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Abstract: In this paper, we consider the single machine scheduling problem with release dates and
nonmonotone submodular rejection penalty. We are given a single machine and multiple jobs with
probably different release dates and processing times. For each job, it is either accepted and processed
on the machine or rejected. The objective is to minimize the sum of the makespan of the accepted jobs
and the rejection penalty of the rejected jobs which is determined by a nonmonotone submodular
function. We design a combinatorial algorithm based on the primal-dual framework to deal with the
problem, and study its property under two cases. For the general case where the release dates can be
different, the proposed algorithm have an approximation ratio of 2. When all the jobs release at the
same time, the proposed algorithm becomes a polynomial-time exact algorithm.
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1. Introduction

All jobs must be processed in classical scheduling problems. However, sometimes rejecting
some jobs with low cost performance is possible and will bring more profit. This problem is
called multiprocessor scheduling with rejection (MSR), which is first proposed by Bartal et al. [1].
In this problem, a job is either accepted and processed on the machine, or rejected and paid a
rejection penalty. The objective is to minimize the makespan of accepted jobs plus the overall
penalty of rejected jobs. Bartal et al. [1] proposed a 2-approximation algorithm running in O(n log n)
time and a polynomial-time approximation scheme (PTAS) for MSR. Ou et al. [2] proposed a
(3/2 + ε)-approximation algorithm with running time O(n log n + n/ε) for MSR, where ε is a small
given positive constant.

MSR and its variants have become increasingly popular in both academic and industrial
community in the last two decades. Zhang and Lu [3] considered parallel-machine scheduling with
release dates and rejection, where jobs cannot be processed before their corresponding release dates.
The objective of this problem to minimize the sum of makespan of accepted jobs and total penalty
of rejected jobs. They developed a 2-approximation algorithm. This result is further improved by
Zhong and Ou [4] who designed a PTAS. Li et al. [5] designed a PTAS for a variant of MSR, where the
objective is to minimize the makespan when the rejection cost is bounded by a given constant.

Some studies considered the case when the number of machines is bounded. When there are
exactly two machines. Zhong et al. [6] developed a (3/2 + ε)-approximation algorithm for scheduling
with release dates and rejection. When the number of machines is one, there are much more related
results. Shabtay et al. [7] handled the single machine with job rejection and positional penalties problem
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with a bicriteria approach. Zhang et al. [8] proved the NP-hardness of single machine scheduling with
release dates and rejection, which is a special case of the problem considered in [3]. They presented
a 2-approximation algorithm with running time of O(n2), which was independently improved by
He et al. [9] and Ou et al. [10] with running time of O(n log n). Zhang et al. [11] developed a FPTAS
for a variant of single machine scheduling with release dates and rejection, where the objective is to
minimize the makespan when rejection penalty is bounded. Zou et al. [12] considered single-machine
scheduling with rejection and an operator non-availability interval where jobs are prohibited to start
or complete in the operator non-availability interval, and presented a FPTAS. Shioura et al. [13]
studied a problem on a single machine with release dates and deadlines, where the processing can
be accelerated by making additional cost. They utilized submodular optimization to achieve the best
possible running time. Li and Cui [14] designed a 1.58-approximation algorithm for vector scheduling
on a single machine, where vector scheduling imply that multiple resources are needed for each job
and the objective is to minimize the maximal cost over all resources plus the rejection cost. More related
results can be found in the surveys [15,16].

Since submodular function has the property of decreasing marginal return and occurs in many
mathematical models, classical combinatorial optimization problems with submodular rejection
penalty receive more and more attentions [17–19]. For the MSR problem, rejecting jobs frequently
might lead to low prestige for the manufacturer. There is no linear relationship between the number of
rejected jobs and the loss of the manufacturer’s prestige, but as the number of rejected jobs increases,
it will have less and less impact on the manufacturer’s prestige. Recently, Zhang et al. [20] proposed
a 3-approximation algorithm for precedence-constrained scheduling with submodular rejection on
parallel machines.

Motivated by the problems in [8,20], we propose a new scheduling problem, called single machine
scheduling problem with release dates and submodular rejection penalty, where each job is either
rejected or accepted and processed on the machine. The objective is to minimize the sum of the
makespan of the accepted jobs and the rejection penalty of the rejected jobs which is determined by a
submodular function. In this paper, we design a combinatorial 2-approximation algorithm by using
the primal-dual scheme, generalizing the algorithm presented in [8].

The remainder of this paper is structured as follows. In Section 2, we provide a formal problem
statement. In Section 3, for single machine scheduling problem with release dates and submodular
rejection penalty functions, we present a 2-approximation algorithm, based on a method similarly to
the primal-dual algorithm. In addition, when all the jobs have the same release date, we present a
polynomial-time exact algorithm. We provide conclusion in Section 4.

2. Preliminaries

In this section, we present a formal description of single machine scheduling problem with
release dates and submodular rejection penalty. Given a single machine and n jobs, J = {J1, J2, . . . ,
Jn}, each job Jj has a processing time pj and a release date rj, where pj and rj are nonnegative real
numbers. The rejection cost of a subset of jobs is determined by the nonmonotone submodular function
π(·) : 2J → R+ ∪ {0}, which means that

π(X ∪Y) + π(X ∩Y) ≤ π(X) + π(Y), ∀X, Y ⊆ J,

without loss of generality, assume that π(∅) = 0. Moreover, we assume that π(S) can be computed
within polynomial time for any subset S ⊆ J, where the ‘polynomial’ we use regard to the size n.

The single machine scheduling problem with release dates and submodular rejection penalties is
to choose a set R ⊆ J of rejected jobs and schedule the remaining jobs in A = J \ R on the machine.
The objective is to minimize the sum of the makespan of the accepted jobs and the penalty cost π(R)
of the rejected jobs. By using the general notation for scheduling problems, the problem is denoted
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by 1|rj, reject|Cmax + π(R). Clearly, if π(R) = ∑Jj :Jj∈R π({Jj}), the problem 1|rj, reject|Cmax + π(R) is
exactly the problem 1|rj, reject|Cmax + ∑Jj∈R wj considered in [8].

If rejection is not allowed, Lawler [21] shows that the corresponding problem 1|rj, reject|Cmax can
be solved using the earliest release date rule (ERD-rule for short). Thus, we have the following lemma.

Lemma 1 ([21]). For the problem 1|rj, reject|Cmax + π(R), there exists an optimal schedule such that the
accepted jobs in A = J \ R are processed using the ERD-rule.

For any set S ⊆ J, let

p(S) = ∑
Jj∈S

pj

be the total processing time of the jobs in S. Based on Lemma 1, we first re-label the jobs such that
r1 ≤ · · · ≤ rn. For convenience, let

r0 = 0.

Assume that r1 ≥ 0. For each r ∈ {r0, r1, r2, . . . , rn}, let

B(r) = {Jj|rj > r}

be the set of jobs with release date bigger than r. Correspondingly, let Br be the set of jobs such that

Br ⊇ B(r), and π(Br) is minimized.

Obviously, if π(·) is monotone nondecreasing, Br = B(r). Otherwise, we have

Lemma 2. For every r ∈ {r0, r1, r2, . . . , rn}, Br can be computed in polynomial time.

Proof. Consider a given r ∈ {rj|0 ≤ j ≤ n}. Clearly, π(B(r)) is a constant. For any subset X ⊆ J \ B(r),
construct an auxiliary function w(·) such that

w(X) = π(X ∪ B(r))− π(B(r)).

For any two subsets X, Y ⊆ J \ B(r), we have

w(X) + w(Y)

= π(X ∪ B(r))− π(B(r)) + π(Y ∪ B(r))− π(B(r))

≥ π((X ∪ B(r)) ∪ (Y ∪ B(r))) + π((X ∪ B(r)) ∩ (Y ∪ B(r)))− 2π(B(r))

= π((X ∪Y) ∪ B(r))− π(B(r)) + π((X ∩Y) ∪ B(r))− π(B(r))

= w(X ∪Y) + w(X ∩Y),

where the inequality follows from that π(·) is a submodular function. Therefore, w(·) is a submodular
function, which implies that minX⊆J\B(r) w(X) can be computed within polynomial time, using the
method in [22]. Since π(B(r)) is a constant, minX⊆J\B(r) π(X ∪ B(r)) = minX⊆J\B(r) w(X) + π(B(r))
can be computed within polynomial time. It implies that Br = (arg minX⊆J\B(r) π(X ∪ B(r))) ∪ B(r)
can be computed within polynomial time.



Mathematics 2020, 8, 133 4 of 11

3. An Approximation Algorithm

In this section, we design a combination 2-approximation algorithm for 1|rj, reject|Cmax + π(R).
In particular, when all the jobs have the same release dates, we prove that 1|rj, reject|Cmax + π(R) can
be solved exactly in polynomial time.

For each r ∈ {rj|0 ≤ j ≤ n}, use Process A(r), which is described later, to find a schedule σr,
compute the objective value Zr of schedule σr, and choose the best schedule as the output schedule.

In Process A(r), similarly to the primal-dual algorithm in [23], we introduce an auxiliary “dual”
variable αr,j for every job Jj ∈ J and r, where r is an input value of Process A(r). There is an auxiliary
notion of time t associated with Process A(r).

Process A(r).
Input: An instance of 1|rj, reject|Cmax + π(R) and a fixed number r(∈ {rj|0 ≤ j ≤ n}).
Output: a schedule σr and its objective value Zr.
Step 1. Initially, set the variable αr,j = 0 for each job Jj in J and the time t = 0.
Step 2. Compute the job set Br using the method described in the proof of Lemma 2. Reject every

job in Br by setting Rr := Br, and freeze every job in Br by setting Fr := Br.
Step 3. While J \ Fr 6= ∅, we increase the variables αr,j for all unfrozen jobs in J \ Fr uniformly at

unit rate with time t. As t increases, one of the following two cases may occur:
Case 1. There is a set Sr ⊆ J and Sr ∩ Fr 6= ∅ satisfying that

∑
j:Jj∈Sr\Fr

t + ∑
j:Jj∈Sr∩Fr

αr,j + π(Br) = π(Sr ∪ Br). (1)

In this case, set αr,j = t for each job Jj in Sr \ Fr and freeze those unfrozen jobs in Sr, by setting
Fr := Fr ∪ Sr. Reject all jobs in set Sr, by setting Rr := Rr ∪ Sr.

Case 2. There is a job Jj ∈ J \ Fr such that t = pj. In this case, set αr,j = t and freeze job Jj by
setting Fr := Fr ∪ {Jj}.

Step 4. Reject the jobs in Rr and schedule all jobs in Ar(= J \ Rr) in time interval [r, r + p(Ar)] on
the machine. The resulting schedule is denoted by σr, whose objective value is denoted by Zr.

In Process A(r) for any r = {r1, . . . , rn} in the algorithm, at Step 2, we can find the exact set
Br for a given value r, and Br will not change until Process A(r) terminates. However, at Step 3 of
Process A(r) for any r = {r1, . . . , rn} in the algorithm, the frozen job set Fr and job set Sr are changed
as the change as time t. And the auxiliary “dual” variable αr,j for any Jj ∈ J and a given value r will
increase with time t until job Jj is frozen. Thus, at any time t in Process A(r) for any r = {r1, . . . , rn},
we introduce the following notations:

• Br is the set of jobs generated by Step 2 in ProcessA(r),
• Fr(t) is the set of frozen jobs at time t in ProcessA(r),
• Sr(t) is the set of jobs generated by Case 1 at time t in ProcessA(r).
• αr,j(t) is the value of job Jj at time t in ProcessA(r),
• αr,j is the value of job Jj when job Jj is frozen in ProcessA(r).

Lemma 3. For any r ∈ {r0, r1, . . . , rn}, Process A(r) can be implemented in polynomial time.

Proof. Consider Step 2 of Process A(r), by Lemma 2, Br can be found in polynomial time. Clearly,
π(Br) is a constant.

Consider Step 3 of Process A(r). For any time t̃, let Fr(t̃) be the frozen job set at this time and t̄ be
the next closest time, which is incurred by either Case 1 or Case 2.
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For Case 1, the next closest time t̄ is at most

∆1 = min
S⊆J,S∩Fr(t̃) 6=∅

π(S ∪ Br)− π(Br)−∑j:Jj∈S∩Fr(t̃) αr,j

|S \ Fr(t̃)|

= min
S⊆J,S∩Fr(t̃) 6=∅

w(S) + α(S)
k(S)

,

where w(S) = π(S ∪ Br) − π(Br), α(S) = ∑j:Jj∈S∩Fr(t̃)(−αr,j) and k(S) = |S \ Fr(t̃)| for any subset
S ∩ Fr(t̃) 6= ∅. For any two subsets S1, S2 ⊆ J satisfying S1 ∩ Fr(t̃) 6= ∅ and S2 ∩ Fr(t̃) 6= ∅, we have

α(S1) + α(S2)

= ∑
j:Jj∈S1∩Fr(t̃)

(−αr,j) + ∑
j:Jj∈S2∩Fr(t̃)

(−αr,j)

= ∑
j:Jj∈(S1∩Fr(t̃))∪(S2∩Fr(t̃))

(−αr,j) + ∑
j:Jj∈(S1∩Fr(t̃))∩(S2∩Fr(t̃))

(−αr,j)

= ∑
j:Jj∈(S1∪S2)∩Fr(t̃)

(−αr,j) + ∑
j:Jj∈(S1∩S2)∩Fr(t̃)

(−αr,j)

= α(S1 ∪ S2) + α(S1 ∩ S2),

and

k(S1) + k(S2)

= |S1 \ Fr(t̃)|+ |S2 \ Fr(t̃)|
= |(S1 \ Fr(t̃)) ∪ (S2 \ Fr(t̃))|+ |(S1 \ Fr(t̃)) ∩ (S2 \ Fr(t̃))|
= |(S1 ∪ S2) \ Fr(t̃)|+ |(S1 ∩ S2) \ Fr(t̃)|
= k(S1 ∪ S2) + k(S1 ∩ S2).

Therefore, α(·) and k(·) are modular functions. Similarly to the proof of Lemma 2, we can prove
that w(·) is a submodular function. Therefore, w(S) + α(S) is a submodular function, which implies
that the value of ∆1 can be computed in polynomial time by using the combinatorial algorithm for the
ratio of a submodular and a modular function minimization problem [24].

For Case 2, the next closet time t̄ is at most

∆2 = min
j:Jj∈J\Fr(t̃)

pj.

It is obvious that the value of ∆2 can be found in polynomial time.
Thus, the next time t̄ = min{∆1, ∆2} can be found in polynomial time. When the time increase

from t̃ to t̄, the algorithm freezes at least one unfrozen job, which implies that Step 3 of Process A(r)
can be completed in polynomial time. It is easy to verify other Steps can be implemented in polynomial
time. Thus, the lemma holds.

Lemma 4. For any r ∈ {rj|0 ≤ j ≤ n}, the rejected job set Rr produced by Process A(r) satisfies

π(Rr) = ∑
j:Jj∈Rr

αr,j + π(Br). (2)
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Proof. For any r ∈ {rj|0 ≤ j ≤ n}, let αr,j(t) be the variable of job Jj at time t which will increase with
time t until job Jj is frozen. Thus, if Jj is frozen at time t′, we have

αr,j(t1) < αr,j(t2) for t1 < t2 ≤ t′;

αr,j(t1) = αr,j(t2) for t′ ≤ t1 < t2;

αr,j = αr,j(t′) = t′.

(3)

By Step 2 of Process A(r), jobs in set Br are found and are frozen, we have π(Br) is a constant and

αr,j = 0 for ∀Jj ∈ Br.

By Case 1 of Process A(r), for any time t and any subset S ⊆ J, we have

∑
j:Jj∈S

αr,j(t) + π(Br) = ∑
j:Jj∈S\Fr(t)

t + ∑
j:Jj∈S∩Fr(t)

αr,j + π(Br) ≤ π(S ∪ Br), (4)

where Fr(t) is the frozen jobs set at time t. At time points t1 and t2 (t1 ≤ t2) in Case 1, let Sr(t1)

and Sr(t2) be the selected job sets, respectively. Thus, both Sr(t1) and Sr(t2) satisfy inequality (1),
i.e., we have

π(Sr(t1) ∪ Br) = ∑
j:Jj∈Sr(t1)\Fr(t1)

t1 + ∑
j:Jj∈Sr(t1)∩Fr(t1)

αr,j + π(Br) = ∑
j:Jj∈Sr(t1)

αr,j(t1) + π(Br);

π(Sr(t2) ∪ Br) = ∑
j:Jj∈Sr(t2)\Fr(t2)

t2 + ∑
j:Jj∈Sr(t2)∩Fr(t2)

αr,j + π(Br) = ∑
j:Jj∈Sr(t2)

αr,j(t2) + π(Br),

where all jobs in Sr(t1) (or Sr(t2)) are frozen at time t1 (or t2) or even earlier.
Therefore, we have

∑
j:Jj∈Sr(t1)∪Sr(t2)

αr,j(t2) + π(Br) + ∑
j:Jj∈Sr(t1)∩Sr(t2)

αr,j(t2) + π(Br)

= ∑
j:Jj∈Sr(t1)

αr,j(t2) + π(Br) + ∑
j:Jj∈Sr(t2)

αr,j(t2) + π(Br)

≥ ∑
j:Jj∈Sr(t1)

αr,j(t1) + π(Br) + ∑
j:Jj∈Sr(t2)

αr,j(t2) + π(Br)

= π(Sr(t1) ∪ Br) + π(Sr(t2) ∪ Br)

≥ π((Sr(t1) ∪ Sr(t2)) ∪ Br) + π((Sr(t1) ∩ Sr(t2)) ∪ Br)

≥ π((Sr(t1) ∪ Sr(t2)) ∪ Br) + ∑
j:Jj∈Sr(t1)∩Sr(t2)

αr,j(t2) + π(Br),

where the first inequality follows from t1 ≤ t2, the second inequality follows from the submodularity
of π(·), and the third inequality follows from inequality (4).

It implies that

∑
j:Jj∈Sr(t1)∪Sr(t2)

αr,j(t2) + π(Br) ≥ π((Sr(t1) ∪ Sr(t2)) ∪ Br).

Moveover, ∑j:Jj∈Sr(t1)∪Sr(t2)
αr,j(t2) + π(Br) = π((Sr(t1) ∪ Sr(t2)) ∪ Br)) following from

inequality (4). Any job Jj ∈ Sr(t1) ∪ Sr(t2) is frozen at t2 or even earlier, we have

π((Sr(t1) ∪ Sr(t2)) ∪ Br)) = ∑
j:Jj∈Sr(t1)∪Sr(t2)

αr,j(t2) + π(Br) = ∑
j:Jj∈Sr(t1)∪Sr(t2)

αr,j + π(Br).
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By Process A(r), Rr = Br ∪
⋃

S∈S S, where S is the set of subset satisfying inequality (1), so the
equality (2) holds.

Consider the optimal schedule σ∗. Let A∗ and R∗ be the sets of the accepted jobs and the rejected
jobs in σ∗, respectively. Let r∗ = max{rj|Jj ∈ A∗} be the maximum release date of the jobs in A∗,
where r∗ = 0 if A∗ = ∅.

Lemma 5. There is an optimal schedule σ∗ satisfying Br∗ ⊆ R∗.

Proof. For any optimal schedule σ∗, If Br∗ \ R∗ = ∅, the lemma holds. Otherwise, let σ′ be a schedule
that the jobs in R′ = R∗ ∪ Br∗ are rejected and the jobs in A′ = J \ (R∗ ∪ Br∗) are accepted and processed
in ERD-rule. Clearly, we have A′ ⊂ A∗ = J \ R∗, which implies that σ′ is an optimmal schedule to
process the jobs in A′ by Lemma 1. Thus, the makespan of σ′ is no more than that of σ∗.

By the definition of B(r∗), we have B(r∗) = {Jj ∈ J|ri > r∗} ⊆ R∗. Since B(r∗) ⊆ Br∗ , we have

B(r∗) ⊆ R∗ ∩ Br∗ .

By the definition of Br∗ , we have π(Br∗) ≤ π(S) for any S ⊇ B(r∗). That implies

π(Br∗) ≤ π(R∗ ∩ Br∗).

Since function π(·) is a submodular function, we have

π(R∗) + π(Br∗) ≥ π(R∗ ∪ Br∗) + π(R∗ ∩ Br∗) = π(R′) + π(R∗ ∩ Br∗).

Together with π(Br∗) ≤ π(R∗ ∩ Br∗), we have

π(R′) ≤ π(R∗).

Therefore, we have that the objective value of σ′ is no more than that of σ∗. Thus, σ′ is an optimal
scheduling that R′ = R∗ ∪ Br∗ is the rejected set of σ′. The lemma holds.

Let σ be the output schedule. Let Z and Z∗ be the objective values of the schedule σ and the
optimal schedule σ∗, respectively.

Theorem 1. Z ≤ 2Z∗ and the bound is tight.

Proof. Let σ∗ be an optimal schedule such that Br∗ ⊆ R∗. If the optimal schedule σ∗ rejects all the jobs,
then σ∗ is the output schedule of Process A(r0) where r0 = 0, which implies that the theorem holds.
Otherwise, let r∗ = max{rj|Jj ∈ A∗} be the maximum release date of the jobs in A∗, we have

Z∗ ≥ r∗. (5)

By Case 2 of Process A(r∗), we have{
αr∗ ,j ≤ pj for any jobJj ∈ J;

αr∗ ,j = pj for any jobJj ∈ Ar∗ ,
(6)
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where αr∗ ,j is the frozen variable of job Jj and Ar∗ is the accepted jobs produced by Process A(r∗). Since
A∗ and R∗ are the sets of the accepted jobs and the rejected jobs in optimal schedule σ∗, we have

Z∗ ≥ p(A∗) + π(R∗)

= ∑
j:Jj∈A∗

pj + π(R∗ ∪ Br∗)

≥ ∑
j:Jj∈A∗

pj + ∑
j:Jj∈R∗

αr∗ ,j + π(Br∗)

≥ ∑
j:Jj∈J

αr∗ ,j + π(Br∗), (7)

where the second inequality follows from inequality (4) and the third inequality follows from
inequality (6).

Therefore, we have

Z ≤ Zr∗ = r∗ + p(Ar∗) + π(Rr∗)

= r∗ + ∑
j:Jj∈Ar∗

αr∗ ,j + ∑
j:Jj∈Rr∗

αr∗ ,j + π(Br∗)

= r∗ + ∑
j:Jj∈J

αr∗ ,j + π(Br∗)

≤ 2Z∗,

where the second equality follows equality (6) and Lemma 4, and the last inequality follows from
inequalities (5) and (7).

To show that the bound is tight, consider the following instance with three jobs: J1 = (r1, p1) =

(1, 2), J2 = (r2, p2) = (1, 1) and J3 = (r3, p3) = (4, 0). The submodular function π(·) is defined as
following: π({J1}) = 3, π({J2}) = 1, π({J3}) = 10, π({J1, J2}) = 4, π({J1, J3}) = 12, π({J2, J3}) = 11
and π({J1, J2, J3}) = 13.

Through the Process A(r), when r = r0 = 0, the resulting schedule σr0 is to reject J1, J2, J3.
Thus, we have Zr0 = π({J1, J2, J3}) = 13; when r = r1(or r2)= 1, the resulting schedule σr1 (or σr2) is
to accept J2 and reject J1, J3. Thus, we have Zr1(= Zr2) = r1 + p2 + π({J1, J3}) = 14; when r = r3 = 4,
the resulting schedule σr3 is to accept J1, J3 and reject J2. Thus, we have Z3 = r3 + p1 + p3 +π({J2}) = 8.
The optimal schedule is to accept J1,J2, J3. And we have Z∗ = r1 + p1 + p2 + p3 = 4. Thus, we have
Z = min{Zr0 , Zr1 , Zr2 , Zr3} = 8 = 2Z∗.

Then, we consider a special case for the problem 1|rj, reject|Cmax + π(R) where all the jobs have
the same release date.

Theorem 2. The problem 1|rj, reject|Cmax + π(R) can be solved optitmally in polynomial time when all the
jobs have the same release date.

Proof. If the optimal schedule σ∗ rejected all the jobs, then σ∗ is the output schedule of Process A(r0),
where r0 = 0, the theorem holds. Otherwise, assume rj = r∗ for any job Jj ∈ J. The start processing
time of machine is r∗ and there is no job Jj in J satisfying rj > r∗. That implies that

Br∗ = ∅ and π(Br∗) = 0.
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Thus, we have

Z∗ = r∗ + p(A∗) + π(R∗)

= r∗ + ∑
j:Jj∈A∗

pj + π(R∗ ∪ Br∗)

≥ r∗ + ∑
j:Jj∈A∗

αr∗ ,j + ∑
j:Jj∈R∗

αr∗ ,j + π(Br∗)

= r∗ + ∑
j:Jj∈J

αr∗ ,j, (8)

where the inequality follows from inequalities (4) and (6).
Through Step 3 of Process A(r), we have

Z ≤ Zr∗ = r∗ + p(Ar∗) + π(Rr∗)

= r∗ + ∑
j:Jj∈Ar∗

αr∗ ,j + ∑
j:Jj∈Rr∗

αr∗ ,j + π(Br∗)

= r∗ + ∑
j:Jj∈J

αr∗ ,j

≤ Z∗,

where the second equality follows equality (6) and Lemma 4, and the last equality follows from
π(Br∗) = 0.

Therefore, Z = Z∗, implying that the theorem holds.

4. Conclusions and Future Work

In this paper, we proposed the single machine scheduling problem 1|rj, reject|Cmax + π(R) with
release dates and nonmonotone submodular penalty, which generalizes the single machine scheduling
with release dates and rejection [8]. We designed a combinatorial 2-approximation algorithm running
in polynomial time with respect to this problem, base on the primal-dual framework. Noting that
a combinatorial algorithm [8] only achieved an approximation ratio of 2 when the penalty function
is modular, we extend the modular penalty function into submodular one without increasing the
approximation ratio. In addition, when all the jobs have the same release date, exactly the same
algorithm will become an exact algorithm running in polynomial time.

The topic could be further studied in the following ways. The online version of this problem
is worth considering, since we do not always know complete information about jobs that have not
arrived in real world. It is also challenging to design a fully polynomial-time approximation scheme
for 1|rj, reject|Cmax + π(R) as in [8]. Moreover, when there are multiple machines rather than a single
machine, algorithms under this setting could be further developed.

Author Contributions: Conceptualization, X.L. and W.L.; methodology, W.L.; software, X.L.; validation, X.L.
and W.L.; formal analysis, X.L.; investigation, W.L.; resources, W.L.; data curation, X.L.; writing—original draft
preparation, X.L.; writing—review and editing, W.L.; visualization, X.L.; supervision, W.L.; project administration,
W.L.; funding acquisition, W.L. All authors have read and agreed to the published version of the manuscript.

Funding: The work is supported in part by the National Natural Science Foundation of China [No. 61662088],
Program for Excellent Young Talents of Yunnan University, Training Program of National Science Fund
for Distinguished Young Scholars, Project for Innovation Team (Cultivation) of Yunnan Province, IRTSTYN,
and Key Joint Project of the Science and Technology Department of Yunnan Province and Yunnan University
[No. 2018FY001(-014)].

Conflicts of Interest: The authors declare no conflict of interest



Mathematics 2020, 8, 133 10 of 11

References

1. Bartal, Y.; Leonardi, S.; Marchetti-Spaccamela, A.; Sgall, J.S.L. Multiprocessor scheduling with rejection.
SIAM J. Discret. Math. 2000, 13, 64–78. [CrossRef]

2. Ou, J.; Zhong, X.; Wang, G. An improved heuristic for parallel machine scheduling with rejection. Eur. J.
Oper. Res. 2015, 241, 653–661. [CrossRef]

3. Zhang, L.; Lu, L. Parallel-machine scheduling with release dates and rejection. 4OR Q. J. Oper. Res. 2016,
14, 165–172. [CrossRef]

4. Zhong, X.; Ou, J. Improved approximation algorithms for parallel machine scheduling with release dates
and job rejection. 4OR Q. J. Oper. Res. 2017, 15, 387–406. [CrossRef]

5. Li, W.; Li, J.; Zhang, X.; Chen, Z. Penalty cost constrained identical parallel machine scheduling problem.
Theor. Comput. Sci. 2015, 607, 181–192. [CrossRef]

6. Zhong, X.; Pan, Z.; Jiang, D. Scheduling with release times and rejection on two parallel machines.
J. Comb. Optim. 2017, 33, 934–944. [CrossRef]

7. Shabtay, D.; Gaspar, N.; Yedidsion, L. A bicriteria approach to scheduling a single machine with job rejection
and positional penalties. J. Comb. Optim. 2012, 23, 395–424. [CrossRef]

8. Zhang, L.; Lu, L.; Yuan, J. Single machine scheduling with release dates and rejection. Eur. J. Oper. Res. 2009,
198, 975–978. [CrossRef]

9. He, C.; Leung, J.Y.T.; Lee, K.; Pinedo, M.L. Improved algorithms for single machine scheduling with release
dates and rejections. 4OR Q. J. Oper. Res. 2016, 14, 41–55. [CrossRef]

10. Ou, J.; Zhong, X.; Li, C.L. Faster algorithms for single machine scheduling with release dates and rejection.
Inform. Process. Lett. 2016, 116, 503–507. [CrossRef]

11. Zhang, L.; Lu, L.; Yuan, J. Single-machine scheduling under the job rejection constraint. Theor. Comput. Sci.
2010, 411, 1877–1882. [CrossRef]

12. Zou, L.; Sun, Z.; Lu, L.; Zhang, L. Single-machine scheduling with rejection and an operator non-availability
interval. Mathematics 2019, 7, 668.

13. Shioura, A.; Shakhlevich, N.V.; Strusevich, V.A. Application of submodular optimization to single machine
scheduling with controllable processing times subject to release dates and deadlines. INFORMS J. Comput.
2016, 28, 148–161. [CrossRef]

14. Li, W.; Cui, Q. Vector scheduling with rejection on a single machine. 4OR Q. J. Oper. Res. 2018, 16, 95–104.
[CrossRef]

15. Shabtay, D.; Gaspar, N.; Kaspi, M. A survey on offline scheduling with rejection. J. Sched. 2013, 16, 3–28.
[CrossRef]

16. Sotskov, Y.N.; Egorova, N.G. The optimality region for a single-machine scheduling problem with bounded
durations of the jobs and the total completion time objective. Mathematics 2019, 7, 382. [CrossRef]

17. Du, D.; Lu, R.; Xu, D. A primal-dual approximation algorithm for the facility location problem with
submodular penalties. Algorithmica 2012, 63, 191–200. [CrossRef]

18. Sharma, Y.; Swamy, C.; Williamson, D.P. Approximation algorithms for prize collecting forest problems with
submodular penalty functions. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms, New Orleans, LA, USA, 7–9 January 2007; pp. 1275–1284.

19. Li, Y.; Du, D.; Xiu, N.; Xu, D. Improved approximation algorithms for the facility location problems with
linear/submodular penalties. Algorithmica 2015, 73, 460–482. [CrossRef]

20. Zhang, X.; Xu, D.; Du, D.; Wu, C. Approximation algorithms for precedence-constrained identical machine
scheduling with rejection. J. Comb. Optim. 2018, 35, 318–330. [CrossRef]

21. Lawler, E.L. Optimal sequencing a single machine subject to precedence constraints. Manag. Sci. 1973,
19, 544–546. [CrossRef]

22. Iwata, S.; Fleischer, L.; Fujishige, S. A combinatorial strongly polynomial algorithm for minimizing
submodular functions. J. ACM 2001, 48, 761–777. [CrossRef]

http://dx.doi.org/10.1137/S0895480196300522
http://dx.doi.org/10.1016/j.ejor.2014.09.028
http://dx.doi.org/10.1007/s10288-016-0304-4
http://dx.doi.org/10.1007/s10288-016-0339-6
http://dx.doi.org/10.1016/j.tcs.2015.10.007
http://dx.doi.org/10.1007/s10878-016-0016-x
http://dx.doi.org/10.1007/s10878-010-9350-6
http://dx.doi.org/10.1016/j.ejor.2008.10.006
http://dx.doi.org/10.1007/s10288-016-0303-5
http://dx.doi.org/10.1016/j.ipl.2016.02.008
http://dx.doi.org/10.1016/j.tcs.2010.02.006
http://dx.doi.org/10.1287/ijoc.2015.0660
http://dx.doi.org/10.1007/s10288-017-0356-0
http://dx.doi.org/10.1007/s10951-012-0303-z
http://dx.doi.org/10.3390/math7050382
http://dx.doi.org/10.1007/s00453-011-9526-1
http://dx.doi.org/10.1007/s00453-014-9911-7
http://dx.doi.org/10.1007/s10878-016-0044-6
http://dx.doi.org/10.1287/mnsc.19.5.544
http://dx.doi.org/10.1145/502090.502096


Mathematics 2020, 8, 133 11 of 11

23. Xu, D.; Wang, F.; Du, D.; Wu, C. Approximation algorithms for submodular vertex cover problems with
linear/submodular penalties using primal-dual technique. Theor. Comput. Sci. 2016, 630, 117–125. [CrossRef]

24. Fleischer, L.; Iwata, S. A push-relabel framework for submodular function minimization and applications to
parametric optimization. Discret. Appl. Math. 2003, 131, 311–322. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.tcs.2016.04.005
http://dx.doi.org/10.1016/S0166-218X(02)00458-4
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries
	An Approximation Algorithm
	Conclusions and Future Work
	References

