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Abstract: A conditional Extreme Value Theory (GARCH-EVT) approach is a two-stage hybrid method
that combines a Generalized Autoregressive Conditional Heteroskedasticity (GARCH) filter with
the Extreme Value Theory (EVT). The approach requires pre-specification of a threshold separating
distribution tails from its middle part. The appropriate choice of a threshold level is a demanding task.
In this paper we use four different optimal tail selection algorithms, i.e., the path stability method, the
automated Eye-Ball method, the minimization of asymptotic mean squared error method and the
distance metric method with a mean absolute penalty function, to estimate out-of-sample Value at
Risk (VaR) forecasts and compare them to the fixed threshold approach. Unlike other studies, we
update the optimal fraction of the tail for each rolling window of the returns. The research objective
is to verify to what extent optimization procedures can improve VaR estimates compared to the fixed
threshold approach. Results are presented for a long and a short position applying 10 world stock
indices in the period from 2000 to June 2019. Although each approach generates different threshold
levels, the GARCH-EVT model produces similar Value at Risk estimates. Therefore, no improvement
of VaR accuracy may be observed relative to the conservative approach taking the 95th quantile of
returns as a threshold.

Keywords: Value at Risk; optimal tail selection; Extreme Value Theory; GARCH-EVT

1. Introduction

Value at Risk (VaR) is the most widely known measure of market risk. VaR indicates how big
the maximum loss of an asset or a portfolio of assets is over the target horizon so that there is a low,
pre-specified probability q that the actual loss will be greater. VaR can also be considered in the context
of returns. Formally, we denote by rt the return on assets at time t. The one-day-ahead Value at Risk
for a long trading position at a q significance level, noted VaRq(rt), anticipated conditionally to an
information set, Ft, available at time t is defined by the formula:

P
(
rt+1 ≤ VaRq(rt)|Ft

)
= q. (1)

This definition shows that VaR is a qth conditional quantile of the returns distribution. For a short
trading position VaR is a 1–qth conditional quantile of the returns distribution:

P
(
rt+1 ≥ VaR1−q(rt)|Ft

)
= q. (2)
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The main practical problem consists in the selection of an appropriate method to measure Value at
Risk. The most popular and the simplest methods include historical simulation, Monte Carlo simulation
or variance-covariance. Pérignon and Smith (2010) [1] reported that 73% of U.S. international banks
use historical simulation, while only a minority of financial institutions use more complex parametric
models. When financial markets become volatile and extreme returns appear, none of these methods
are capable of appropriately measuring the risk.

The Extreme Value Theory (EVT) provides a theoretical and practical foundation for statistical
models describing extreme events. There is an extensive body of literature that focuses on EVT and
discusses the tail behavior of assets [2–10]. EVT models deal with i.i.d. variables, for that purpose
McNeil and Frey (2000) [11] constructed a combination of the Extreme Value Theory and Generalized
Autoregressive Conditional Heteroskedasticity (GARCH) model, referred to as conditional EVT or
GARCH-EVT. The model captures the most important stylized facts about financial time series, such as
volatility clustering and leptokurtosis, and quickly adapts to recent market movements. The two-stage
GARCH-EVT model is widely used to estimate accurately financial risk measured by the Value at Risk
or Expected Shortfall (ES). McNeil and Frey (2000) [11] showed that the application of GARCH and
EVT combined leads to a more accurate estimation of VaR compared with EVT methods. Fernandez
(2003) [12] showed that EVT outdoes a GARCH model with normal innovations by far and that it
gives similar results to a GARCH model with t innovations, as long as the innovations come from
a symmetric and fat-tailed distribution. In turn, Jadhav and Ramanathan (2009) [13] estimated VaR
using 14 (parametric and non-parametric) estimation procedures at a 99% confidence level. The EVT
method performs better than the other methods. Gençay and Selçuk (2004) [14] reported that at the
99th and higher quantiles the Generalized Pareto Distribution (GPD) model is clearly superior to
five other methods used in the study in terms of VaR forecasting. Moreover, Z. Zhang and H. K.
Zhang (2016) [15] showed that the Exponential GARCH (EGARCH) model with Generalized Error
Distribution (GED) combined with the EVT approach does very well in predicting critical loss for
precious metal markets. Just (2014) [16] verified unconditional and conditional VaR estimation models
in the agricultural commodity market. The GARCH-EVT model enables a correct VaR estimation also
in this market. Tabasi et al. (2019) [17] showed that the GARCH-EVT model outperforms the simple
GARCH model with Student’s t and normal distributions for residuals.

Application of GARCH-EVT in empirical research requires pre-specification of a threshold which
separates tails of distribution from its middle part. The appropriate choice of threshold level u is
ambiguous, but crucial in the estimation of Generalized Pareto Distribution parameters and the
corresponding accuracy of Value at Risk. The standard practice is to adopt as low a threshold as
possible, but there is a trade-off between variance and bias. If a threshold is too low, the asymptotic basis
of the model is violated leading to a high bias. However, too high a threshold generates insufficient
excesses with which the model is estimated, leading to a high variance [18]. Most authors preferred
to select a threshold as a fixed quantile of the data set, instead of determining a threshold value at
each step, especially when they use a moving window of observation to find out-of-sample VaR
estimates. McNeil and Frey (2000) [11], Karmakar and Shukla (2015) [19], Bee et al. (2016) [20], Totić
and Božović (2016) [21], Li (2017) [22], Fernandez (2003) [12], Jadhav and Ramanathan (2009) [13] and
Huang et al. (2017) [23] chose the 90th quantile of the loss distribution as a threshold. In contrast, a
less conservative, but fixed threshold was used by Gençay and Selçuk (2004) [14], Cifter (2011) [24],
Soltane et al. (2012) [25].

Traditional approaches to threshold selection are based on graphical representations. A frequently
used procedure consists in the analysis of a mean residual life plot, which represents the mean of the
excesses of threshold u. This method was applied by Aboura (2014) [26] and Omari et al. (2017) [27]
to estimate VaR based on the GARCH-EVT approach. Another very popular procedure to threshold
selection involves a graphical representation of Hill [28], Pickands [29] or Dekkers–Einmahl–de Haan
estimators [30]. The graphical based threshold choice procedures require identification of stable
regions in the graphs and thus they are highly subjective. There is extensive literature proposing
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the optimal choice of threshold, corresponding to the application of automated methods. The most
common methods for the adaptive choice of the threshold are based on the minimization of asymptotic
mean squared error (AMSE) estimate (e.g., [31–34]). For example, Hall (1990) [35] and Danielson et al.
(2001) [33] use a bootstrap procedure to minimize the AMSE. Heuristic rules, e.g., Csörgő and Viharos
(1998) [36], the Eye-Ball method [37] or the path stability (PS) method [38] to select the tail fraction
are easy to implement, but they are arbitrary. The distance metric methods were proposed in [37].
Danielsson et al. (2016) [37] used three types of distances between empirical and theoretical quantiles,
i.e., the Kolmogorov–Smirnov, average squared and mean absolute distances. A recent overview of the
topic can be found in [37,38]. However, none of these conceptions outperforms other methods in all
situations, thus researchers are still searching for another method to find the optimal tail (e.g., [39]).

This paper provides an empirical study of conditional EVT. The research objective of this paper
is to compare the predictive ability of VaR estimates when each estimate is made with an optimal
choice of the distribution tail. Five methods are applied to describe the tail, i.e., the minimization of
AMSE estimate introduced in [38], the path stability algorithm [38], the distance metric method with
the mean absolute penalty function [37], the automated Eye-Ball method [37] and the fixed quantile
procedure. Unlike other studies we update the optimal fraction of the tail for each moving window
of observations. It means that each VaR forecast is calculated on the basis of a new estimate of the
threshold and in this way we can estimate the risk with the newest time horizon. We hypothesize that
the optimal choice of the tail fraction makes it possible to improve the accuracy of VaR prediction. This
study contributes to the literature in the following ways. Firstly, we conduct the empirical study for
one day out-of-sample Value at Risk forecasts using 10 stock indices from the period 2000–June 2019.
We propose to use the GARCH-EVT model with optimal tail selection. For all considered models, we
allow the tail fraction and the model parameters to change over time. Secondly, we compare the VaR
forecasts accuracy and the tail fraction between the investigated models. The results indicate which
model may be used in practice by investors, financial and regulatory institutions. This study is an
extended version of conference proceedings [40], where only path stability algorithm was analyzed.

The rest of the paper is organized as follows. Section 2 provides methodological details. It
introduces the Peaks Over Threshold (POT) model and describes the tail selection problem in this
model. Then the conditional GARCH-EVT model and backtesting procedures are presented. Section 3
presents empirical results for VaR forecasting, while Section 4 concludes the study.

2. Methods

2.1. Modeling Tail Using Extreme Value Theory

The Extreme Value Theory is a theory that focuses primarily on analyzing the asymptotic behavior
of extreme values of a random variable. The theory provides robust tools for estimating only extreme
values distribution instead of the whole distribution. The Peaks Over Threshold, next to the Block
Maxima Model (BMM), is one of the two key models of EVT. It allows us to model the tail regions of the
distribution instead of the entire sample. Using the POT method one can easily derive a closed-form
expression for the Value at Risk or Expected Shortfall. In this study we focus on the Value at Risk.
Although VaR is a primary measure of market risk for financial institutions it not a subadditive measure.
ES is free from the drawback and theoretically captures the information contained in the tail in a
better fashion. However, as an expected value ES requires that the distribution must have a finite first
moment. Guégan and Hassani (2018) [41] evidenced infinite ES in financial data when alpha-stable
and Generalized Extreme Value distributions were considered. The same problem may appear in case
of GPD when the shape parameter is greater than one. We avoid this difficulty in our study since only
VaR is taken into consideration. The distribution of excesses over high threshold is defined as:

Fu(y) = P(X − u ≤ x|X > u) =
F(y + u) − F(u)

1− F(u)
for 0 < y < x0 − u, (3)
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where x0 ≤ ∞ is the right endpoint of F.
The Pickands-Balkema-de Haan Theorem [42] is a basic result in POT and states that for a large

class of underlying distributions F, there exists a function β(u) such that:

lim u→x0sup0<y<x0−u

∣∣∣Fu(y) −Gξ,β(u)(y)
∣∣∣ = 0. (4)

Gξ,β(u)(y) is the Generalized Pareto Distribution given by:

Gξ,β(y) =

 1−
(
1 + ξ

y
β

)− 1
ξ , ξ , 0,

1− exp
(
−

y
β

)
, ξ = 0,

(5)

where β > 0, y ≥ 0 for ξ ≥ 0 and 0 ≤ y ≤ − βξ for ξ < 0. The distribution has only two parameters, β is a
scale parameter and ξ is a shape parameter. Heavy tail distributions (i.e., stable, Cauchy, Student’s t)
have ξ > 0 (Fréchet domain of attraction), whereas thin tail distributions like normal and log-normal
have ξ = 0 (Gumbel domain of attraction). Distributions with a finite right endpoint have ξ < 0
(Weibull domain of attraction). Rearranging (3) and (5) we obtain a cumulative distribution function
of returns:

F(x) = (1− F(u))Gξ,β(y)(x− u) + F(u), x > u. (6)

To obtain a useful closed form of distribution (6) it is convenient to replace F(u) with the empirical
estimator of exceedance over a threshold. The estimator is of the form F̂(u) = 1− Nu

n where Nu is a
number of returns that exceed threshold u and n is the number of returns. The estimator of cumulative
distribution F is then as follows:

F̂(u) = 1−
Nu

n

(
1 + ξ̂

(x− u)

β̂

)− 1
ξ̂

. (7)

VaR for a short position (right tail of distribution) is given by the x value in Equation (7) and
we get:

V̂aR1−q = u +
β̂

ξ̂

( n
Nu

q
)−ξ̂
− 1

, (8)

where 1 − q is the confidence level of VaR. In order to calculate VaR for a long position (left tail of
distribution) it is necessary to carry out the calculations for minus returns.

2.2. Optimal Tail Selection

As referred in the Introduction, there are a large number of methods dealing with the optimal
choice of the distribution tail fraction. However, not all methods perform well in finite samples,
therefore they may not be used in the GARCH-EVT model with moving windows. Some methods
that perform well in simulation studies, based on theoretical distributions, may not perform well in
financial applications. For instance, methods based on minimizing the asymptotic MSE, especially
bootstrap-based methods, do not perform very well in empirical studies [37]. The efficiency assessment
is usually conducted using simulations studies but it is not the case in this work. We handle the
problem of the choice of optimal tail fraction form the investors’ point of view without entering into
theoretical considerations including estimator properties. This is empirical research and we focus on
computational methods instead of simulations ones. In our study we test several methods implemented
in the R tea package [43]. Since we measure the risk in finite samples, in our study we chose only four
methods that were able to converge in the optimization procedure.



Mathematics 2020, 8, 114 5 of 24

2.2.1. Mean Absolute Deviation Distance Metric Method

The procedure mean absolute deviation distance metric (MINDIST) proposed in [37] minimizes
the distance between the largest upper order statistics of the dataset, i.e., the empirical tail, and the
theoretical tail of a Pareto distribution. The parameter α of this distribution is estimated by the Hill
estimator. The distance is then minimized with respect to this k. The optimal number, denoted k0

here, is equivalent to the number of extreme values. We use mean absolute deviation (MAD) penalty
functions in the study:

QMAD
n =

1
T

T∑
j=1

∣∣∣rn− j,n − q( j, k)
∣∣∣, (9)

where rn− j,n is the empirical quantiles and q( j, k) is a quantile estimated by rn− j+1,n
(

k
j

) 1
α̂k , α̂k is the Hill

estimator. The Hill estimator [28] is defined as follows:

ξ̂ =
1
α̂
=

1
k

k−1∑
i=1

(
log(rn−i,n) − log

(
rn−k,n

))
, (10)

where k is the number of upper order statistics used in estimation of the tail index.

2.2.2. Eye-Ball Method

The automated Eye-Ball method is a heuristic procedure proposed in [37], and it searches for a
stable region in the Hill plot by defining a moving window. Inside the defined window the estimates
of the Hill estimator with respect to k have to be in a predefined range around the first estimate within
this window. It is sufficient to claim that only the h percentage of the estimates within this window
lies within this range. The smallest k to accomplish this is then the optimal number of upper order
statistics, i.e., returns in the tail. The estimator is as follows:

k∗eye = min

k ∈
{
2, . . . , n+

−w
}
|h <

1
w

w∑
i=1

I
{
α̂(k) − ε < α̂(k + i) < α̂(k) + ε

}, (11)

where w is the size of the moving window, which is typically 1% of the full sample, h is typically
around 90%, while ε is 0.3, n+ is the number of positive returns.

2.2.3. Path Stability Method

The path stability (PS) method is an algorithm introduced in [38]. The algorithm searches for
a stable region of the PS, i.e., the Hill plot of a tail index with respect to k. This is done in the
following steps:

Step 1. Given an observed returns (r1, . . . , rn), compute T(k) := ξ̂k,n using the Hill estimator for
k = 1, . . . , n− 1.

Step 2. Obtain j0 as a minimum value of j, a non-negative integer, such that the rounded values,
to j decimal places ( j = 1 here), of the estimates T(k) are distinct. Define a(T)k ( j) = round (T(k), j), k =

1, . . . , n− 1, the rounded values of T(k) to j decimal places.
Step 3. Consider the set of k values associated to equal consecutive values of a(T)k ( j0) obtained in

step 2. Set k(T)min and k(T)max the minimum and maximum values, respectively, of the set with the largest

range. The largest run size is l := k(T)max − k(T)min.

Step 4. Consider all those estimates, T(k), k(T)min ≤ k ≤ k(T)max, now with two additional decimal

places, i.e., compute T(k) = a(T)k ( j0 + 2). Obtain the mode of T(k) and denoteKT the set of k – values
associated with this mode.

Step 5. Take k̂T as the maximum value ofKT.
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Step 6. Compute ξ̂PS = ξ̂k̂T ,n.

2.2.4. Minimization of Asymptotic Mean Squared Error Method

The minimization of asymptotic mean squared error (dAMSE) method is an algorithm introduced
in [38]. The tail in the dAMSE method is identified by minimizing the AMSE criterion with respect to k.
The optimal number, denoted k0, may be associated with the unknown threshold u of the tail index
with respect to k. This is done in the following steps:

Step 1. Given an observed returns (r1, . . . , rn), compute for the tuning parameters τ = 0 and τ = 1,

the values of ρ̂τ(k) := −
∣∣∣∣3(W(τ)

k,n − 1)/(W(τ)
k,n − 3)

∣∣∣∣, dependent on the statistics:

W(τ)
k,n :=



(
M(1)

k,n

)τ
−

(
M(2)

k,n /2
)τ/2

(
M(2)

k,n /2
)τ/2
−

(
M(3)

k,n /6
)τ/3 , i f τ , 0,

ln
(
M(1)

k,n

)
−ln

(
M(2)

k,n /2
)
/2

ln
(
M(2)

k,n /2
)
/2−ln

(
M(3)

k,n /6
)
/3

, i f τ = 0,

(12)

where

M( j)
k,n =

1
k

k∑
i=1

(log rn−i+1:n − log rn−k:n)
j, j = 1, 2, 3. (13)

Step 2. Consider K =
(
n0.995, n0.999

)
. Compute the median of

{
ρ̂τ(k)

}
k∈ K , denoted Kτ, and

compute Iτ :=
∑

k∈ K
(ρ̂τ(k) − χτ)

2, τ = 0, 1. Next choose the tuning parameter, τ∗ = 0, if I0 < I1;

otherwise choose τ∗ = 1.
Step 3. Work with ρ̂ = ρ̂ τ∗(k) = ρ̂ τ∗(k01) and β̂ = β̂ τ∗(k) := β̂ρ̂ τ∗

(k01), for k01 = n0.999 and for

β̂ρ̂(k) :=
(

k
n

)ρ̂ dk(ρ̂)Dk(0) −Dk(ρ̂)

dk(ρ̂)Dk(ρ̂) −Dk(2ρ̂)
, (14)

dependent on the estimator ρ̂ = ρ̂ τ∗(k01), and where, for any α ≤ 0,

dk(α) :=
1
k

∑
k
i=1(i/k)−α, Dk(α) :=

1
k

∑
k
i=1(i/k)−αUi, (15)

with
Ui = i

∑
k
i=1(log rn−i+1:n − log rn−k:n), 1 ≤ i ≤ k < n, n0.999, (16)

the scaled log-spacings.
Step 4. On the basis of estimators β̂ and ρ̂ compute:

k̂H
0 :=

 (1− ρ̂)2n−2ρ̂

−2ρ̂β̂2


1

1−2ρ̂

. (17)

Step 5. Compute ξ̂H := ξ̂H
k̂H

0 ,n
.

2.3. Conditional Extreme Value Theory Model

The GARCH-EVT model was introduced by McNeil and Frey [11] to VaR modeling by extending
the EVT framework to dependent data. This model uses the EVT to model the tails of standardized
residues et obtained from the GARCH model. When the estimated GARCH model is correct, the
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residuals of the model should be realizations of the unobserved i.i.d. noise variables. It was assumed
in this study that returns are modeled using the most popular GARCH(1,1) model [44]:

rt = σtεt, σ2
t = ω+ αr2

t−1 + βσ2
t−1, (18)

where: ω,α, β > 0, α+ β < 1, εt ∼ i.i.d.(0, 1). VaR for a short position (right tail) is calculated using
the formula:

VaR1−q(rt) = σt(1)VaR1−q(et), (19)

where: σt(1)—one step ahead forecast of conditional volatility of the GARCH(1,1) model,
VaR1−q(et)—calculated from Formula (8) for the standardized residuals et of the GARCH(1,1) model.

2.4. Backtesting

The model used for VaR estimation should be statistically verified using the bactesting procedure.
VaR verification tests are based on hit function (failure process)

{
It(q)

} T
t=1 defined for a long trading

position by the formula:

It(q) =
{

1, rt < VaRq(rt−1),
0, rt ≥ VaRq(rt−1).

(20)

In practice the most commonly used test is the Kupiec’s proportion of failures test (also known as
the unconditional coverage test) [45]. According to Kupiec (1995) [45], the number of VaR violations by
actual returns has a binomial distribution T1 ∼ B(T, q) and the hypotheses are defined as:

H0 : P(It(q) = 1) = E[It(q)] = q, H1 : P(It(q) = 1) = E[It(q)] , q. (21)

The null hypothesis assumes that the share of VaR violations by actual returns is compliant with
an assumed q. The test statistic is defined as:

LRUC = 2
(
log

(
q̂T1(1− q̂)T0

)
− log

(
qT1(1− q)T0

))
, (22)

where: q̂ = T1/(T0 + T1), T1—the number of VaR exceedances, T0—the number of unexceeded VaR.
With the true null hypothesis LRUC statistic has the asymptotic chi-square distribution with one

degree of freedom.
The advantage of Kupiec’s test is that it assesses the model taking into account either too large and

too small number of exceedances. A good model used for VaR estimation should also be characterized
by independence of exceedances. Test proposed by Christoffersen (1998) [46] additionally checks
independence of exceedances. When the model accurately estimates VaR, then an exception today
should not depend on whether or not an exception occurred on the previous day. In order to test
hypothesis that the exceedances are independent (the first exceedance) an alternative is defined
where the sequence of exceedances is modeled with a first order Markov chain with a matrix of
transition probabilities:

Π =

(
1−π01 π01

1−π11 π11

)
, (23)

where πi j = P
(
It(q) = j

∣∣∣It−1(q) = i)
)
. The Markov chain reflects the existence of a order one memory

in the sequence of exceedances. The hypotheses in the independence test are defined as:

H0 : π01 = π11, H1 : π01 , π11. (24)

Finally, Christoffersen (1998) [46] combines the two tests, i.e., the unconditional coverage test and
the independence test into the conditional coverage test. In this test, the null hypothesis takes the
following form:

H0 : π01 = π11 = q. (25)
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The test statistic is of the form:

LRCC = 2
(
log

(
π̂01

T01(1− π̂01)
T00 π̂11

T11(1− π̂11)
T10

)
− log

(
qT01+T11(1− q)T00+T10

))
, (26)

where: π̂i j = Ti j/(Ti0 + Ti1), Ti j—the number of days when condition j occurred assuming that
condition i occurred on the previous day (1 if exceedance accurs, 0 if no exceedance appears).

Under the true null hypothesis LRCC statistic has the asymptotic chi-square distribution with two
degrees of freedom.

The disadvantage of Christoffersen’s test is that it examines the independence of the first exceedance
only. Therefore, it should be supplemented by other tests e.g., a test which analyzes whether the
number of periods (days) between the violations of VaR by actual returns is independent over time [47].
Under the null hypothesis of this test, the duration of time between VaR violations should have no
memory and mean duration of 1/q. Since the only continuous distribution, which is memory free, is the
exponential distribution, the test can be conducted on any distribution which embeds the exponential
as a restricted case, and a likelihood ratio test then conducted to see whether the restriction holds.
Here, the Weibull distribution is used with parameter b = 1 representing the case of the exponential.
The Weibull distribution is defined as:

f (d) = abbdb−1 exp
{
−(ad)b

}
, (27)

where d—the duration of time (in days) between two VaR exceedances. Under the null hypothesis of
independence we have the likelihood:

L(q) =
T1−1∏
t=1

(q exp(−q dt)), (28)

where T1—the number of periods, in which an exceedance occurred. The likelihood ratio test statistic
is defined as:

LRUD = 2(log L(â) − log L(q)). (29)

The test statistic is asymptotically distributed as chi-square with one degree of freedom. We refer
to [47] for details of the test.

The basic test using both VaR values and series of exceedances is the Dynamic Quantile test of
Engle and Manganelli [48]. The idea of the test is that exceedances at time t should not depend on
exceedances at earlier times, or on VaR and any processed information (ωt−1, j) available at time t− 1
(e.g., past returns, square of past returns). Engle and Manganelli define Hitt(q) = It(q) − q. In the test
the regression equation is estimated:

Hitt(q) = β0 +
∑

p
i=1βiHitt−i(q) + βp+1VaRq(rt−1) +

∑
n
j=1βp+ j+1 f

(
ωt−1, j

)
+ εt. (30)

VaR is well estimated if there is no reason to reject the null hypothesis:

H0 : βi = 0, i = 0, 1, 2, . . . , p + n + 1. (31)

The current VaR exceedances are uncorrelated with past exceedances when βi = 0 for i = 1, . . . , p,
whereas unconditional coverage hypothesis is verified for β0 = 0.

In matrix notation, we have Hit = Xβ+ e. The Wald test statistic is defined as:

DQ =
Hit′X

(
X
′

X
)−1

X
′

Hit

q(1− q)
. (32)
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Under the true null hypothesis DQ statistic has the asymptotic chi-square distribution with
p + n + 2 degrees of freedom.

This test identifies an incorrect VaR measurement, which is not rejected by the classic tests of the
number and independence of exceedances. We refer to [48,49] for details of the test.

The loss function is another goodness-of-fit measure for VaR calculation. The loss function for a
given q may be determined as in [50]:

Q = T−1
T∑

t=1

(q− It(q))
(
rt −VaRq(rt−1)

)
. (33)

A lower Q value indicates a better goodness of fit.

3. Results of Empirical Study

To test the forecasting performance of the examined GARCH-EVT model with different thresholds
we chose 10 stock indices as the basis for analysis. They were the S&P 500 (SPX), FTSE 100 (UKX),
CAC 40 (CAC), DAX, OMX Stockholm 30 (OMXS), KOSPI, NIKKEI 225 (NKX), Hang Seng (HSI),
Bovespa (BVP), All Ordinaries (AOR). The data consists of daily prices of the selected assets from the
beginning of 2000 up to the end of June 2019. It gives from 4781 (NKX) to 4982 (CAC) percentage
log-returns which are used in our calculations. The data set was obtained from the financial stock
news website, stooq.pl [51]. Using rolling windows of 2000 returns in size we updated the estimates
of parameters for each moving window. Most used optimization methods require a relatively long
window of observation to the optimal algorithms convergence. We selected a moving window of
2000 observations. The window of the 1000 generates considerable calculation problems. The less
demanding optimization algorithm is PS, which may be used for relatively small samples. Echaust
(2018) [40] used only 750 returns in the moving window.

According to the GARCH-EVT approach the tail fraction is estimated for standardized residuals of
the GARCH model, not for returns. We used a GARCH(1,1) model with normal innovations. Then we
calculated the tail fraction in five cases, i.e., using the optimal tail selection method, and additionally
the 95th quantile of each moving window. Table 1 shows the mean, minimum, maximum and standard
deviation of a threshold level for indices, while Figure 1 presents the estimated threshold level for the
S&P 500 index. The PS method estimates the threshold in the most conservative way, much lower
than the 95th quantile. Such a choice of threshold guarantees sufficient data in the tail to calculate
VaR estimates at standard confidence levels. On the other hand, the threshold calculated with the PS
algorithm has a very high range and standard deviation. It means that the threshold is highly volatile
over time. It is of interest that PS is the only method that indicates a higher right threshold than the left
one. The Eye-Ball algorithm is the most restrictive and it sets the threshold at a high level. In turn,
the MINDIST method produces the most volatile threshold estimates compared to other methods.
These two remarks are consistent with Danielson et al. (2016) [37], who argued that the automated
Eye-Ball method and the MINDIST method with the Kolmogorov–Smirnov metric tend to pick a small
number of data in the tails and therefore the tail close to the maximum. We use a different penalty
function in the MINDIST method, but the conclusion is similar. The high threshold level may result in
an insufficient number of returns lying in the tails to estimate GPD parameters in the next step (see
Table 2). The dAMSE methodology uses a number of order statistics the closest to the 95th quantile
and has a standard deviation the closest to the method with the 95th quantile among the optimization
methods used in the study.
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Figure 1. Threshold estimates for lower and upper tails for S&P 500 returns.

Table 1. Threshold estimates from the Conditional Extreme Value Theory model with optimal
tail selection.

Lower Tail Upper Tail

SPX Max Mean Min StDev Min Mean Max StDev

PS −2.416 −1.115 −0.541 0.308 0.504 1.284 1.880 0.164
Eye-Ball −2.713 −2.499 −2.290 0.080 1.963 2.081 2.253 0.045
dAMSE −2.103 −1.979 −1.831 0.076 1.648 1.706 1.777 0.022

5% −1.861 −1.720 −1.638 0.055 1.525 1.580 1.631 0.023
MINDIST −5.083 −1.483 −1.317 0.304 1.267 1.339 1.396 0.023

UKX Max Mean Min StDev Min Mean Max StDev

PS −1.738 −1.022 −0.423 0.303 0.444 1.194 2.010 0.435
Eye-Ball −2.621 −2.396 −2.276 0.061 1.865 2.064 2.217 0.068
dAMSE −2.011 −1.942 −1.875 0.035 1.633 1.702 1.757 0.029

5% −1.784 −1.741 −1.670 0.021 1.515 1.587 1.656 0.028
MINDIST −1.620 −1.478 −1.336 0.052 1.263 1.400 4.066 0.327

CAC Max Mean Min StDev Min Mean Max StDev

PS −2.239 −1.152 −0.579 0.333 0.697 1.241 1.643 0.116
Eye-Ball −2.594 −2.430 −2.288 0.046 1.859 2.112 2.365 0.075
dAMSE −1.967 −1.888 −1.811 0.033 1.629 1.678 1.747 0.021

5% −1.763 −1.718 −1.661 0.021 1.523 1.562 1.620 0.018
MINDIST −5.506 −1.955 −1.298 0.991 1.223 1.324 3.755 0.163
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Table 1. Cont.

Lower Tail Upper Tail

DAX Max Mean Min StDev Min Mean Max StDev

PS −2.173 −1.260 −0.506 0.333 0.473 1.123 2.059 0.340
Eye-Ball −2.568 −2.428 −2.238 0.074 1.975 2.095 2.322 0.075
dAMSE −1.986 −1.926 −1.853 0.034 1.696 1.742 1.801 0.021

5% −1.784 −1.724 −1.660 0.026 1.565 1.621 1.670 0.019
MINDIST −4.510 −1.627 −1.378 0.521 1.275 1.365 4.614 0.071

OMXS Max Mean Min StDev Min Mean Max StDev

PS −2.249 −1.170 −0.611 0.354 0.837 1.047 1.429 0.117
Eye-Ball −2.584 −2.369 −2.178 0.082 1.996 2.128 2.304 0.057
dAMSE −1.967 −1.904 −1.804 0.034 1.664 1.718 1.802 0.030

5% −1.764 −1.684 −1.595 0.046 1.533 1.590 1.646 0.026
MINDIST −5.900 −1.491 −1.312 0.440 1.278 1.348 1.482 0.042

KOSPI Max Mean Min StDev Min Mean Max StDev

PS −2.285 −1.106 −0.635 0.371 0.560 1.251 1.993 0.205
Eye-Ball −2.680 −2.481 −2.290 0.061 1.889 2.063 2.197 0.056
dAMSE −2.105 −2.032 −1.916 0.044 1.642 1.684 1.721 0.015

5% −1.857 −1.771 −1.684 0.044 1.530 1.578 1.627 0.020
MINDIST −6.799 −1.584 −1.386 0.421 1.227 1.317 1.388 0.028

NKX Max Mean Min StDev Min Mean Max StDev

PS −2.103 −1.365 −0.623 0.257 0.648 1.368 1.905 0.223
Eye-Ball −2.706 −2.421 −2.249 0.110 1.844 1.980 2.202 0.067
dAMSE −1.955 −1.904 −1.821 0.030 1.624 1.682 1.761 0.027

5% −1.780 −1.728 −1.629 0.036 1.524 1.561 1.606 0.016
MINDIST −7.455 −2.331 −1.341 0.788 1.292 1.407 4.101 0.394

HSI Max Mean Min StDev Min Mean Max StDev

PS −2.006 −1.340 −0.992 0.206 0.821 1.352 2.053 0.360
Eye-Ball −2.687 −2.402 −2.119 0.127 1.978 2.111 2.244 0.053
dAMSE −1.902 −1.845 −1.805 0.017 1.687 1.749 1.865 0.031

5% −1.720 −1.680 −1.636 0.015 1.562 1.620 1.718 0.040
MINDIST −4.866 −1.454 −1.346 0.386 1.307 1.719 4.628 0.938

BVP Max Mean Min StDev Min Mean Max StDev

PS −2.358 −1.134 −0.611 0.253 1.024 1.273 1.893 0.148
Eye-Ball −2.473 −2.312 −2.127 0.074 1.967 2.122 2.316 0.048
dAMSE −1.882 −1.815 −1.748 0.030 1.656 1.710 1.764 0.022

5% −1.733 −1.678 −1.585 0.038 1.560 1.597 1.643 0.018
MINDIST −5.372 −1.710 −1.306 0.529 1.254 1.353 2.641 0.145

AOR Max Mean Min StDev Min Mean Max StDev

PS −2.213 −1.052 −0.791 0.101 0.796 1.095 1.964 0.173
Eye-Ball −2.750 −2.461 −2.268 0.087 1.907 2.011 2.087 0.028
dAMSE −2.015 −1.952 −1.842 0.040 1.601 1.644 1.694 0.022

5% −1.784 −1.708 −1.612 0.036 1.496 1.545 1.603 0.025
MINDIST −4.639 −1.786 −1.349 0.913 1.262 1.318 2.618 0.035

Note: PS—path stability method, dAMSE—minimization of asymptotic mean squared error method, 5%—fixed
threshold method, MINDIST—mean absolute deviation distance metric method. The calculations were performed
with the fGarch [52] and tea [43] packages in R. The following assumptions were made: GARCH—maximum
log-likelihood estimation; PS— j = 1; Eye-Ball—w = 0.02 (with the exception of AOR for right tail w = 0.021), h = 0.9,
ε = 0.3; MINDIST—size of the upper tail ts = 0.15.
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Table 2. Number of cases where Generalized Pareto Distribution parameters are not estimated for the
mean absolute deviation distance metric method.

SPX
Lower

Tail

UKX
Upper

Tail

CAC
Lower

Tail

CAC
Upper

Tail

DAX
Lower

Tail

DAX
Upper

Tail

OMXS
Lower

Tail

KOSPI
Lower

Tail

Number of moving windows
without estimating Generalized

Pareto Distribution
(GPD) parameters

3 22 334 9 47 1 30 8

Number of moving windows 2902 2924 2982 2982 2948 2948 2891 2811
Percentage of moving windows

without estimating GPD parameters 0.10 0.75 11.20 0.30 1.59 0.03 1.04 0.28

NKX
Lower

Tail

NKX
Upper

Tail

HSI
Lower

Tail

HSI
Upper

Tail

BVP
Lower

Tail

BVP
Upper

Tail

AOR
Lower

Tail

Number of moving windows
without estimating GPD parameters 552 59 41 270 19 27 198

Number of moving windows 2781 2781 2803 2803 2821 2821 2927
Percentage of moving windows

without estimating GPD parameters 19.85 2.12 1.46 9.63 0.67 0.96 6.76

Note: the calculations were performed with package evir [53] in R. GPD parameters were estimated by the maximum
log-likelihood method.

Having specified tails of distribution the next step in calculations is to estimate GDP parameters
and Value at Risk forecasts. Guégan and Hassani (2011) [54] underline the fact that the method chosen
to estimate the GPD parameters affects the VaR tremendously. We use log-likelihood method described
in Coles (2001) [18] which is the most popular estimation method for this model, and Formula (8)
for VaR calculation. We examined the out-of-sample 99% and 99.5% VaR estimates for the left and
right tails of returns distribution. Since thresholds based on the optimal choice differ substantially,
it may be expected that GPD parameters and thus VaR estimation for these tail choices will behave
differently. Tables 3 and 4 present results of VaR estimation and Figure 2 presents 99% VaR estimates
for the S&P 500 index. We can see that the VaR estimates across methods differ very slightly despite
the differences in the thresholds. We can expect that the risk is estimated correctly regardless of the
method used to describe the tails. In all the cases the VaR estimates in the left tail are greater than these
in the right tails. Most investors believe that the left tail risk is higher than the right one. It is a natural
consequence of the crashes being perceived as much more turbulent than the booms. Crashes develop
in shorter time intervals than booms and changes of prices are significantly bigger. The results from
Tables 3 and 4 support this perception. Additionally, the PS algorithm highlights the risk asymmetry
harder than other methods and the asymmetry tends to be greater for a more extreme risk, i.e., a higher
VaR confidence.
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Figure 2. Value at Risk 0.01 and Value at Risk 0.99 estimates from the Conditional Extreme Value
Theory model with Eye-Ball and fixed threshold methods for S&P 500 returns.
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Table 3. Value at Risk 0.01 and Value at Risk 0.99 estimates from the Conditional Extreme Value Theory
model with optimal tail selection.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

SPX Max Mean Min StDev Min Mean Max StDev

PS −13.170 −2.910 −1.312 1.695 1.072 2.449 11.897 1.517
Eye-Ball −12.647 −2.819 −1.306 1.620 1.072 2.482 11.917 1.530
dAMSE −13.001 −2.878 −1.313 1.669 1.078 2.472 11.959 1.529

5% −13.192 −2.915 −1.329 1.691 1.084 2.471 11.970 1.527
MINDIST x x x x 1.076 2.458 11.934 1.520

UKX Max Mean Min StDev Min Mean Max StDev

PS −14.349 −2.854 −1.228 1.530 1.018 2.412 11.371 1.213
Eye-Ball −14.191 −2.847 −1.225 1.520 1.015 2.347 11.251 1.193
dAMSE −14.135 −2.841 −1.219 1.514 1.026 2.376 11.305 1.203

5% −14.121 −2.842 −1.225 1.509 1.042 2.389 11.415 1.212
MINDIST −14.207 −2.855 −1.229 1.528 x x x x

CAC Max Mean Min StDev Min Mean Max StDev

PS −14.763 −3.523 −1.481 1.667 1.334 3.061 12.235 1.371
Eye-Ball −13.665 −3.369 −1.470 1.533 1.368 3.049 12.080 1.349
dAMSE −13.624 −3.395 −1.486 1.530 1.325 3.055 12.134 1.365

5% −13.919 −3.424 −1.479 1.567 1.326 3.048 12.161 1.362
MINDIST x x x x x x x x

DAX Max Mean Min StDev Min Mean Max StDev

PS −13.571 −3.417 −1.504 1.529 1.425 3.015 11.543 1.284
Eye-Ball −12.837 −3.278 −1.474 1.438 1.348 2.966 11.032 1.252
dAMSE −12.829 −3.316 −1.505 1.452 1.361 2.961 11.141 1.259

5% −13.095 −3.365 −1.510 1.480 1.383 2.979 11.296 1.274
MINDIST x x x x x x x x

OMXS Max Mean Min StDev Min Mean Max StDev

PS −11.838 −3.361 −1.469 1.637 1.326 2.993 10.483 1.423
Eye-Ball −12.185 −3.358 −1.386 1.684 1.327 2.988 10.367 1.411
dAMSE −12.115 −3.349 −1.419 1.666 1.324 3.004 10.398 1.417

5% −12.048 −3.377 −1.425 1.675 1.324 3.000 10.374 1.410
MINDIST x x x x 1.325 3.017 10.570 1.434

KOSPI Max Mean Min StDev Min Mean Max StDev

PS −15.382 −2.958 −1.484 1.569 1.216 2.465 13.476 1.381
Eye-Ball −14.804 −2.860 −1.424 1.514 1.224 2.464 13.148 1.353
dAMSE −15.063 −2.865 −1.448 1.535 1.226 2.470 13.282 1.368

5% −15.412 −2.941 −1.486 1.570 1.218 2.458 13.215 1.361
MINDIST x x x x 1.217 2.472 13.371 1.382

NKX Max Mean Min StDev Min Mean Max StDev

PS −17.531 −3.810 −1.945 1.815 1.549 3.119 15.191 1.547
Eye-Ball −17.391 −3.703 −1.825 1.772 1.557 3.097 14.479 1.478
dAMSE −17.404 −3.719 −1.847 1.777 1.556 3.108 14.675 1.495

5% −17.531 −3.763 −1.873 1.789 1.551 3.125 14.888 1.522
MINDIST x x x x x x x x

HSI Max Mean Min StDev Min Mean Max StDev

PS −18.454 −3.524 −1.684 1.858 1.570 3.182 16.768 1.688
Eye-Ball −17.963 −3.559 −1.729 1.811 1.546 3.165 16.881 1.713
dAMSE −17.924 −3.513 −1.700 1.791 1.547 3.156 16.836 1.707

5% −18.104 −3.516 −1.681 1.815 1.565 3.173 16.776 1.702
MINDIST x x x x x x x x
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Table 3. Cont.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

BVP Max Mean Min StDev Min Mean Max StDev

PS −16.900 −4.128 −2.667 1.571 2.430 3.710 13.812 1.251
Eye-Ball −15.850 −3.981 −2.537 1.452 2.423 3.726 13.790 1.230
dAMSE −16.218 −3.985 −2.533 1.509 2.437 3.725 13.820 1.246

5% −16.279 −3.993 −2.575 1.499 2.443 3.713 13.849 1.247
MINDIST x x x x x x x x

AOR Max Mean Min StDev Min Mean Max StDev

PS −11.313 −2.598 −1.147 1.279 0.975 2.126 9.146 1.016
Eye-Ball −10.784 −2.529 −1.143 1.213 0.972 2.121 8.809 0.980
dAMSE −10.986 −2.548 −1.154 1.230 0.966 2.135 8.961 1.000

5% −11.188 −2.602 −1.156 1.263 0.961 2.126 9.005 1.009
MINDIST x x x x 0.977 2.124 9.040 1.012

Note: PS—path stability method, dAMSE—minimization of asymptotic mean squared error method, 5%—fixed
threshold method, MINDIST—mean absolute deviation distance metric method, x—VaR was not calculated. The
calculations were performed with the evir package [53] in R. Generalized Pareto Distribution parameters were
estimated by the maximum log-likelihood method.

Table 4. Value at Risk 0.005 and Value at Risk 0.995 estimates from the Conditional Extreme Value
Theory model with optimal tail selection.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

SPX Max Mean Min StDev Min Mean Max StDev

PS −15.376 −3.369 −1.525 1.981 1.206 2.716 13.192 1.681
Eye-Ball −14.556 −3.209 −1.532 1.857 1.197 2.742 13.195 1.689
dAMSE −15.094 −3.308 −1.515 1.940 1.210 2.734 13.248 1.692

5% −15.373 −3.367 −1.538 1.973 1.218 2.734 13.263 1.690
MINDIST x x x x 1.210 2.722 13.223 1.683

UKX Max Mean Min StDev Min Mean Max StDev

PS −16.329 −3.240 −1.390 1.748 1.146 2.701 12.709 1.353
Eye-Ball −16.484 −3.261 −1.397 1.772 1.146 2.627 12.584 1.332
dAMSE −16.169 −3.226 −1.378 1.736 1.156 2.665 12.624 1.342

5% −16.146 −3.226 −1.385 1.729 1.176 2.681 12.766 1.353
MINDIST −16.235 −3.239 −1.389 1.747 x x x x

CAC Max Mean Min StDev Min Mean Max StDev

PS −17.052 −4.055 −1.730 1.917 1.555 3.500 13.819 1.547
Eye-Ball −16.224 −3.845 −1.694 1.776 1.603 3.476 13.545 1.497
dAMSE −15.971 −3.922 −1.733 1.780 1.549 3.496 13.732 1.539

5% −16.304 −3.960 −1.725 1.824 1.549 3.485 13.742 1.535
MINDIST x x x x x x x x

DAX Max Mean Min StDev Min Mean Max StDev

PS −15.665 −3.935 −1.720 1.769 1.620 3.365 12.789 1.422
Eye-Ball −14.703 −3.703 −1.673 1.661 1.523 3.332 12.409 1.407
dAMSE −14.858 −3.809 −1.720 1.682 1.548 3.308 12.385 1.396

5% −15.171 −3.876 −1.726 1.716 1.577 3.330 12.569 1.414
MINDIST x x x x x x x x

OMXS Max Mean Min StDev Min Mean Max StDev

PS −14.028 −3.887 −1.704 1.928 1.486 3.380 11.852 1.604
Eye-Ball −14.397 −3.907 −1.586 1.992 1.508 3.363 11.889 1.596
dAMSE −14.222 −3.853 −1.637 1.948 1.480 3.380 11.757 1.597

5% −14.142 −3.886 −1.643 1.958 1.481 3.375 11.733 1.590
MINDIST x x x x 1.483 3.392 11.921 1.613
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Table 4. Cont.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

KOSPI Max Mean Min StDev Min Mean Max StDev

PS −18.143 −3.394 −1.695 1.849 1.344 2.761 15.188 1.564
Eye-Ball −17.295 −3.290 −1.667 1.751 1.355 2.741 14.673 1.509
dAMSE −17.714 −3.277 −1.643 1.805 1.356 2.765 15.035 1.553

5% −18.184 −3.370 −1.692 1.853 1.346 2.752 14.961 1.546
MINDIST x x x x 1.345 2.766 15.101 1.565

NKX Max Mean Min StDev Min Mean Max StDev

PS −20.151 −4.413 −2.251 2.080 1.700 3.449 17.001 1.729
Eye-Ball −20.613 −4.376 −2.130 2.093 1.707 3.418 16.183 1.642
dAMSE −19.997 −4.324 −2.143 2.044 1.708 3.431 16.387 1.664

5% −20.125 −4.369 −2.172 2.056 1.701 3.453 16.663 1.700
MINDIST x x x x x x x x

HSI Max Mean Min StDev Min Mean Max StDev

PS −21.248 −4.044 −1.913 2.151 1.763 3.578 18.759 1.882
Eye-Ball −20.707 −4.072 −1.940 2.098 1.748 3.589 19.063 1.925
dAMSE −20.714 −4.032 −1.929 2.086 1.746 3.553 18.830 1.902

5% −20.897 −4.033 −1.912 2.110 1.767 3.571 18.764 1.896
MINDIST x x x x x x x x

BVP Max Mean Min StDev Min Mean Max StDev

PS −19.470 −4.757 −3.046 1.807 2.729 4.189 15.698 1.420
Eye-Ball −17.825 −4.639 −3.006 1.653 2.743 4.213 15.798 1.402
dAMSE −18.782 −4.636 −2.965 1.745 2.753 4.196 15.701 1.418

5% −18.849 −4.644 −3.001 1.733 2.747 4.183 15.731 1.419
MINDIST x x x x x x x x

AOR Max Mean Min StDev Min Mean Max StDev

PS −13.345 −3.007 −1.301 1.522 1.090 2.367 10.294 1.146
Eye-Ball −13.021 −2.931 −1.285 1.466 1.092 2.351 9.863 1.086
dAMSE −12.990 −2.935 −1.303 1.470 1.083 2.375 10.137 1.132

5% −13.214 −3.002 −1.307 1.508 1.078 2.366 10.187 1.142
MINDIST x x x x 1.091 2.364 10.208 1.142

Note: PS—path stability method, dAMSE—minimization of asymptotic mean squared error method, 5%—fixed
threshold method, MINDIST—mean absolute deviation distance metric method, x—VaR was not calculated. The
calculations were performed with the evir package [53] in R. Generalized Pareto Distribution parameters were
estimated by the maximum log-likelihood method.

Backtesting results for VaR for all the indices are summarized in Tables 5–14. Assessing the
quality of the estimated VaR, based on Kupiec’s test it may be concluded that all the procedures work
impeccably for the considered assets and at both confidence levels. The only one exception is the
automated Eye-Ball method, which fails for S&P 500 for 99% VaR in the left tail (significance level of
the 5% test). The risk is underestimated in this case and too many exceedances of VaR appear. The
results of Christoffersen’s test are the same as for Kupiec’s test. This indicates the dependence of the
first exceedance for the same index and the same level of confidence. A more restrictive backtest is the
duration independence test. In the left tail all models (except the MINDIST method) passes the VaR
duration-based procedure. In the right tail for 99.5% VaR, only ones (in the case of Hang Seng), the
test rejects the null hypothesis for the PS, automated Eye-Ball and 5%-quantile methods. The dAMSE
method produces accurate VaR forecasts in all the cases. The most rigorous validation procedure is
the Dynamic Quantile test. It checks if a sequence of violations is time independent up to five-day
lags. According to the test, violations are dependent in about 20% of cases (in nine cases for the PS,
automated Eye-Ball, 5%-quantile methods and in eight cases for the dAMSE method). The test rejects
the null hypothesis in the same cases regardless which method is used. If then VaR estimate is incorrect
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for the particular asset we can expect the same result to be reached for all methods. VaR estimates
obtained using all tail selection methods have a similar goodness of fit in terms of values of the loss
function and values of mean absolute deviation between the returns and the quantiles if exceedances
occur for individual indices. In addition, VaR estimates for the right tail fit better to empirical quantiles
for all indices than VaR estimates for the left tail.

Table 5. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection, path
stability method, Value at Risk 0.01 and Value at Risk 0.99.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 29 35 1.168 4.381 1.860 33.083 0.597 0.037 23 1.358 1.726 0.359 6.625 0.491 0.028
0.280 0.112 0.173 0.000 3.192 0.244 0.422 0.549 0.578 2.163

UKX 29 27 0.178 5.239 0.000 15.823 0.580 0.034 25 0.653 1.084 0.080 1.628 0.613 0.029
0.673 0.073 0.999 0.045 2.376 0.419 0.581 0.777 0.990 3.895

CAC 29 23 1.710 2.068 0.146 7.090 0.910 0.042 33 0.331 1.070 3.008 16.617 0.782 0.039
0.191 0.356 0.702 0.527 4.378 0.565 0.586 0.083 0.034 4.597

DAX 29 22 2.102 2.433 0.001 6.398 0.809 0.040 34 0.667 1.461 1.863 6.316 0.604 0.037
0.147 0.296 0.981 0.603 4.637 0.414 0.482 0.172 0.612 2.228

OMXS 28 21 2.416 2.723 0.646 2.753 0.626 0.038 23 1.312 1.681 0.380 7.171 0.609 0.035
0.120 0.256 0.422 0.949 5.144 0.252 0.431 0.538 0.518 3.648

KOSPI 28 26 0.164 0.650 0.000 4.318 0.644 0.036 24 0.639 1.052 0.001 4.541 0.324 0.027
0.685 0.723 1.000 0.827 2.296 0.424 0.591 0.976 0.805 1.531

NKX 27 29 0.051 4.417 0.060 13.262 1.144 0.050 29 0.051 0.662 0.776 14.574 0.626 0.038
0.822 0.110 0.806 0.103 4.888 0.822 0.718 0.378 0.068 2.950

HSI 28 31 0.307 1.001 0.063 16.317 0.668 0.043 24 0.615 1.030 0.642 4.494 0.614 0.037
0.579 0.606 0.802 0.038 2.749 0.433 0.598 0.423 0.810 3.541

BVP 28 22 1.494 1.840 0.688 5.312 1.064 0.050 34 1.127 1.956 0.037 22.867 0.815 0.047
0.222 0.399 0.407 0.724 6.070 0.289 0.376 0.848 0.004 4.910

AOR 29 25 0.662 2.227 0.536 4.060 0.646 0.032 28 0.056 0.598 2.716 2.842 0.331 0.024
0.416 0.328 0.464 0.852 3.690 0.812 0.742 0.099 0.944 1.182

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.

Table 6. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection, path
stability method, Value at Risk 0.005 and Value at Risk 0.995.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 14 17 0.407 0.607 0.506 11.597 0.658 0.021 15 0.016 0.172 0.104 15.210 0.360 0.015
0.524 0.738 0.477 0.170 2.213 0.898 0.917 0.747 0.055 1.187

UKX 14 17 0.370 3.294 0.000 21.818 0.435 0.019 17 0.370 0.569 0.345 1.015 0.565 0.017
0.543 0.193 0.999 0.005 1.952 0.543 0.752 0.557 0.998 3.437

CAC 14 14 0.057 0.189 0.553 1.992 0.945 0.025 14 0.057 0.189 0.014 1.897 1.088 0.023
0.811 0.910 0.457 0.981 3.861 0.811 0.910 0.905 0.984 4.169

DAX 14 11 1.046 1.128 2.233 1.669 0.993 0.023 19 1.133 1.380 0.011 12.161 0.576 0.020
0.306 0.569 0.135 0.990 4.268 0.287 0.502 0.918 0.144 1.731

OMXS 14 9 2.392 2.448 0.019 2.582 0.789 0.022 10 1.548 1.617 0.001 1.875 0.759 0.019
0.122 0.294 0.890 0.958 4.706 0.213 0.445 0.971 0.985 3.110
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Table 6. Cont.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

KOSPI 14 15 0.062 0.223 1.723 0.819 0.502 0.020 12 0.318 0.421 0.263 16.149 0.288 0.015
0.803 0.894 0.189 0.999 2.012 0.573 0.810 0.608 0.040 1.076

NKX 13 15 0.084 3.391 0.108 12.589 1.403 0.030 17 0.646 0.855 0.075 25.689 0.632 0.021
0.771 0.184 0.743 0.127 3.905 0.421 0.652 0.784 0.001 2.513

HSI 14 13 0.076 0.197 0.041 16.087 0.838 0.024 11 0.704 0.791 4.737 1.195 0.763 0.021
0.783 0.906 0.839 0.041 2.371 0.401 0.673 0.030 0.997 2.901

BVP 14 13 0.089 0.210 0.075 14.323 1.067 0.029 19 1.539 1.797 0.016 12.720 0.741 0.026
0.765 0.900 0.785 0.074 5.642 0.215 0.407 0.899 0.122 3.781

AOR 14 13 0.191 4.150 1.788 15.481 0.639 0.018 18 0.724 0.947 0.552 4.654 0.260 0.013
0.662 0.126 0.181 0.050 2.933 0.395 0.623 0.457 0.794 0.976

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.

Table 7. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection,
Eye-Ball method, Value at Risk 0.01 and Value at Risk 0.99.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 29 41 4.428 6.644 1.863 34.470 0.592 0.037 20 3.178 3.456 0.042 8.756 0.528 0.028
0.035 0.036 0.172 0.000 3.443 0.075 0.178 0.837 0.363 2.147

UKX 29 29 0.002 4.543 0.514 14.371 0.551 0.034 31 0.105 0.770 1.568 2.202 0.560 0.029
0.964 0.103 0.474 0.073 2.442 0.746 0.681 0.210 0.974 3.894

CAC 29 31 0.047 0.698 0.101 8.827 0.793 0.042 34 0.566 1.351 2.468 17.324 0.785 0.039
0.829 0.705 0.751 0.357 4.326 0.452 0.509 0.116 0.027 4.503

DAX 29 30 0.009 0.626 0.202 3.258 0.705 0.040 36 1.361 2.251 0.471 7.359 0.649 0.037
0.924 0.731 0.653 0.917 4.746 0.243 0.324 0.493 0.498 2.563

OMXS 28 20 3.109 3.388 0.013 3.430 0.666 0.038 24 0.894 1.296 0.272 6.145 0.594 0.035
0.078 0.184 0.910 0.905 5.142 0.344 0.523 0.602 0.631 3.635

KOSPI 28 28 0.000 0.564 0.229 9.140 0.709 0.036 24 0.639 1.052 0.001 4.783 0.317 0.027
0.983 0.754 0.632 0.331 2.322 0.424 0.591 0.972 0.781 1.533

NKX 27 31 0.356 4.252 0.276 12.514 1.196 0.051 34 1.300 2.142 0.283 17.632 0.563 0.038
0.551 0.119 0.599 0.130 5.023 0.254 0.343 0.595 0.024 3.402

HSI 28 28 0.000 0.565 0.035 17.671 0.698 0.043 25 0.343 0.793 0.634 4.072 0.595 0.037
0.995 0.754 0.851 0.024 2.714 0.558 0.673 0.426 0.851 3.440

BVP 28 24 0.668 1.080 0.077 7.404 1.114 0.049 34 1.127 1.956 0.037 22.342 0.822 0.047
0.414 0.583 0.782 0.494 6.160 0.289 0.376 0.848 0.004 5.081

AOR 29 29 0.003 1.107 0.052 3.223 0.627 0.032 28 0.056 0.598 3.758 2.716 0.338 0.024
0.960 0.575 0.820 0.920 3.804 0.812 0.742 0.053 0.951 1.153

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.
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Table 8. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection,
Eye-Ball method, Value at Risk 0.005 and Value at Risk 0.995.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 14 21 2.561 2.868 0.216 12.667 0.672 0.021 15 0.016 0.172 0.257 14.876 0.332 0.015
0.110 0.238 0.642 0.124 2.610 0.898 0.917 0.612 0.062 1.184

UKX 14 17 0.370 3.294 0.000 21.918 0.436 0.019 20 1.784 2.059 0.122 3.030 0.547 0.017
0.543 0.193 0.999 0.005 2.012 0.182 0.357 0.727 0.932 3.434

CAC 14 16 0.078 0.251 0.058 13.447 0.996 0.025 16 0.078 0.251 0.011 1.291 1.031 0.023
0.780 0.882 0.810 0.097 3.808 0.780 0.882 0.915 0.996 4.063

DAX 14 16 0.105 0.280 1.303 2.611 0.821 0.023 18 0.677 0.898 0.085 10.843 0.684 0.021
0.746 0.869 0.254 0.956 4.358 0.411 0.638 0.770 0.211 1.880

OMXS 14 8 3.459 3.503 0.001 3.064 0.892 0.022 10 1.548 1.617 0.001 1.873 0.779 0.019
0.063 0.173 0.977 0.930 4.653 0.213 0.445 0.971 0.985 3.046

KOSPI 14 16 0.259 0.442 3.686 1.021 0.587 0.020 11 0.722 0.808 0.267 17.951 0.305 0.015
0.611 0.802 0.055 0.998 1.974 0.396 0.668 0.605 0.022 1.143

NKX 13 16 0.302 3.363 0.144 12.617 1.397 0.030 16 0.302 0.488 0.002 24.677 0.722 0.021
0.582 0.186 0.704 0.126 3.923 0.582 0.784 0.967 0.002 2.476

HSI 14 13 0.076 0.197 0.084 15.863 0.793 0.024 11 0.704 0.791 4.737 1.195 0.746 0.021
0.783 0.906 0.772 0.044 2.438 0.401 0.673 0.030 0.997 2.730

BVP 14 14 0.001 0.140 0.117 13.457 1.165 0.029 19 1.539 1.797 0.016 12.535 0.737 0.026
0.978 0.932 0.732 0.097 5.672 0.215 0.407 0.899 0.129 3.908

AOR 14 16 0.124 3.279 1.642 11.548 0.605 0.018 18 0.724 0.947 0.078 4.130 0.283 0.013
0.725 0.194 0.200 0.173 3.150 0.395 0.623 0.781 0.845 0.938

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC–Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.

Table 9. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection,
minimization of asymptotic mean squared error method, Value at Risk 0.01 and Value at Risk 0.99.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 29 37 2.039 4.890 2.400 36.292 0.593 0.037 21 2.477 2.783 0.000 7.932 0.511 0.028
0.153 0.087 0.121 0.000 3.267 0.116 0.249 0.991 0.440 2.100

UKX 29 29 0.002 4.543 0.514 14.377 0.557 0.034 28 0.054 0.596 1.663 1.529 0.591 0.029
0.964 0.103 0.474 0.072 2.435 0.816 0.742 0.197 0.992 3.874

CAC 29 30 0.001 0.611 0.049 9.012 0.800 0.042 33 0.331 1.070 3.008 16.609 0.795 0.039
0.974 0.737 0.825 0.341 4.314 0.565 0.586 0.083 0.034 4.530

DAX 29 27 0.217 0.716 0.014 3.751 0.745 0.040 36 1.361 2.251 0.471 7.528 0.641 0.037
0.641 0.699 0.906 0.879 4.699 0.243 0.324 0.493 0.481 2.437

OMXS 28 21 2.416 2.723 0.018 2.774 0.636 0.038 23 1.312 1.681 0.380 7.202 0.597 0.035
0.120 0.256 0.893 0.948 5.100 0.252 0.431 0.538 0.515 3.650

KOSPI 28 27 0.045 0.569 0.028 4.637 0.708 0.036 23 1.000 1.380 0.003 4.820 0.327 0.027
0.832 0.752 0.867 0.796 2.307 0.317 0.502 0.954 0.777 1.506

NKX 27 31 0.356 4.252 0.276 12.522 1.169 0.050 32 0.608 1.353 1.254 14.410 0.582 0.038
0.551 0.119 0.599 0.129 5.006 0.435 0.508 0.263 0.072 3.309

HSI 28 30 0.137 0.786 0.034 16.670 0.702 0.043 26 0.152 0.639 0.325 3.834 0.580 0.037
0.712 0.675 0.854 0.034 2.722 0.696 0.726 0.568 0.872 3.487

BVP 28 24 0.668 1.080 0.183 7.201 1.104 0.049 34 1.127 1.956 0.037 22.890 0.802 0.047
0.414 0.583 0.669 0.515 6.213 0.289 0.376 0.848 0.004 4.986

AOR 29 29 0.003 1.107 0.052 3.214 0.603 0.031 27 0.183 0.686 3.140 2.948 0.337 0.024
0.960 0.575 0.820 0.920 3.760 0.669 0.710 0.076 0.938 1.164

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.
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Table 10. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection,
minimization of asymptotic mean squared error method, Value at Risk 0.005 and Value at Risk 0.995.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 14 19 1.272 1.522 0.063 12.079 0.651 0.021 14 0.018 0.154 0.169 16.629 0.361 0.015
0.259 0.467 0.802 0.148 2.331 0.893 0.926 0.681 0.034 1.137

UKX 14 17 0.370 3.294 0.000 21.872 0.455 0.019 19 1.204 1.453 0.188 2.197 0.544 0.017
0.543 0.193 0.999 0.005 2.012 0.272 0.484 0.664 0.974 3.417

CAC 14 16 0.078 0.251 0.058 13.544 0.930 0.025 16 0.078 0.251 0.011 1.498 0.964 0.023
0.780 0.882 0.810 0.094 3.819 0.780 0.882 0.915 0.993 4.107

DAX 14 11 1.046 1.128 2.233 1.631 1.084 0.023 19 1.133 1.380 0.011 11.775 0.666 0.021
0.306 0.569 0.135 0.990 4.330 0.287 0.502 0.918 0.162 1.847

OMXS 14 11 0.905 0.989 0.060 1.643 0.669 0.022 10 1.548 1.617 0.001 1.875 0.761 0.019
0.341 0.610 0.806 0.990 4.649 0.213 0.445 0.971 0.985 3.106

KOSPI 14 17 0.581 0.788 2.955 1.475 0.543 0.020 11 0.722 0.808 0.267 17.962 0.300 0.015
0.446 0.674 0.086 0.993 2.035 0.396 0.668 0.605 0.022 1.049

NKX 13 17 0.646 3.479 0.009 12.105 1.331 0.030 15 0.084 0.247 0.062 24.310 0.746 0.021
0.421 0.176 0.925 0.147 4.024 0.771 0.884 0.803 0.002 2.513

HSI 14 13 0.076 0.197 0.041 16.130 0.832 0.024 13 0.076 0.197 0.580 14.609 0.661 0.021
0.783 0.906 0.839 0.041 2.344 0.783 0.906 0.446 0.067 2.854

BVP 14 14 0.001 0.140 0.117 13.181 1.095 0.029 19 1.539 1.797 0.016 12.848 0.723 0.026
0.978 0.932 0.732 0.106 5.765 0.215 0.407 0.899 0.117 3.857

AOR 14 15 0.009 0.164 0.202 1.258 0.613 0.018 18 0.724 0.947 0.552 4.790 0.254 0.013
0.924 0.921 0.653 0.996 3.011 0.395 0.623 0.457 0.780 0.959

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.

Table 11. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection,
mean absolute deviation distance metric method, Value at Risk 0.01 and Value at Risk 0.99.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 29 x x x x x x x 21 2.477 2.783 0.000 7.942 0.526 0.028
x x x x x 0.116 0.249 0.991 0.439 2.096

UKX 29 29 0.002 4.543 0.514 14.355 0.539 0.034 x x x x x x x
0.964 0.103 0.474 0.073 2.390 x x x x x

CAC 29 x x x x x x x x x x x x x x
x x x x x x x x x x

DAX 29 x x x x x x x x x x x x x x
x x x x x x x x x x

OMXS 28 x x x x x x x 23 1.312 1.681 0.380 7.156 0.583 0.035
x x x x x 0.252 0.431 0.538 0.520 3.653

KOSPI 28 x x x x x x x 23 1.000 1.380 0.003 4.822 0.328 0.027
x x x x x 0.317 0.502 0.954 0.776 1.502

NKX 27 x x x x x x x x x x x x x x
x x x x x x x x x x

HSI 28 x x x x x x x x x x x x x x
x x x x x x x x x x

BVP 28 x x x x x x x x x x x x x x
x x x x x x x x x x

AOR 29 x x x x x x x 28 0.056 0.598 2.716 2.858 0.333 0.024
x x x x x 0.812 0.742 0.099 0.943 1.181

Note: x—VaR was not calculated, ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic,
CC—Christoffersen’s test statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s
test statistic (the DQ test included constant, VaR, first five lagged exceedances and one lagged squared return),
p—p value, ADmean (ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if
exceedances occur as in McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33). The
calculations were performed with the rugarch [56] and GAS [57] packages in R.
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Table 12. Backtesting for the Conditional Extreme Value Theory model with optimal tail selection,
mean absolute deviation distance metric method, Value at Risk 0.005 and Value at Risk 0.995.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 14 x x x x x x x 14 0.018 0.154 0.169 16.631 0.377 0.015
x x x x x 0.893 0.926 0.681 0.034 1.132

UKX 14 17 0.370 3.294 0.000 21.844 0.440 0.019 x x x x x x x
0.543 0.193 0.999 0.005 1.966 x x x x x

CAC 14 x x x x x x x x x x x x x x
x x x x x x x x x x

DAX 14 x x x x x x x x x x x x x x
x x x x x x x x x x

OMXS 14 x x x x x x x 9 2.392 2.448 0.398 2.662 0.830 0.019
x x x x x 0.122 0.294 0.528 0.954 3.114

KOSPI 14 x x x x x x x 12 0.318 0.421 0.263 16.144 0.281 0.015
x x x x x 0.573 0.810 0.608 0.040 1.048

NKX 13 x x x x x x x x x x x x x x
x x x x x x x x x x

HSI 14 x x x x x x x x x x x x x x
x x x x x x x x x x

BVP 14 x x x x x x x x x x x x x x
x x x x x x x x x x

AOR 14 x x x x x x x 18 0.724 0.947 0.552 4.645 0.260 0.013
x x x x x 0.395 0.623 0.457 0.795 0.978

Note: x—VaR was not calculated, ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic,
CC—Christoffersen’s test statistic, UD—Christoffersen and Pelletier’s test statistic, DQ – Engle and Manganelli’s test
statistic (the DQ test included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value,
ADmean (ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances
occur as in McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of
the null hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS
[57] packages in R.

Table 13. Backtesting for the Conditional Extreme Value Theory model with 95th quantile for tail
selection, Value at Risk 0.01 and Value at Risk 0.99.

Lower Tail, VaR 0.01 Upper Tail, VaR 0.99

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 29 35 1.168 4.381 1.860 33.129 0.595 0.037 21 2.477 2.783 0.000 7.923 0.513 0.028
0.280 0.112 0.173 0.000 3.200 0.116 0.249 0.991 0.441 2.087

UKX 29 28 0.054 4.849 0.163 14.999 0.569 0.034 27 0.178 0.681 0.998 1.513 0.603 0.029
0.816 0.089 0.686 0.059 2.425 0.673 0.711 0.318 0.992 3.863

CAC 29 29 0.023 0.593 0.061 5.811 0.795 0.042 33 0.331 1.070 3.008 16.617 0.798 0.039
0.879 0.743 0.804 0.668 4.337 0.565 0.586 0.083 0.034 4.580

DAX 29 25 0.725 1.153 0.112 4.540 0.754 0.040 35 0.985 1.826 1.145 8.090 0.630 0.037
0.394 0.562 0.738 0.805 4.668 0.321 0.401 0.285 0.425 2.304

OMXS 28 20 3.109 3.388 0.056 3.433 0.643 0.038 24 0.894 1.296 0.513 6.189 0.582 0.035
0.078 0.184 0.814 0.904 5.085 0.344 0.523 0.474 0.626 3.681

KOSPI 28 25 0.361 0.810 0.005 4.719 0.686 0.036 24 0.639 1.052 0.001 4.764 0.324 0.027
0.548 0.667 0.942 0.787 2.258 0.424 0.591 0.972 0.782 1.515

NKX 27 30 0.170 4.295 0.196 12.848 1.161 0.050 29 0.051 0.662 0.776 14.507 0.621 0.038
0.680 0.117 0.658 0.117 4.950 0.822 0.718 0.378 0.069 3.115

HSI 28 31 0.307 1.001 0.063 16.341 0.675 0.043 25 0.343 0.793 0.634 4.075 0.587 0.037
0.579 0.606 0.802 0.038 2.730 0.558 0.673 0.426 0.850 3.517

BVP 28 23 1.037 1.416 0.137 7.877 1.140 0.049 34 1.127 1.956 0.037 22.737 0.817 0.047
0.308 0.493 0.711 0.446 6.143 0.289 0.376 0.848 0.004 4.950

AOR 29 25 0.662 2.227 0.536 4.062 0.647 0.032 27 0.183 0.686 3.140 2.870 0.343 0.024
0.416 0.328 0.464 0.851 3.696 0.669 0.710 0.076 0.942 1.193

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.
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Table 14. Backtesting for the Conditional Extreme Value Theory model with 95th quantile for tail
selection, Value at Risk 0.005 and Value at Risk 0.995.

Lower Tail, VaR 0.005 Upper Tail, VaR 0.995

Index ET T1 UC
p

CC
p

UD
p

DQ
p

ADmean
ADmax Loss T1 UC

p
CC
p

UD
p

DQ
p

ADmean
ADmax Loss

SPX 14 18 0.783 1.008 0.292 11.586 0.623 0.021 14 0.018 0.154 0.169 16.621 0.363 0.015
0.376 0.604 0.589 0.171 2.224 0.893 0.926 0.681 0.034 1.119

UKX 14 17 0.370 3.294 0.000 21.832 0.446 0.019 18 0.731 0.954 0.203 1.545 0.558 0.017
0.543 0.193 0.999 0.005 2.002 0.392 0.621 0.653 0.992 3.402

CAC 14 15 0.001 0.152 0.197 13.759 0.960 0.025 16 0.078 0.251 0.011 1.507 0.975 0.023
0.981 0.927 0.657 0.088 3.840 0.780 0.882 0.915 0.993 4.159

DAX 14 11 1.046 1.128 2.233 1.630 1.025 0.023 19 1.133 1.380 0.011 11.987 0.624 0.021
0.306 0.569 0.135 0.990 4.294 0.287 0.502 0.918 0.152 1.809

OMXS 14 10 1.548 1.617 0.000 1.892 0.708 0.022 10 1.548 1.617 0.001 1.858 0.776 0.019
0.213 0.445 0.991 0.984 4.630 0.213 0.445 0.971 0.985 3.139

KOSPI 14 15 0.062 0.223 1.723 0.830 0.521 0.020 12 0.318 0.421 0.263 16.133 0.285 0.015
0.803 0.894 0.189 0.999 1.981 0.573 0.810 0.608 0.041 1.059

NKX 13 16 0.302 3.363 0.039 12.101 1.368 0.030 15 0.084 0.247 0.062 24.262 0.714 0.021
0.582 0.186 0.844 0.147 3.972 0.771 0.884 0.803 0.002 2.493

HSI 14 13 0.076 0.197 0.041 16.098 0.835 0.024 11 0.704 0.791 4.737 1.195 0.758 0.021
0.783 0.906 0.839 0.041 2.357 0.401 0.673 0.030 0.997 2.884

BVP 14 13 0.089 0.210 0.075 14.319 1.170 0.029 19 1.539 1.797 0.016 12.764 0.742 0.026
0.765 0.900 0.785 0.074 5.703 0.215 0.407 0.899 0.120 3.821

AOR 14 15 0.009 3.410 0.760 12.367 0.560 0.018 18 0.724 0.947 0.552 4.656 0.259 0.013
0.924 0.182 0.383 0.136 2.934 0.395 0.623 0.457 0.794 0.986

Note: ET (T1)—expected (actual) number of exceedances, UC—Kupiec’s test statistic, CC—Christoffersen’s test
statistic, UD—Christoffersen and Pelletier’s test statistic, DQ—Engle and Manganelli’s test statistic (the DQ test
included constant, VaR, first five lagged exceedances and one lagged squared return), p—p value, ADmean
(ADmax)—mean (maximum) absolute deviation between the returns and the quantiles if exceedances occur as in
McAleer and Da Veiga (2008) [55], Loss—loss function Q described by Formula (33), bold—rejection of the null
hypothesis at the significance level of 0.05. The calculations were performed with the rugarch [56] and GAS [57]
packages in R.

4. Conclusions

The GARCH-EVT approach allows us to model the tails of the time-varying conditional return
distribution. The main problem in using the method in practice relates to the selection of the appropriate
tail fraction of the distribution above which the asymptotic properties hold. In this paper we extend
the state-of-the-art by conducting a comparative study of accuracy of VaR forecasts, when each VaR
estimate is calculated with an optimal choice of the distribution tail fraction. We used four different
optimization procedures and compared the results to an approach based on a fixed, 95th quantile
of distribution as a threshold. Such a choice of threshold is seen as standard in the conditional EVT
approach. The GARCH-EVT model performs relatively well in estimating the risk for all choices of
threshold. Backtesting procedures indicate that regardless of the choice of the tail, approximately
the same accuracy of VaR prediction is provided. This conclusion presents a real dilemma to the
importance of an appropriate selection of a threshold in financial applications. We found that the
optimal tail selection methods do not improve accuracy of the VaR prediction relative to the standard
method and hence our research hypothesis is not confirmed. Investors may then use the conditional
EVT approach, taking the 95th percentile of the sample as a threshold, to obtain the accurate estimate
of tail risk.
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