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Abstract: We have tested the accuracy and stability of lattice-Boltzmann (LB) simulations of the
convection-diffusion equation in a two-dimensional channel flow with reactive-flux boundary
conditions. We compared several different implementations of a zero-concentration boundary
condition using the Two-Relaxation-Time (TRT) LB model. We found that simulations using an
interpolation of the equilibrium distribution were more stable than those based on Multi-Reflection
(MR) boundary conditions. We have extended the interpolation method to include mixed boundary
conditions, and tested the accuracy and stability of the simulations over a range of Damköhler and
Péclet numbers.
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1. Introduction

The lattice Boltzmann method (LBM) has been used primarily to solve fluid dynamics
problems [1–4], but it can also be used to approximate solutions of the convection-diffusion equation
for a scalar field C [5],

∂tC + u ·∇C = D∇2C. (1)

In this paper we envisage C as describing a reactant concentration that is sufficiently dilute
that it does not affect the flow, but advects and diffuses as a passive scalar in a predetermined
velocity field u. There is a growing interest in geophysical applications involving reactant transport,
where the surrounding solid matrix dissolves or precipitates [6–11]. Typically the time scale for a
significant displacement of the solid-fluid interface is much longer than the characteristic time scales
for momentum or reactant transport, and in such circumstances it is the stationary limit of (1) that is of
most interest.

Lattice-Boltzmann models typically have more degrees of freedom than the macroscopic equations
they are trying to simulate. It is therefore problematic how to establish boundary conditions on the
population densities so as to best satisfy the macroscopic conditions without polluting the solution
with perturbations that, although small on the macroscopic scale, are still significant in a simulation
with limited resolution. There is a trade off between first-order boundary conditions, which maintain
the exact conservation laws [12–15] and higher-order methods [16–19]. In [19], a second-order accurate
treatment of the boundary condition in the LB method is developed for a curved boundary. In a seminal
paper [17], Ginzburg and d’Humieres proposed a general interpolation scheme that incorporated
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several earlier schemes as special cases; the most sophisticated Multi-Reflection (MR) schemes are
more accurate than alternative methods, at least in simple geometries.

A disadvantage of multi-Reflection boundary conditions is that they require several nodes to
implement; up to three in the most accurate cases although two nodes can give accurate results when
coupled with a suitable tuning of the kinetic modes of the LB model [17]. However under certain
conditions it is not possible to find any neighboring fluid nodes and in such cases the interpolation
scheme breaks down [18]; the bounce-back rule is usually invoked for these nodes, but unfortunately
this reduces the accuracy of the global solution to something akin to the bounce-back rule [18].
Higher-order local boundary conditions, which make use of information contained in the kinetic
modes, have been proposed [18,20], but they have not been used very extensively, perhaps because
they are more complicated to implement.

In a Chapman-Enskog analysis, the velocity distribution fq(r, t) is decomposed into an equilibrium
part f eq

q , which depends on the macroscopic variables, and a non-equilibrium part f neq
q = fq − f eq

q .
Since f neq

q depends on gradients of the macroscopic variables, a consistent approximation to the
macroscopic fields can be obtained if the non-equilibrium distribution is evaluated at one order lower
(in gradients of the macroscopic variables) than the equilibrium distribution. Since the equilibrium
distribution can be determined at the solid-fluid boundary, there is an additional node for interpolation,
so that only a single fluid node is required as in the case of the bounce-back rule itself. This idea
underpins several different improvements to the bounce-back rule [21–23]; in this paper we focus on
the first implementation [21], which proves to be the most stable.

The convection-diffusion equation is difficult to solve numerically because the Péclet number
for reactive transport on a length scale l, Pe = ul/D, is typically three orders of magnitude larger
than the corresponding Reynolds number Re = ul/ν. Thus the stability of the numerical scheme
is of paramount importance for an efficient implementation. Lattice-Boltzmann schemes have the
advantage that errors due to numerical dispersion are eliminated, but since the method is explicit it is
impossible to ensure stability at high flow rates as the standard upwind finite difference methods do.
In this paper we assess the accuracy and stability of the TRT LB model in a simple geometry, to test
the accuracy and stability of different implementations of the boundary conditions. We focus on MR
schemes for scalar transport [24] and an interpolation of the equilibrium distribution (EQI) along the
lines of Refs. [21,25].

This paper is organized as follows. In Section 2, the TRT lattice Boltzmann model for the steady
convection-diffusion flow is introduced. The non-equilibrium extrapolation method for the convection
is proposed for the Dirichlet or mixed boundary conditions in Sections 3 and 4. This method combined
with finite difference method is easy to implement and can be used for stationary and moving boundary.
To demonstrate the numerical accuracy and stability, the steady convection-diffusion flow in long
channel is carried on in Section 5. From the simulation results, good agreement with the analytic
solution can be seen and this method is of better stability for high Pe number compared to the methods
by Ginzburg. Section 6 has a short conclusion of the paper.

2. TRT Model

Lattice Boltzmann models are defined by a set of Q velocities cq, (q = 0, 1, ..., Q − 1), with
displacements bq = cqh that are basis vectors of a crystallographic lattice; here h is the time step of
the LB update. The TRT model is a subset of the Multi-Relaxation-Time (MRT) LB models, which
maintains the accuracy of MRT LB but with a significantly simpler collision operator. At steady state
the TRT equation for the populations fq(r) is [17]

fq(r+q ) = f ∗q (r) = fq(r) + λ+ f neq,+
q (r) + λ− f neq,−

q (r), (2)
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where f ∗q is the post-collision distribution, r±q = r ± hcq, f neq
q = fq − f eq

q , and f eq
q is the equilibrium

distribution. The symmetric and anti-symmetric populations are given by

f±q =
1
2
(

fq ± fq̄
)

, (3)

with cq̄ = −cq. At steady state f neq
0 = 0 [26], and f0 = f eq

0 = t0C.
The steady-state convection-diffusion equation is most accurately simulated with a linear

equilibrium distribution of the form

f eq
q = tqC

(
1 +

u · cq

αc2

)
, (4)

where C(r) is the concentration field and u(r) is the imposed velocity field; for a grid spacing of b,
c = b/h. The parameter α typically takes the value α = 1/3, but it can be reduced to increase the range
of stability, subject to the limitations indicated in Table 1. In general the velocity field is found from an
independent simulation, but in this investigation we impose a Poiseuille-flow profile in a channel of
width H, ux(y) = 4u0y(H − y)/H2; the Péclet number is based on the average velocity in the channel

Pe =
2u0H

3D
. (5)

LB simulations of time-dependent convection-diffusion include a non-linear term in the
equilibrium distribution to eliminate second-order errors in the evolving concentration field. However,
this contribution actually introduces a second-order error in the steady-state solution, where the
time-scale separation assumed in the Chapman-Enskog expansion is no longer entirely valid [27].

The coefficients tq (Table 1) must satisfy the following sum rules to obtain the correct
macroscopic behavior:

∑
q

tq = 1, (6)

∑
q

tqcq,icq,j = αc2δij,

∑
q

tqcq,icq,jcq,kcq,l = Ac4(δijδkl + δikδjl + δilδjk).

Table 1. Coefficents tq for various LB models. The weights for the different speeds are shown for
each model, together with the largest possible value of α, 0 < α < αmax and the coefficient of the
fourth-order isotropic term A.

Model t0 t1 t√2 t√3 αmax A

D1Q3 1− α 1
2 α 1 1

3 α

D2Q7 1− 2α 1
3 α 1

2
3
4 α

D2Q9 1− 5
3 α 1

3 α 1
12 α 3

5
1
3 α

D3Q15 1− 7
3 α 1

3 α 1
24 α 3

7
1
3 α

D2Q19 1− 2α 1
6 α 1

12 α 1
2

1
3 α

The first two moments of f eq
q are:

∑
q

fq = ∑
q

f eq
q = C, ∑

q
fqcq = ∑

q
f eq
q cq = uC, (7)

while for mass-conserving collisions ∑q f neq
q = 0.
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The macroscopic behavior (at steady state) can be found from a Taylor expansion of Equation (2)
about r, which leads to a hierarchy of moment equations, which are truncated systematically at order h4:

h∇ ·m1 +
h2

2
∇∇ : m2 +

h3

6
∇∇∇ : meq

3 +O(h4) = λ+mneq
0 = 0, (8)

h∇ ·m2 +
h2

2
∇∇ : meq

3 +O(h3) = λ−mneq
1 , (9)

h∇ ·meq
3 +O(h2) = λ+mneq

2 . (10)

The moments mn = ∑q fqcn
q can be separated into equilibrium O(1) and non-equilibrium

O(h) contributions. Substituting explicit expressions for the equilibrium moments (4) and solving
Equation (9) for mneq

1 we obtain the convection-diffusion equation with second-order errors:

∇ · (uC) = D∇2C− h2c2
(

Λ+Λ− − 1
12

)
∇2∇ · (uC) +O(h3), (11)

where Λ± = −(1/λ± + 1/2) and D = αΛ−hc2. The steady-state solution is third-order accurate if
Λ = Λ+Λ− = 1/12 and second order otherwise.

The location of the solid-fluid boundary depends on Λ±, but for bounce-back and related
boundary conditions the macroscopic fields are independent of Λ = Λ+Λ− if the product Λ = Λ+Λ−

is held fixed [17,24]. Although there is no single value of Λ that ensures that even planar boundaries are
located in exactly the correct place, the choice Λ = 1/4 gives a near optimum boundary condition for
arbitrary geometries [17,24]. It is possible to solve for the steady-state concentration field directly [28],
but here we use standard time-stepping algorithm to reach the steady solution.

3. Dirichlet Boundary Conditions

We have tested different implementations of a Dirichlet boundary condition for reactive transport
in a two-dimensional channel flow. The focus is on the accuracy and stability of the simulation when
the grid Péclet number,

Peg =
2u0b
3D

, (12)

is larger than 1. The concentration profile at the inlet is Gaussian,

C(0, y) = exp
[
− (y− H/2)2

2σ2

]
, (13)

with σ = 0.1H; this eliminates singularities in the concentration field at the corners of the channel.
At the outlet we implement a no-flux condition ∂xC = 0, but the system is always sufficiently large so
that the concentration at the outlet was entirely negligible. We have investigated the “anti-bounce-back”
(ABB) rule [24], 2nd and 3rd order implementations of the Multi-Reflection boundary condition [24],
and an interpolation of the equilibrium distribution [21].

A typical set of results is illustrated in Figure 1 which shows the concentration profile across the
channel a short distance from the inlet. The channel width is set to 10 grid points, H = 11b, and the
channel boundaries are placed at different locations with respect to the fluid grid. At sufficiently high
Péclet numbers axial diffusion can be neglected and the concentration profile can then be approximated
by a series solution that converges very rapidly away from the inlet. However, for Pe < 100, axial
diffusion is not entirely negligible so we have used a high resolution (H = 160b) simulation for our
“exact” results; we verified that this solution approaches the analytic series expansion in the limit
of large Péclet number (i.e., Pe > 100). As expected the ABB rules are only accurate when q = 0.5,
whereas interpolated boundary conditions (2nd, 3rd, NE) are more or less independent of the location
of the boundary. There is a small, O(b/H)2, error in both second-order methods (2nd and NE) near
the centerline, while the 3rd-order method has a significantly smaller error.
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Figure 1. Concentration along the transverse (y) direction at x∗ = x/H = 0.5 and Pe = 10; the
parameter α = 0.5. Each panel shows results from numerical simulations for a channel width H = 11b
(solid symbols), with different implementations of the boundary conditions: (a) Anti-Bounce-Back
(ABB), (b) 2nd-order Multi-Reflection (2nd), (c) 3rd-order Multi-Reflection (3rd), (d) Extrapolation of
the non-equilibrium distribution (NE). The solid symbols indicate different displacements (bδ) of the
left channel wall from the nearest fluid nodes: δ = 0.25 (squares), δ = 0.5 (triangles), δ = 0.75 (circles),
and δ = 1.0 (diamonds). The exact solution is shown by the solid line.

Surprisingly, at larger Péclet numbers (Pe = 100) there are significant errors in the 3rd-order
solution near the centerline, as illustrated in Figure 2; on the other hand the second-order solutions
maintain a similar accuracy at the higher Péclet number. The error in the 3rd-order boundary condition
is reduced by taking Λ = 1/12, which makes the LB model third-order accurate in the bulk (11) as well
as at the boundary. Since the largest error in concentration is in the middle of the channel, in Figure 3
we plot the centerline concentration as a function of the axial coordinate x∗ = x/H. At the lower Péclet
number all three methods produce similar results, with the 3rd-order method being the most accurate,
but at Pe = 100 only the non-equilibrium extrapolation (NE) produces an accurate result near the inlet.

Large errors near the inlet at high-Péclet numbers may be connected to the onset of an instability in
the evolving concentration field. Figure 4 shows an approximate stability diagram, delineating regions
where stable solutions can be obtained for different values of α (4). The 3rd-order Multi-Reflection
boundary condition is the least stable in these simulations, never quite reaching a grid Péclet number
Peg = 10; simulations with Pe = 100 in a channel of width 11b are therefore at the margin of stability.
The 2nd-order MR and ABB methods are more stable, with maximum grid Péclet numbers of 18 and
15 respectively; again the stability is insensitive to the choice of α. However, the NE method reaches
a much higher grid Péclet number Peg = 75 when α is sufficiently small (α = 0.025). Thus the NE
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boundary condition appears to be the most suitable for high-Péclet transport; we will focus on this
method in subsequent sections.
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Figure 2. Centerline concentration along the transverse (y) direction at x∗ = x/H = 2.5 and
Pe = 100; the parameter α = 0.08. Numerical simulations for a channel width H = 11b, with
different implementations of the boundary conditions, are compared with the exact solution (solid line):
2nd-order MR (triangles), 3rd-order MR (circles), and extrapolation of the NE distribution (diamonds).
The offset in the channel was δ = 0.5 in each case.
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Figure 3. Centerline concentration (y∗ = 0.5) for a channel width H = 11b at Pe = 10 (left) and
Pe = 100 (right); α = 0.5 at Pe = 10 and α = 0.08 at Pe = 100. The symbols indicate the different
implementation of the boundary conditions, as indicated in the legend, and the solid line is the
analytic solution.
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Figure 4. The maximum grid Péclet number, Pe∗, obtained with different implementations of the
boundary conditions. The stable region (below the line) is illustrated as a function of α (4).
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4. Mixed Boundary Conditions

The general form for the reactive boundary condition with linear reaction kinetics is

Dn ·∇C = kC, (14)

where n is the surface normal pointing into the fluid and k is the reaction rate constant. A general
implementation of these boundary conditions has been derived based on the Multi-Reflection boundary
conditions [24], but since these are less stable than the extrapolation method [21] we will not consider
them further. Alternative interpolation schemes [22,23] will reduce to the anti-bounce-back rule when
δ = 1/2; thus they will also be unable to reach grid Péclet numbers in excess of 20.

The boundary condition is implemented in two stages; first the concentration at the boundary
satisfying (14) is calculated by finite difference followed by an implementation of the Dirichlet
boundary condition with that concentration [25]. Along the direction of the link q, pointing towards the
solid surface (Figure 5), the concentration gradient can be approximated by a first-order finite difference

∇qC =
Cb − C f

bδ
ĉq +O(b), (15)

where ĉq = cq/cq is a unit vector along q and bδ is the distance between the fluid node x f and
the boundary node xb. Substituting into the boundary condition (14) gives an expression for the
concentration at the boundary

Cb =
C f

1− δDag/n · ĉq
+O(b), (16)

where Dag = kb/D is the grid Damköhler number. Alternatively, a second order finite difference yields

Cb =
(1 + δ)2C f − δ2C f f

1 + 2δ− δ2(1 + δ)Dag/n · ĉq
+O(b2); (17)

in these formulas n · ĉq < 0.

ff

f
b

s

qc

cq

Boundary

Solid

Fluid

Figure 5. Illustration of the non-equilibrium extrapolation (NE) boundary condition [21]. The thick
solid line indicates the boundary between solid (open circles) and fluid (solid squares) domains. The
boundary conditions are evaluated at the intersections of the velocity vectors (for example cq, cq̄) and
the boundary surface (solid circles).

An implementation of a no-slip boundary condition [21] can be adapted to LB simulations of the
concentration field. If (for example) the velocity vector cq from the node labeled f (Figure 5) crosses
the solid surface at rb = r f + bqδ, then the boundary condition is required to provide a value for
the population fq̄(r f ). If we imagine a ghost node inside the solid at rs = r f + bq (Figure 5), then
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the population fq̄(rs) will be transferred to r f by the streaming step. The equilibrium distribution
f eq
q̄ (rs) = f eq

q̄ (Cs, u(rs)) is determined by interpolating the concentration field [21],

C(rs) =
Cb − (1− δ)C(r f )

δ
, (18)

where Cb is found from (16) or (17). In our applications the velocity inside the solid phase u(rs) = 0,
but for solid particulates it could be non-zero due to the translation and rotation of the particles. To
avoid numerical instability when δ� 1 an alternative interpolation is used for small δ,

C(r f ) =
2Cb − (1− δ)C(r f f )

1 + δ
. (19)

We make the transition from (18) to (19) at δ = 0.75 [21].
The non-equilibrium contribution is obtained by extrapolation,

f neq
q̄ (r f ) = f neq,∗

q̄ (r f ), (20)

making use of the fact that f neq is proportional to ∇C and is therefore one order higher in b than
f eq ∝ C. Equation (20) is therefore sufficient for a second-order approximation to fq̄. An alternative
implementation of the same idea is non-equilibrium bounce back f neq

q̄ (r f ) = ± f neq,∗
q (r f ) with a plus

sign (bounce-back) for the no-slip condition [22] or a minus sign (anti-bounce-back) for a concentration
boundary [14]. Our numerical tests indicate a strong preference to extrapolation over bounce-back
from the point of view of stability.

5. Numerical Tests with the Mixed Boundary Condition

Secondly, we take the simulation of the convection flow with mixed boundary condition on the
top and bottom walls. The boundary conditions of the problem can be described as follows:

y = H, 0 < x < L : −D
∂C
∂y

= krC,

y = 0, 0 < x < L : D
∂C
∂y

= krC,

x = 0, 0 ≤ y ≤ H : C = e−Da(y−H/2)2
,

x = L, 0 ≤ y ≤ H :
∂C
∂x

= 0.

The Damkohler number (Da) is defined as kr H/D which indicates the relative strength of the
reaction to diffusion.

Here, we take the NE method for the simulations. On the reactive boundaries, the finite difference
method is used. For this problem on the reactive boundary, the concentration C̃b is approximated by
the first order finite difference (FD):

C̃b = C f /(1 +
Da∆y

H
) (21)

To improve the accuracy, we can use second order FD:

C̃b =
4C f − C f f

3 + 2 Da∆y
H

(22)

In the numerical simulations, the domain size 101× 11 lattice unit spacings for Pe = 10 and
501× 11 lattice unit spacing for Pe = 50. In Figure 6, the concentration at x∗ = 0.1, 0.25 is plotted along
y-axis with Pe = 10 and Da = 0.1 and 1 by different FD method in non-equilibrium extrapolation
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method. From the figures, we can see that the second order FD in NE method is better than the first
order one. The concentration on the top boundary at x∗ ∈ [0, 1] is shown in Figure 7. From the figures
we can see the TRT model with NE method are agree with the analytic solution. And the second order
FD is better than the first order FD method.
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Figure 6. Concentration along y-axis at different x with Pe = 10, Da = 0.1 and H = 10. The line is the
analytic solution, ’N’ is by the first order FD and ′•′ is by the second order FD.
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Figure 7. Concentration on the top boundary at x ∈ [0, 1]. The line is the analytic solution, ’N’ is by the
first order FD and ′•′ is by the second order FD.

To demonstrate the accuracy of the non-equilibrium extrapolation method with different finite
difference method, the relative error on the top or bottom boundary (BRE) is defined as

BRE =
‖CLB − Canalytic‖2

‖Canalytic‖2
.

In Table 2, the relative error on reactive boundary are listed with different Pe number and Da
number. From the Table, we can see that the second order finite difference is also better than the first
order FD method.
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Table 2. The boundary relative error with different Pe number and Da number with H = 10.

Pe α Da Finite Difference Method BRE

10 0.5 0.1 First order FD 3.6532 × 10−3

Second order FD 1.3245 × 10−3

1.0 First order FD 1.3200 × 10−1

Second order FD 3.9277 × 10−3

50 0.2 0.1 First order FD 8.30682 × 10−3

Second order FD 3.6795 × 10−3

1.0 First order FD 3.6578 × 10−2

Second order FD 1.6095 × 10−2
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20

30

40

α
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=0.1

=1.0

=10

Figure 8. The maximum grid Pe number Pe∗ corresponding to α with different Da number by first
order FD method.

To demonstrate the stability of NE method. We calculate the maximum grid Peclet number Pe∗

with different Da and α. The width of the channel H is 10. The figures are plotted in Figure 8, and it is
shown that the Da number has little influence on the stability. The smaller α, the better stability. And
maximum Pe∗ can reach 40.

6. Conclusions

In this paper, we have proposed a non-equilibrium extrapolation method in TRT model for
simulating convection-diffusion flow with a reactive boundary condition. The Dirichlet and mixed
boundary conditions have been analyzed. Like the method by Guo, the main point is to obtain the
particle distribution function on the boundary. In NE method, it is important to get the physical
quantities on the boundary. For the reactive boundary, that is mixed boundary conditions, finite
difference is used and it is easy to construct the particle distribution function.

We have verified the accuracy of the NE method with TRT through a comparison with the analytic
solution for the convection-diffusion flow in the long channel. From the simulation results, it is in
good agreement with the analytic solution. Furthermore, it is of better numerical stability for high Pe
numbers, both Dirichlet and mixed boundary conditions, compared with the methods by Ginzburg.

Author Contributions: Conceptualisation, R.D.; methodology, R.D. and D.S.; numerical simulation, D.S., and J.W.
All authors have read and agreed to the published version of the manuscript.

Funding: The research was funded by the National Natural Science Foundation of China grant number 11602057
and by the State Key Laboratory of Solidification Processing in NWPU grant number SKLSP201901.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 13 11 of 12

References

1. Chen, S.; Doolen, G.D. Lattice Boltzmann method for fluid flows. Ann. Rev. Fluid Mech. 1998, 30, 329–364.
[CrossRef]

2. Liang, H.; Li, Y.; Chen, J.X.; Xu, J.G. Axisymmetric lattice Boltzmann model for multiphase flows with large
density ratio. Int. J. Heat Mass Transf. 2019, 130, 1189–1205. [CrossRef]

3. Du, R.; Sun, D.K.; Shi, B.C.; Chai, Z.H. Lattice Boltzmann model for time sub-diffusion equation in Caputo
sense. Appl. Math. Comput. 2019, 358, 80–90. [CrossRef]

4. Du, R.; Liu, Z.X. A lattice Boltzmann model for the fractional advection-diffusion equation coupled with
incompressible Navier-Stokes equation. Appl. Math. Lett. 2020, 101, 106074.

5. Warren, P.B. Electroviscous transport problems via lattice-Boltzmann. Int. J. Mod. Phys. C 1997, 8, 889–898.
[CrossRef]

6. Békri, S.; Thovert, J.F.; Adler, P.M. Dissolution and Deposition in Fractures. Eng. Geol. 1997, 48, 283–308.
[CrossRef]

7. Szymczak, P.; Ladd, A.J.C. Wormhole formation in dissolving fractures. J. Geophys. Res. 2009, 114, B06203.
[CrossRef]

8. Kang, Q.J.; Lichtner, P.C.; Viswanathan, H.S.; Abdel-Fattah, A.I. Pore Scale Modeling of Reactive Transport
Involved in Geologic CO2 Sequestration. Transp. Porous Med. 2010, 82, 197–213. [CrossRef]

9. Yan, Z.F.; Yang, X.F.; Li, S.L.; Hilpert, M. Two-relaxation-time lattice Boltzmann method and its application
to advective-diffusive-reactive transport. Adv. Water Resour. 2017, 109, 333–342. [CrossRef]

10. Ge, W.; Chang, Q.; Li, C.X.; Wang, J.W. Multiscale structures in particle-fluid systems: Characterization,
modeling, and simulation. Chem. Eng. Sci. 2019, 198, 198–223. [CrossRef]

11. Yu, C.; Deng, A.L.; Ma, J.J.; Cai, X.Q.; Wen, C.C. Semi-analytical solutions for two-dimensional
convection-diffusion-reactive equations based on homotopy analysis method. Environ. Sci. Pollut. Res. 2018,
25, 34720–34729. [CrossRef]

12. Ziegler, D.P. Boundary conditions for lattice-Boltzmann simulations. J. Stat. Phys. 1993, 71, 1171–1177.
[CrossRef]

13. Ladd A.J.C. Numerical simulations of particulate suspensions via a discretized Boltzmann equation Part I.
Theoretical foundation. J. Fluid Mech. 1994, 271, 271–285. [CrossRef]

14. Kang, Q.; LichtnerI, P.C.; Zhang, D. Lattice Boltzmann pore-scale model for multicomponent reactive
transport in porous media. J. Geophys. Res. 2006, 111, B05203. [CrossRef]

15. Verberg, R.; Ladd, A.J.C. Lattice-Boltzmann model with sub-grid scale boundary conditions. Phys. Rev. Lett.
200, 84, 2148–2151. [CrossRef]

16. Bouzidi, M.; Firdaouss, M.; Lallemand, P. Momentum Transfer of a Boltzmann-Lattice Fluid with Boundaries.
Phys. Fluids 2001, 13, 3452–3459. [CrossRef]

17. Ginzburg, I.; D’humieres, D. Multireflection boundary conditions for lattice Boltzmann models. Phys. Rev. E
2003, 68, 066614. [CrossRef]

18. Junk, M.; Yang, Z. A one-point boundary condition for the lattice-Boltzmann method. Phys. Rev. E 2005,
72, 066701. [CrossRef]

19. Mei, R.W.; Luo, L.S.; Shyy, W. An accurate curved boundary treatment in the lattice Boltzmann method.
J. Comput. Phys. 1999, 155, 307–330. [CrossRef]

20. Ginzburg, I.; D’humieres, D. Local second-order boundary methods for lattice-Boltzmann models.
J. Stat. Phys. 1996, 84, 927–971. [CrossRef]

21. Guo, Z.L.; Zheng, C.G.; Shi, B.C. An extrapolation method for boundary conditions in lattice Boltzmann
method. Phys. Fluids 2002, 14, 2007–2010. [CrossRef]

22. Chun, B.; Ladd, A.J.C. Interpolated boundary condition for lattice-Boltzmann simulations of flows in narrow
gaps. Phys. Rev. E 2007, 75, 066705. [CrossRef]

23. Yin, X.W.; Zhang, J.F. An improved bounce-back scheme for complex boundary conditions in lattice
Boltzmann method. J. Comput. Phys. 2012, 231, 4295–4303. [CrossRef]

24. Ginzburg, I. Equilibrium-type and link-type lattice Boltzmann models for generic advection and
anisotropic-dispersion equation. Adv. Water Res. 2005, 28, 1171–1195. [CrossRef]

25. Zhang, T.; Shi, B.C.; Guo, Z.; Chai, Z.H.; Lu, J. General bounce-back scheme for concentration boundary
condition in the lattice-Boltzmann method. Phys. Rev. E 2012, 85, 016701. [CrossRef]

http://dx.doi.org/10.1146/annurev.fluid.30.1.329
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2018.09.050
http://dx.doi.org/10.1016/j.amc.2019.04.014
http://dx.doi.org/10.1142/S012918319700076X
http://dx.doi.org/10.1016/S0013-7952(97)00044-6
http://dx.doi.org/10.1029/2008JB006122
http://dx.doi.org/10.1007/s11242-009-9443-9
http://dx.doi.org/10.1016/j.advwatres.2017.09.003
http://dx.doi.org/10.1016/j.ces.2018.12.037
http://dx.doi.org/10.1007/s11356-018-3433-9
http://dx.doi.org/10.1007/BF01049965
http://dx.doi.org/10.1017/S0022112094001771
http://dx.doi.org/10.1029/2005JB003951
http://dx.doi.org/10.1103/PhysRevLett.84.2148
http://dx.doi.org/10.1063/1.1399290
http://dx.doi.org/10.1103/PhysRevE.68.066614
http://dx.doi.org/10.1103/PhysRevE.72.066701
http://dx.doi.org/10.1103/PhysRevE.72.066701
http://dx.doi.org/10.1006/jcph.1999.6334
http://dx.doi.org/10.1007/BF02174124
http://dx.doi.org/10.1063/1.1471914
http://dx.doi.org/10.1103/PhysRevE.75.066705
http://dx.doi.org/10.1016/j.jcp.2012.02.014
http://dx.doi.org/10.1016/j.advwatres.2005.03.004


Mathematics 2020, 8, 13 12 of 12

26. Ginzburg, I. Consistent lattice Boltzmann schemes for the Brinkman model of porous flow and infinite
Chapman-Enskog expansion. Phys. Rev. E 2008, 77, 066704. [CrossRef]

27. Silva, G.; Semiao, V. First- and second-order forcing expansions in a lattice Boltzmann method reproducing
isothermal hydrodynamics in artificial compressibility form. J. Fluid Mech. 2012, 698, 282–303. [CrossRef]

28. Verberg, R.; Ladd, A.J.C. Simulation of low-Reynolds-number flow via a time-independent lattice-Boltzmann
method. Phys. Rev. E 1999, 60, 3366–3373. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.85.016701
http://dx.doi.org/10.1103/PhysRevE.77.066704
http://dx.doi.org/10.1017/jfm.2012.83
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	TRT Model
	Dirichlet Boundary Conditions
	Mixed Boundary Conditions
	Numerical Tests with the Mixed Boundary Condition
	Conclusions
	References

