matrix setting involving fractional sense is still an open problem. We hope that the present study
will encourage further investigation to solve this problem. Obtaining such tools, would shed light for
the numerical analysis field with applications.
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