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Abstract: This article analyzes the time-dependent magnetohydrodynamic flow of Oldroyed-B
fluid in the presence of heat consumption/generation and thermal radiation. The flow is restricted
to a vertical infinite plate saturated in porous material along with ramp wall velocity and ramp
wall temperature conditions. This flow also incorporates the generalized Darcy’s law. In this paper,
accurate equation of velocity field is presented first and then solutions of mass and energy equation
are derived in Laplace domain. Real-time domain solutions are obtained by tackling the complexity
of Laplace domain expressions through numerical Laplace inversion. Skin friction coefficient and
Nusselt number are also calculated. A comparison for ramp wall temperature condition and
isothermal temperature condition is also drawn to investigate the difference. A graphical study
is conducted to analyze the influence of parameters on fluid flow and heat transfer. It is found
that radiation parameter and heat generation elevate the energy profile, while flow is accelerated
by increasing the retardation time and porosity parameter and an opposite behavior is noted for
increasing relaxation time and magnetic parameter. Furthermore, heat transfer rate is higher for
increasing Prandtl number and velocity on plate decreases with increase in relaxation time λ1.

Keywords: heat consumption; laplace transform; ramp wall; MHD; corrected model; Oldroyd-B fluid

1. Introduction

In emerging and modern technologies, non-Newtonian fluids are gathering attraction due to
their high practical significance. Non-Newtonian fluids involve honey, paints, toothpaste, polymer
solutions, and greases. In modern days, flow of such fluids together with magnetohydrodynamic
(MHD) having free and forced convection are of great use in energy generator purification of mineral
oil and power generators. Moving forward, the addition of thermal radiation to such flows has
important affects in the mechanisms of aerosol technology, solar collectors, and high temperature
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polymeric mixtures, which act at high and medium temperatures [1]. Hydrologists and engineers
investigated the flows of fluid in porous materials ranging from fused Pyrex glass to sand packs
to anticipate their behaviors in different kinds of reservoirs [2]. Incorporation of heat source or
sink to magnetohydrodynamics (MHD) convective fluid has strong usage in welding mechanics
and thermal engineering [3,4]. Oldroyd-B fluid lies in the category of non-Newtonian fluids and is
completely capable of presenting viscoelastic fluids [5]. We considered this model in this work due to
its simplicity, vastness, and complete resemblances with the fluids showing viscous and elastic profiles
simultaneously. This model is an extension of the Maxwell model and the viscous model. Moreover, in
a special case when viscosity of the solvent vanishes, it reduces to Upper Convected Maxwell fluid.
Further details of these models can be approached in References [6–8].

In the literature, there is a dearth of articles when it comes to dealing with flows subjected to
ramp wall temperature and ramp wall velocity conditions despite valuable physical significance.
One of the main possibilities is the handling of complex resulted expressions. These combined wall
conditions have significant applications like diagnoses of cardiovascular diseases using treadmil testing
or ergometers. Analysis of blood vessel functioning and diagnoses of heart diseases also depend upon
ramp wall velocity conditions. To cure cancer cells, a therapy based on ramp wall conditions is utilized
as it has negligible side effects on the human body [9]. To further improve the cure of cancer, different
types of boundary conditions were presented by Kundu [9]. More applications of ramped conditions
can be studied in the contribution of Schetz [10], Hayday [11], and Malhotra [12].

The idea of simultaneous ramped conditions was proposed by Ahmed and Dutta [13] to study the
flow passing an instinctively infinite vertical plate. Mass and heat transfer phenomenons were studied
by Seth et al. for ramp temperature conditions in case of moving vertical plates [14–16]. In recent
times, Chandran et al. studied the effect of ramp temperature condition on mixed convection fluid
flow [17]. A study is conducted by Narahari et al. to analyze the fluid motion for infinite vertical plate
with wall heating [18]. An extension of Khan’s [19] work on MHD flow of Jeffery fluid was provided
by Zin et al. [20] for ramp wall temperature condition. Further, this work was given an extension by
Maqbool et al. for simultaneous ramp wall conditions [21]. More applications of ramped conditions
can be found in the work of Myers et al. [22] and Bruce [23].

On the basis of such strong motivation, we have considered the free convection flow inculcating
thermal radiative effects along MHD. Moreover, heat suction/injection is also introduced to the flow
with the existence of a porous medium. The ramp velocity and ramp temperature conditions are
considered at the wall. Laplace transformation is implemented to reach the solutions.

2. Mathematical Modeling

The subsequent equations [24,25] describing unsteady, incompressible, and MHD motion of
Oldroyd-B fluid over an infinite vertical plate are provided under Boussinesq’s approximations [26] as

∇ ·V = 0, (1)

ρ

[
∂V
∂t

+ (V.∇)V
]
= divT + J× B + gρβ(T − T∞) + r. (2)

where ρ, r, J, B, g, β, t, and T represent fluid density, Darcy’s resistence, current density, total magnetic
field, gravitational acceleration, thermal volume expansion, time, and temperature of fluid, respectively.
Moreover, velocity V, accounting for one-dimensional and unidirectional flow, and the Cauchy stress
tensor T are defined as

V = [u(y, t), 0, 0], (3)

T = −PI + S. (4)
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where S and−PI denote the extra stress tensor and indeterminate stress tensor, respectively. Moreover,
S holds the following relation:

µ

(
1 + λr

D
Dt

)
A1 = S

(
1 + λ

D
Dt

)
, (5)

where µ refers to dynamic viscosity of fluid. λr and λ refer to retardation and relaxation time,
respectively. Additionally, material time derivative D

Dt and Rivlin–Ericksen tensor A1 are defined as

DS
Dt

=
∂S
∂t

+ u
∂S
∂x

+ v
∂S
∂y

+ w
∂S
∂z

, (6)

A1 = ∇V + (∇V)T =

(
0 uy

uy 0

)
. (7)

where x, y, z and u, v, w are space variables and velocity components. For Oldroyd-B fluid, modified
Darcy’s law is defined as

−µφ

k

(
1 + λr

∂

∂t

)
V =

(
1 + λ

∂

∂t

)
r, (8)

where φ and k are porosity and permeability of the porous medium. The equations of Maxwell are
given as

divB = 0, curlB = µmJ, curlE = −∂B
∂t

, (9)

J× B = −(σB2
0u, 0, 0). (10)

where µm, σ, and E refer to magnetic permeability, electrical conductivity, and electric field, respectively.
The total magnetic field is given as B = B0 + b0. Here, B0 denotes the magnetic field applied and b0

denotes the magnetic field induced.
In the presence of Equations (3)–(8), a deduced form of Equation (2) can be presented as

ρ
∂u
∂t

= ρgβ(T − T∞) + rx + (J× B)x +
∂Sxy

∂y
, (11)

Using Maxwell’s equations and modified Darcy’s law in the above equation and multiplying it by
(1 + λ∂t), we obtain the following form:

(1 + λ∂t)ρ
∂u
∂t

= (1 + λ∂t)ρgβ(T − T∞)− (1 + λr∂t)
µφ

k
u

− (1 + λ∂t)σB2
0u + (1 + λ∂t)

∂Sxy

∂y
, (12)

Using relation (1 + λ∂t)Sxy = µ(1 + λr∂t)uy in the above equation and rearranging the resulting
equation in some fascinating manner, the correct presentation of velocity equation is obtained as
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ρ(1 + λ
∂

∂t
)

∂u
∂t

= µ(1 + λr
∂

∂t
)

∂2u
∂y2 + ρgβ(1 + λ

∂

∂t
)(T − T∞)

− σB2
0(1 + λ

∂

∂t
)u− µφ

k
(1 + λr

∂

∂t
)u. (13)

However, in the work of Mazhar et al. [27], the term 1 + λ ∂
∂t is missing with the coefficient

of thermal expansion pointing out the deficiency of their model. The geometrical presentation of
considered model is provided in Figure 1.

Figure 1. Geometrical presentation of flow.

The governing equations for flow and energy under the assumptions of Boussinesq’s
approximation and small Reynolds number are provided as

(1 + λ
∂

∂t
)

∂u
∂t

= ν(1 + λr
∂

∂t
)

∂2u
∂y2 + gβ(1 + λ

∂

∂t
)(T − T∞)

−
σB2

0
ρ

(1 + λ
∂

∂t
)u− νφ

k
(1 + λr

∂

∂t
)u, (14)

ρcp
∂T
∂t

= k
∂2T
∂y2 −

∂qr

∂y
+ Q0(T − T∞), (15)

where ρcp, k, qr, and Q0 refer to heat capacitance, thermal conductivity, radiative heat flux, and heat
generation/absorption constant.

The associated initial and boundary conditions are defined as

u(y, 0) = 0, T(y, 0) = T∞,

y ≥ 0 : ut(y, 0) = 0, uy(y, 0) = 0, (16)

t > 0 : u(y, t)→ 0, T(y, t)→ T∞, for y→ ∞, (17)

u(0, t) =

{
u0

t
t0

0 < t ≤ t0

u0 t > t0

T(0, t) =

{
T∞ + (Tw − T∞) t

t0
0 < t ≤ t0

Tw t > t0
(18)
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The radiation heat flux, after using Rosseland approximation comes out to be [28]

qr = −
4σ1∂T4

3k1∂y
. (19)

where the Stafan–Boltzman constant and adsorption coefficient are represented by σ1 and k1,
respectively. The term qr can be linearized by expansion of T4 using Taylor series about T∞, keeping
the supposition in mind that temperature differences are small enough to neglect the higher-order
terms. After normalizing, T4 comes out to be T4 ≈ 4T3

∞T − 3T4
∞.

Using this linearization in Equation (15) results in

ρcp
∂T
∂t

= k
(

1 +
16σ1T3

∞
3k1k

)
∂2T
∂y2 + Q0(T − T∞). (20)

For the sake of braveity, dimensionless terms are defined as

u∗ =
u
u0

, η =
yu0

ν
, τ =

tu2
0

ν
, τ0 =

ν

u2
0

, θ =
T − T∞

Tw − T∞
. (21)

Introducing the above terms in the equations of flow and energy and dropping the ∗ for
convenience, they take the following form:(

a1 + λ1
∂

∂τ

)
∂u
∂τ

=

(
1 + λ2

∂

∂τ

)
∂2u
∂η2 − b1u + Gr

(
1 + λ1

∂

∂τ

)
θ, (22)

∂θ

∂τ
=

(
1 + Nr

Pr

)
∂2θ

∂η2 + Qθ. (23)

where dimensionless parameters are defined as

Gr =
gβν(Tw − T∞)

u3
0

, Nr =
16σ1T3

∞
3kk1

, M =
σB2

0ν

ρu2
0

,

Pr =
µcp

k
, b1 = M +

1
K

, λ1 =
λu2

0
ν

, λ2 =
λru2

0
ν

,

1
K

=
φν2

ku2
0

, Q =
νQ0

ρcpu2
0

, a1 = 1 + λ1M +
λ2

K
, (24)

The initial and boundary conditions in dimensionless form can be presented as

u(η, 0) = 0, θ(η, 0) = 0, (25)

η ≥ 0 : uτ(η, 0) = 0, uη(η, 0) = 0,

τ > 0 : u(η, τ)→ 0, θ(η, τ)→ 0 when η → ∞, (26)

u(0, τ) = θ(0, τ) =

{
τ 0 < τ ≤ 1
1 τ > 1,

(27)

3. Analytical Solutions

To generate the solution of this problem, Laplace transform [29] is a convenient tool due to its
effective applicability for nonuniform boundary conditions. Other convenient methods like Adomian
decomposition, Homotopy analysis method, perturbation method, and separation of variables do not



Mathematics 2020, 8, 130 6 of 18

serve the purpose here due to complicated boundary conditions. We formulate the Laplace transform
pair for the sake of the results of current problem as an integral of the following form:

R̄(η, q) =
∞∫

0

e−qτ R(η, τ)dτ = L[R](τ), τ ≥ 0, (28)

where R ∈ {u, θ}. The above integral is convergent for Re(q) > γ0 where q = Ψ + jΩ, γo is a real
number, and j =

√
−1. Transformation of the Laplace domain solutions back to the original time

domain can be performed as

R(η, τ) =
1

2π j

∫
BR

eqτ R̄(η, q)dq = L−1[R̄](q), (29)

Implementation of Laplace transform on mass and energy equations and putting a1 = 1+Nr
Pr in

the energy equation yields

qθ̄ = a1
∂2θ̄

∂η2 + Qθ̄, (30)

∂2ū
∂η2 −

(
a1q + q2λ1 + b1

1 + λ2q

)
ū = −Gr

(
1 + λ1q
1 + λ2q

)
θ̄, (31)

Application of Laplace transform on initial and boundary condition responds as

ū(η, 0) = 0, θ̄(η, 0) = 0, (32)

ū(η, q)→ 0, θ̄(η, q)→ 0 for η → ∞, (33)

ū(0, q) = θ̄(0, q) =
1− e−q

q2 . (34)

Solution of the energy equation in Equation (30) in Laplace domain subjected to the boundary
conditions in Equations (33) and (34) is given as

θ̄(η, q) =
(

1− e−q

q2

)
e−
√

α(q−Q)η . (35)

Plugging in the value of θ̄ in mass in Equation (31) implies

∂2ū
∂η2 −

(
a1q + q2λ1 + b1

1 + λ2q

)
ū = −Gr

(
1 + λ1q
1 + λ2q

)(
1− e−q

q2

)
e−
√

α(q−Q)η . (36)

The solution of the above equation subjected to boundary conditions is given as

ū(η, q) =
(

1− e−q

q2

)
H̄(η, q),

H̄(η, q) = e
−
√

a1q+q2λ1+b1
1+λ2q η

+
Gr(1 + λ1q)e

−
√

a1q+q2λ1+b1
1+λ2q η

(λ2α− λ1)[(q−m1)2 −m2
2]
− Gr(1 + λ1q)e−

√
α(q−Q)η

(λ2α− λ1)[(q−m1)2 −m2
2]

, (37)

where

m1 =
a1 + λ2αQ− α

2(λ2α− λ1)
, m2 =

√(
a1 + λ2αQ− α

2(λ2α− λ1)

)2
+

b1 + αQ
λ2α− λ1

. (38)
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Since the mass and energy fields contain the complex combinations of Laplace parameter q,
numerical inversion named as Durbin method [30] is applied to deduce the solutions in a real-time
domain τ.

The expressions for Nusselt number Nu and skin friction τw are given as

Nu = − ∂θ

∂η
(0, τ), (39)

Nu = L−1
[√

α(q−Q)

(
1− e−q

q2

)]
, (40)

τw =
µ

1 + λ1∂τ
(1 + λ2∂τ)

∂u
∂η

(0, τ), (41)

where

∂u
∂η

(0, τ) =
∂H
∂η

(0, τ) +
∂H(0, τ − 1)F(τ − 1)

∂η
. (42)

4. Special Cases

This section deals with some special cases of the current work.

4.1. Case 1

The solution of viscous fluid with ramp wall temperature can be fetched when λ1 = 0 and
λ2 = 0 [31].

θ(η, q) = L−1
[(

1− e−q

q2

)
e−
√

α(q−Q)η

]
, (43)

u(η, τ) = L−1
[

1
q

e−
√

q+b1η +
( Gr

α(q−Q)− (q + b1)

1− e−q

q2

)
(e−
√

q+b1η − e−
√

α(q−Q)η)

]
. (44)

4.2. Case 2

The Maxwell fluid flow profiles can be derived when λ2 = 0 [32].

4.3. Case 3

The simultaneous ramp wall conditional solutions of Oldroyd-B fluid can be deduced when Nr,
Q→ 0.

θ(η, τ) = L−1
[

1− e−q

q2 e−
√

Prqη

]
, (45)

u(η, τ) = L−1
[(

1− e−q

q2

)
H̄(η, q)

]
. (46)

where

H̄(η, q) = e
−
√

a1q+q2λ1+b1
1+λ2q η

+
Gr(1 + λ1q)e

−
√

a1q+q2λ1+b1
1+λ2q η

(λ2Pr− λ1)[(q−m1)2 −m2
2]
− Gr(1 + λ1q)e−

√
Prqη

(λ2Pr− λ1)[(q−m1)2 −m2
2]

,

m1 =
a1 − Pr

2(λ2Pr− λ1)
, m2 =

√(
a1 − Pr

2(λ2Pr− λ1)

)2
+

b1

λ2Pr− λ1
. (47)
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4.4. Case 4

The mass and energy solutions of Oldroyd-B fluid for constant boundary conditions can be
deduced as

θ(η, τ) = e−η ı̇
√

αQ erfc
(

η
√

Q
2
√

τ
− ı̇
√

Qτ

)
+ eη ı̇

√
αQ erfc

(
η
√

Q
2
√

τ
+ ı̇
√

Qτ

)
, (48)

u(η, τ) = L−1
[(

1− e−q

q

)
H̄(η, q)

]
, (49)

where

H̄(η, q) = e
−
√

a1q+q2λ1+b1
1+λ2q η

+
Gr(1 + λ1q)e

−
√

a1q+q2λ1+b1
1+λ2q η

(λ2α− λ1)[(q−m1)2 −m2
2]
− Gr(1 + λ1q)e−

√
α(q−Q)η

(λ2α− λ1)[(q−m1)2 −m2
2]

. (50)

5. Parametric Study

The meaningful role of several associated parameters on the mass and energy boundary layer is
interpreted with the help of graphs in this section. These graphs of mass and energy profiles have two
types of solution: (1) the solution with simultaneous ramp wall conditions and denoted by solid lines
and (2) the solution with ramp wall velocity and isothermal temperature conditions and denoted by
dashed lines.

First of all, a velocity profile comparison of the present work and the solution of the corrected
model of Reference [27] is graphed in Figure 2, and a good agreement is observed in both solutions in
the absence of heat consumption/generation and radiation effects. Figure 3 indicates that an increase
in Gr values provides enhancement in the momentum boundary layer. It is supported by the physical
fact that Gr is the fraction of buoyancy and viscous forces. An increase in Gr means that the buoyancy
force gets stronger near the plate, that it overcomes the viscous force, and that the fluid gets accelerated.
It is observed that the momentum boundary layer has more thickness in the case of isothermal
temperature as compared to ramp temperature. Figure 4 presents the mass distribution under the
influence of a magnetic parameter. It is witnessed that an increase in the magnetic parameter decreases
the momentum boundary layer. The reason is the strong Lorentz force induced due to magnetic field.
This strong Lorentz force acts as a resistance and decreases the velocity of fluid. Similar profiles are
observed for ramped temperature and isothermal temperature. In Figure 5, the effect of changes in
porosity parameter K is illustrated for isothermal and ramped temperature. It is observed that velocity
for isothermal temperature is greater as compared to ramped temperature. Furthermore, It is also
noticed that an increase in porosity reduces the friction of porous material which in turn increases the
momentum development of the regime and, as a result, the velocity profile is enhanced. Figure 6 covers
the influence of relaxation time λ1 on velocity behavior. It is witnessed that the increasing variation
of λ1 reduces the thickness of momentum boundary layer which results in deceleration of the fluid.
As a relaxation time increment implies that the fluid will take extra time to calm, it readily justifies the
decrease in velocity. Afterwards, a comparison analysis describes that the ramped condition velocity is
higher than the isothermal velocity. The role of Pr on the velocity curve is graphed in Figure 7. It is
found that fluids having larger Pr values have lower velocity. The physical phenomenon behind this
behavior is the increment in viscous force. It means the dragging force gets stronger with increase in
Pr and results in retardation of fluid velocity. The contribution of Nr is shown in Figure 8 for both
isothermal and ramped plates. It is found that the enhancement in Nr increases the thickness of the
momentum boundary layer. This enhancement is physically justified by the high rate of transfer
of energy when Nr is increased. This higher energy transfer rate weakens the bonds between fluid
particles which results in the form of weaker resistance, and eventually, the fluid gets accelerated.
It is also revealed that the velocity profile of the isothermal plate is higher than that of the ramped
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plate. Figure 9 reveals the impact of retardation time λ2 on velocity solution. It is observed that both
ramped and isothermal solutions get higher profiles in the case of increasing retardation time. This is
justified by the fact that an increase in λ2 decreases the effect of friction. Therefore, for large values of
λ2, the thickness of the momentum boundary layer increases. Figure 10 depicts that enlargement in
time τ raises the velocity profiles of both ramped and isothermal wall.

Figure 11 shows a good agreement between the present work and the result of Mazhar et al. [27]
when radiation and heat consumption/generation are removed from the thermal system. The function
of Pr on temperature profiles is given in Figure 12. It is witnessed that temperature decreases for
larger Pr values. The physical reason is the reduction of thermal conductivity. It means the fluid
receives small amounts of heat when Pr increases. For lower Pr values, the fluid has higher thermal
conductivity, and for large Pr values, the fluid faces more resistance. Moreover, temperature boundary
layer thickness is observed to be greater in the case of the isothermal plate. Figure 13 sketches the
significance of variating Nr on temperature curves. An elevation in temperature profile is witnessed
for increasing Nr values. Physically, k∗ reduces due to the enhancement in divergence of radiative heat
flux ∂qr

∂y . This leads to increases in the amount of radiative heat transfer to the fluid, and ultimately,
the temperature of the fluid gets elevated. The influence of installed heat consumption and generation
is illustrated in Figure 14. In the graph, negative values of Q are associated with heat consumption
and positive values of Q refer to heat generation. Physically, an increase in negative value of Q refers
to more consumption of heat and eventually a drop of temperature, as graphed in Figure 14. Similarly,
an increase in positive values of Q refers to more heat generation and eventually a raise in temperature.
Additionally, a temperature profile for ramped wall is observed lower as compared to the isothermal
wall. Figure 15 describes that temperature gets elevated with the extension of time τ.

Figures 16 and 17 showcase the exact inverse behavior of rate of heat transfer for increasing Pr
and Nr values. An effective behavior is witnessed; for increasing Pr, Nusselt number gets elevated
very rapidly for τ < 1, but after this, it starts decreasing. On the other hand, increasing Nr leads to
a decrease in the rate of heat transfer. As noticed for Pr, the Nusselt number for Nr increases for τ < 1
and, then, it starts decreasing. Additionally, for the case of the isothermal plate, only one kind of
behavior is observed. In Figure 18, the role of heat consumption and generation in the transfer of heat
is presented. It is noticed that, when large amounts of heat are consumed (Q < 0), the heat transfer
rate from plate to fluid has a higher magnitude. Oppositely, when more heat is generated (Q > 0),
the magnitude of heat transfer rate decreases.

Significance of relaxation and retardation time (λ1, λ2) in the behavior of shear stress is graphed
in Figure 19. It is spotted that the magnitude of skin friction decreases for τ < 1 as a result of increasing
λ1, but after that, it starts increasing. This behavior is justified by the fact that small viscosity brings
a significant decrease in skin friction. Contrarily, skin friction is elevated by the higher values of
retardation time λ2.

The numerical variation in heat transfer rate and skin friction is tabulated for influencing
parameters in Tables 1 and 2. Table 1 shows that that Nusselt number gets elevated with an increase in
τ and Pr. An interesting observation is made here; for ramp wall conditions, heat transfer rate initially
increases for 0 < τ < 1 and then faces a decay after τ > 1. Moreover, heat transfer rate decreases with
enhancement in Nr and Q. Table 2 presents that shear stress enhances with an increase in τ, Gr, and K
and that an inverse behavior is observed for increasing M and λ2. In the tables, bold values are
presented for the particular parameters to show how the results are changing with those parameters.
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Table 1. Varaition of Nusselt number for different values of parameters.

τ Pr Nr Q Nu

0.3 7.0 0.5 0.5 1.2672
0.4 7.0 0.5 0.5 1.4366
0.5 7.0 0.5 0.5 1.5761

0.5 0.71 0.5 0.5 0.4984
0.5 2.0 0.5 0.5 0.8425
0.5 7.0 0.5 0.5 1.5761

0.5 7.0 0 0.5 1.9304
0.5 7.0 2 0.5 1.1145
0.5 7.0 3 0.5 0.9652

0.5 7.0 0.5 0 1.7235
0.5 7.0 0.5 1 1.4208
0.5 7.0 0.5 2 1.0814

Table 2. Varaition of skin friction for different values of parameters.

τ M K λ1 λ2 Gr τw

0.3 2.0 0.5 1.0 1.0 1.0 −0.4013
0.4 2.0 0.5 1.0 1.0 1.0 −0.4941
0.5 2.0 0.5 1.0 1.0 1.0 −0.5845

0.5 3.0 0.5 1.0 1.0 1.0 −0.6320
0.5 4.0 0.5 1.0 1.0 1.0 −0.6768
0.5 5.0 0.5 1.0 1.0 1.0 −0.7192

0.5 2.0 0.2 1.0 1.0 1.0 −0.7192
0.5 2.0 0.5 1.0 1.0 1.0 −0.5845
0.5 2.0 0.9 1.0 1.0 1.0 −0.5396

0.5 2.0 0.5 0.5 1.0 1.0 −0.8244
0.5 2.0 0.5 0.8 1.0 1.0 −0.6567
0.5 2.0 0.5 1.0 1.0 1.0 −0.5845

0.5 2.0 0.5 1.0 0.5 1.0 −0.4252
0.5 2.0 0.5 1.0 0.8 1.0 −0.5219
0.5 2.0 0.5 1.0 1.3 1.0 −0.6763

0.5 2.0 0.5 1.0 1.0 0.5 −0.5845
0.5 2.0 0.5 1.0 1.0 0.8 −0.5455
0.5 2.0 0.5 1.0 1.0 1.3 −0.5065

6. Conclusions

The main focus of this work is to examine the impact of ramp wall velocity and temperature
together on time-dependent MHD convective flow of an Oldroyd-B fluid. The model also involves
the porous medium, heat consumption/generation, and thermal radiation. During the modeling of
flow, deficiency of Reference [27] modeling is removed and the correct equation of velocity is obtained.
Laplace transformation is used as a solution finding tool. The simultaneous ramp wall conditions
lead to complex combinations of Laplace paramter in solutions. To overcome this situation, numerical
Laplace inversion named as Durbin Method is used and solutions are obtained in the original time
domain. The behavioral study of mass and energy profiles under associated parameters is conducted
and provided through graphs. Moreover, a comparison of ramp wall temperature and isothermal
temperature is also obtained for different parameters. Lastly, expressions for shear stress and heat
transfer rate are also calculated and the influence of parameters on them is given in the form of tables
and graphs.

The important results of this investigation are as follows:
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• An elevation in mass profile is seen with the enhancement in Gr, K, λ2, and t. An increase in
magnetic parameter (M) and relaxation time λ1 leads to lowering of velocity curves.

• Energy boundary layer decreases with elevation in Pr and addition of heat sink to the system.
Increases in Nr and t and addition of a heat source increase the energy boundary layer.

• Nusselt number indicates that high values of Pr provide resistance to heat transfer while small
values of Pr have greater thermal conductivity. Moreover, the rate of heat transfer from plate to
fluid decays with increase in Nr and Q.

• Velocity on the plate decreases with increase in relaxation time λ1 and behaves oppositely for
retardation time λ2 (skin friction).
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