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Abstract: Let (Fn)n≥0 be the sequence of the Fibonacci numbers. The order (or rank) of appearance
z(n) of a positive integer n is defined as the smallest positive integer m such that n divides Fm. In 1975,
Sallé proved that z(n) ≤ 2n, for all positive integers n. In this paper, we shall solve the Diophantine
equation z(n) = (2− 1/k)n for positive integers n and k.
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1. Introduction

Undoubtedly one of the most famous sequences of integer numbers is the sequence (Fn)n≥0 of
the Fibonacci numbers given for n ≥ 0 by Fn+2 = Fn+1 + Fn, with F0 = 0 and F1 = 1. The Fibonacci
numbers have many amazing properties (see [1–4] together with their very extensive annotated
bibliography for further references). Many prominent mathematicians have dealt with divisibility
properties of the Fibonacci numbers but many questions remain unanswered, e.g., it is an open problem
if there exist infinitely many primes in the Fibonacci sequence (we recommend [5,6]). Further, we
note that the p-adic order (the exponent of the highest power of a prime number p which divides n
is called the p-adic order of n and it is denoted by νp(n)) of Fibonacci numbers has been completely
characterized by Halton [7] and Lengyel [8] (see some generalizations and applications in [9–14]).
The order (or rank) of appearance of a positive integer n in the Fibonacci sequence, denoted by z(n), is
defined as the smallest natural number m, such that n | Fm (sometimes it is called order of apparition,
or Fibonacci entry point), see Table 1.

Table 1. Values of z(n) for 1 ≤ n ≤ 15.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 11 12 13 14 15
z(n) 1 3 4 6 5 12 8 6 12 15 10 12 7 24 20 12 9 12 18 30

The function z(n) can be implemented in Mathematica [15] as

z[n_]:=Catch[Do[i;If[Mod[Fibonacci[i],n]==0,Throw[i]],{i,2*n}]].

Using Mathematica we can easily get Figure 1, from which it can be seen that the values of z(n)
have the upper bounds on the line y = 2n and the lower bounds on the line y = 0, with respect to an
elementary fact, that z(Fn) = n, for n > 2 and the well-known fact, that

lim
n→∞

n
Fn

= 0 .
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Figure 1. The graph of z(n) for n ∈ [1, 20,000], with the upper bounds on the blue line y = 2n and the
lower bounds on the red line y = 1 + (22− 1)/(F22 − 1)(n− 1).

There are many results about z(n) in the literature. Some advanced properties of z(n) can be
found e.g., in [16–19]. Marques [20,21] and Luca and Pomerance [22] investigated a local behavior of
the order of appearance in the Fibonacci sequence. Subsequently, considerable efforts were made to
find the values of z(V(n)), where V(n) is a certain expression containing operations of addition,
subtraction, multiplication, as well as powers of Fibonacci and Lucas numbers. Marques [23],
Marques and Trojovský [24], and Khaochim and Pongsriiam [25] studied z(∏k

i=0 Ln+i) for some
values of k. Similarly, z(∏k

i=0 Fn+i) was found by Marques [26] and Khaochim and Pongsriiam [27]
and the values of z(Fk

n) and z(Lk
n) were derived by Marques [28] and Khaochim and Pongsriiam [29].

Trojovský [30,31] found for distinct positive integers m, n < m the values of z(Ln− Lm) and z(Fm± Fn),
when m ≡ n (mod 4) and m ≡ n (mod 2), respectively. We will also mention a few results regarding
the upper bounds for z(n). In 1878, Lucas showed, as an immediate consequence of the Théorème
Fondamental of Section XXVI in ([32], p. 300), that z(n) < ∞ for all n ≥ 1. We remark that there is not a
closed formula for the z(n), and therefore, Diophantine equations related to z(n) play an important role
in its best comprehension. This function gained great interest in 1992, when Sun and Sun [33] proved
that to show that all solutions of the Diophantine equation z(n) = z(n2) are composite numbers,
implies Fermat’s last theorem. However, it is still known that there are no prime solutions when
n < 3.23 · 1015 (PrimeGrid Project, May 2017). Recently, deep interest has been shown in investigating
some Diophantine equations containing z(n). Independently, Somer and Křížek [34] and Marques [35]
showed that all solutions of the Diophantine equation z(n) = n (thus, all fixed points of the function
z(n)), have the form n = 5k or 12 · 5k, for any integer k ≥ 0. Lehmer [36] (see Theorem 5.1) proved
that all solutions of the equations z(n) = n + 1 and z(n) = n− 1 are primes. A generalization of
these results was studied by Trojovsk y [37], as he considered the Diophantine equation z(n) = n + `,
with |`| ∈ {1, 2, . . . , 9}. For instance, it was proved that for ` = 2, the only solution is n = 4, and for
` = 4 no solution exists.

Concerning upper bounds for z(n), one can apply the Dirichlet’s box principle to the sequence
((Fk, Fk+1) (mod n))k≥0 (sequence of ordered pairs modulo n, so it has at most n2 distinct terms),
to obtain that n must divide Fm, for some m ≤ (n − 1)2 + 1, in particular, z(n) ≤ (n − 1)2 + 1
(see [2], Theorem, p. 52). For a prime p there is a better upper bound for z(p), as z(p) ≤ p + 1.

In 1975, Sallé [38] proved that z(n) ≤ 2n, for all natural numbers n. The value 2n is the sharpest
upper bound for z(n), since, e.g., z(6) = 12 (Savin [39] showed that z(p) | (p + 1)/2 holds for prime
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numbers p ≡ 13, 17 (mod 20), hence z(p) ≤ (p + 1)/2). Actually, proceeding along the same lines as
the proof of Theorem 1.1 of [35], one obtains that

z(n) = 2n if and only if n = 6 · 5k, for k ≥ 0. (1)

Thus, the Diophantine equation z(n) = 2n is completely solved. Now, we can think about
the related version of this equation, i.e., z(n) = (2 − 1/k) n. Since 2 − 1/k tends to 2 as k → ∞,
the following question arises: What other possible solutions could appear?

In this paper, we shall answer completely this question by proving Theorem 1.

Theorem 1. The only solutions of the Diophantine equation

z(n) =
(

2− 1
k

)
n (2)

in positive integers n and k are

(k, n) ∈ {(1, 5a), (1, 12 · 5a), (2, 2 · 5a), (2, 4 · 5a)},

for all positive integers a.

It is important to remark that the appearance of the power of 5, in the solutions of Equations (1)
and (2), is not a coincidence. Indeed, it comes from the strong relation between the Fibonacci numbers
and the number 5. This can be seen in Binet’s formula Fn = (αn − βn)/

√
5 (where α = (1 +

√
5)/2

and β = −1/α) which reflects in the powerful fact that the 5-adic valuation of Fn and n are the same
(in fact, the prime 5 is the only one with this property, see [8]).

2. Auxiliary Results

As mentioned before, in 1975, Sallé provided the sharpest upper bound for z(n), namely,
z(n) ≤ 2n, where the equality holds if and only if n = 6 · 5k, for all integers k ≥ 0. However,
apart from these cases this upper bound is very weak. For instance, z(3731) = 280, thus the smallest
upper bound of z(3731) is approximately only 4% of that upper bound 2n = 2 · 3731 = 7462. In fact,
Marques [40] gave sharper upper bounds for z(n) for all positive integers n which are not in the form
6 · 5k, where k is any positive integer.

Marques’ theorems from [40] will be essential ingredients in our proof. Therefore, we shall present
his results as lemmas (in what follows, we denote by ω(n) and ν2(n) the number of distinct prime
factors of n and the 2-adic valuation of n, respectively).

Lemma 1. (Theorem 1.1 of [40]) We have

(i) z(2k) = 3 · 2k−2 (for k ≥ 3), z(3k) = 4 · 3k−1 (for k ≥ 1) and z(5k) = 5k (for k ≥ 0).
(ii) If p > 5 is a prime, then

z(pk) ≤
(

p−
(

5
p

))
pk−1, for k ≥ 1,

where, as usual, ( a
q ) denotes the Legendre symbol of a with respect to a prime q > 2.

For the cases when ω(n) ≥ 2, Marques [40] proved that

Lemma 2. (Theorem 1.2 of [40]) Let n be an odd integer with ω(n) ≥ 2, then

z(n) ≤ 2 ·
(

2
3

)ω(n)−δn

n,



Mathematics 2020, 8, 124 4 of 8

where

δn =

{
0, if 5 - n;
1, if 5 | n.

Lemma 3. (Theorem 1.3 of [40]) Let n be an even integer with ω(n) ≥ 2, we have that

(i) If ν2(n) ≥ 4, then

z(n) ≤ 3
4
·
(

2
3

)ω(n)−δn−1
n.

(ii) If ν2(n) = 1, then

z(n) ≤


3n/2, if ω(n) = 2 and 5 | n;

2n, if ω(n) = 2 and 5 - n;
3 · (2/3)ω(n)−δn−1n, if ω(n) > 2.

(iii) If ν2(n) ∈ {2, 3}, then

z(n) ≤


3n/2, if ω(n) = 2 and 5 | n;

n, if ω(n) = 2 and 5 - n;
(2/3)ω(n)−δn−2n, if ω(n) > 2.

Our last tool is a relation between z(n) and z(pa) for all prime powers dividing n. A proof of this
fact can be found in [41].

Lemma 4. (Theorem 3.3 of [41]) Let n > 1 have the prime factorization n = pa1
1 · · · p

ak
k . Then

z(n) = lcm(z(pa1
1 ), . . . , z(pak

k )) ,

where lcm() denotes the least common multiple.

As usual, from now on we use the well-known notation [a, b] = {a, a+ 1, . . . , b}, for integers a < b.
Now we are ready to deal with the proof of our main result.

3. The Proof of the Theorem

For k = 1, all the solutions are of the form 5k or 12 · 5k (see [35]). So, we may assume that k > 1,
hence 2 − 1/k ≥ 3/2 in the rest of the proof. Therefore, in our case, we have that z(n) ≥ 3n/2.
Now, we shall split the proof according to the value of ω(n).

3.1. The Case ω(n) = 1

In this case, we have that n = pa, for a prime p. For the primes p = 2, 3, and 5, respectively,
we obtain, by Lemma 1 (i), that

3 · 2a−1 ≤ z(2a) = 3 · 2a−2,

3a+1/2 ≤ z(3a) = 4 · 3a−1,

3 · 5a/2 ≤ z(5a) = 5a.

Clearly, these three inequalities do not hold for any positive integer a. Thus, we suppose that
p > 5. By Lemma 1 (ii), we get 3pa/2 ≤ z(pa) ≤ (p + 1)pa−1 which arrives in the contradiction that
p ≤ 2. So, we have no solution for a power of all primes.
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3.2. The Case in which n is Odd and ω(n) ≥ 2

This case does not provide any solution, since, by Lemma 2, we have

3n/2 ≤ z(n) ≤ 2 · (2/3)ω(n)−δn n ≤ 4n/3.

3.3. The Case in which n is Even and ω(n) ≥ 2

Here, we shall split the proof according to the value of ν2(n).

3.3.1. The Case ν2(n) ≥ 4

For this case, we do not have solution, since, by Lemma 3 (i), we obtain

3n/2 ≤ z(n) ≤ (3/4) · (2/3)0n = 3n/4.

3.3.2. The Case ν2(n) = 1, ω(n) = 2 and δn = 1

In this case, we have that n = 2 · 5a which is a solution for k = 2. In fact, we can use Lemma 4
to obtain (we remark that we shall use this result many times in this work. So, in order to avoid
unnecessary repetition, we shall omit its citation),

(2− 1/k) 2 · 5a = z(2 · 5a) = lcm(z(2), z(5a)) = 3 · 5a.

Thus, 2− 1/k = 3/2 and so k = 2.

3.3.3. The Case ν2(n) = 1, ω(n) = 2 and δn = 0

In this case, we have that n = 2 · pa, for a prime p 6= 2 or 5. So, we have

(2− 1/k) 2pa = z(2 · pa) = lcm(3, z(pa)).

If p = 3, then z(3a) = 4 · 3a−1 and then

(2− 1/k) 2 · 3a = z(2 · 3a) = lcm(3, 4 · 3a−1) = 4 · 3a−1,

where we supposed that a > 1 (the case a = 1 implies that n = 6 but as z(6) = 2 · 6 we do not have
a solution). Hence k = 3/4 6∈ Z. Now, we assume that p > 5. Observe that lcm(a, b) is either ab or
at most ab/2. So, lcm(3, z(pa)) is either 3z(pa) or at least 3z(pa)/2. In the second case, we use the
Lemma 3 to arrive at

3pa ≤ (2− 1/k)2pa ≤ 3z(pa)/2 ≤ 3(p + 1)pa−1/2

and so 2 ≤ (p + 1)/p < 2 which is a contradiction. In the case in which lcm(3, z(pa)) = 3z(pa), after a
straightforward computation, we obtain that

k =
2pa

4pa − 3z(pa)
.

This implies that 4pa − 3z(pa) divides 2pa. Note that all positive divisors of 2pa are pk or 2pk,
for any k ∈ [0, a]. Since p > 5, we have

4pa − 3z(pa) ≥ 4pa − 3(p + 1)pa−1 = pa−1(p− 3) > 2pa−1,

thus pa must divide 4pa − 3z(pa) and then pa divides z(pa). However, in the proof of the item (ii) of
Lemma 1, it was proved the stronger fact that z(pa) divides (p− (5/p))pa−1 (see [40], p. 235). Hence,
we have that pa | z(pa) | (p− (5/p))pa−1 which yields that p divides p− (5/p) and so p = 5 which
contradicts our assumption of p > 5. So, we do not have solution in this case.
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3.3.4. The Case ν2(n) = 1 and ω(n) > 3

For this, we have

3n/2 ≤ z(n) ≤ 3 · (2/3)2n = 4n/3

which does not hold.

3.3.5. The Case ν2(n) = 1, ω(n) = 3 and δn = 0

This case is exactly as the previous one, since all that matters is that ω(n)− δn ≥ 2.

3.3.6. The Case ν2(n) = 1, ω(n) = 3 and δn = 1

We have n = 2 · 5a pb, where p 6= 2, 5 is a prime. Thus

(2− 1/k) 2 · 5a pb = z(2 · 5a pb) = lcm(3, 5a, z(pb)) = lcm(lcm(3, 5a), z(pb))

= lcm(3 · 5a, z(pb)),

where we used that z(5a) = 5a. Since lcm(3 · 5a, z(pb)) is either 3 · 5az(pb) or at most 3 · 5az(pb)/2,
the proof of the non-existence of solutions for this case follows exactly along the same lines than
in Section 3.3.3.

3.3.7. The Case ν2(n) ∈ {2, 3}

For this case, by Lemma 3 (iii), we do not have solution when ω(n) > 2 (since (2/3)ω(n)−δn−2 < 1).
Clearly, the same holds when ω(n) = 2 and δn = 0. So, it remains to study the case in which ω(n) = 2
and δn = 1. Then n = 2t · 5a, where t ∈ {2, 3}. Thus

(2− 1/k) 2t · 5a = z(2t · 5a) = lcm(z(2t), z(5a)) = lcm(6, 5a) = 6 · 5a,

where we used that z(4) = z(8) = 6. Now, observe that (2 − 1/k) 2t · 5a = 6 · 5a implies in
(2− 1/k) 2t−1 = 3 for t ∈ {2, 3}. This holds only for k = t = 2 and so we obtain the family of
solutions of the form n = 4 · 5a.

This completes the proof of the main theorem.

4. Conclusions

In this paper, we dealt with the function z(n), which is known as the order (or rank) of appearance
of n in the Fibonacci sequence. This function encodes many properties of Fibonacci numbers and it is
related to famous problems in mathematics (such as an elementary proof of the Fermat’s last theorem).
Here, we used sharper upper bounds for z(n) in order to understand its behavior near the extremal
case (i.e., near 2n). More precisely, we solved completely the Diophantine equation z(n) = (2− 1/k) n
in positive integers k and n, by expliciting its four (and unique) families of solutions.

Funding: The author was supported by the Project of Specific Research PrF UHK no. 2116/2019, University of
Hradec Králové, Czech Republic.
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