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Abstract: A statistical process control (SPC) chart is one of the most important techniques for
monitoring a process. Typically, a certain root cause or a disturbance in a process would result in
the presence of a systematic control chart pattern (CCP). Consequently, the effective recognition
of CCPs has received considerable attention in recent years for their potential use in improving
process quality. However, most studies have focused on the recognition of CCPs for SPC applications
alone. Specifically, even though numerous studies have addressed the increased use of the SPC and
engineering process control (EPC) mechanisms, very little research has discussed the recognition of
CCPs for multiple-input multiple-output (MIMO) systems. It is much more difficult to recognize the
CCPs of an MIMO system since two or more disturbances are simultaneously involved in the process.
The purpose of this study is thus to propose several machine learning (ML) classifiers to overcome
the difficulties in recognizing CCPs in MIMO systems. Because of their efficient and fast algorithms
and effective classification performance, the considered ML classifiers include an artificial neural
network (ANN), support vector machine (SVM), extreme learning machine (ELM), and multivariate
adaptive regression splines (MARS). Furthermore, one problem may arise due to the existence of
embedded mixture CCPs (MCCPs) in MIMO systems. In contrast to using typical process outputs
alone in a classifier, this study employs both process outputs and EPC compensation to ensure the
effectiveness of CCP recognition. Experimental results reveal that the proposed classifiers are able to
effectively recognize MCCPs for MIMO systems.

Keywords: control chart pattern; SPC; EPC; MIMO; artificial neural network; support vector machine;
extreme learning machine; multivariate adaptive regression splines

1. Introduction

Because of their ability to detect disturbances, statistical process control (SPC) charts are widely
used in monitoring industrial processes. A process is considered to be out of control when systematic
patterns are exhibited in SPC charts [1,2]. Disturbances contribute to the presence of systematic control
chart patterns (CCPs) for a process. The recognition of CCPs is very important since CCPs are typically
associated with certain root causes that antagonistically influence the process [3–6].

Because it is important for process personnel to determine root causes for process improvement,
many studies have discussed the effectiveness of CCP recognition through various machine learning
(ML) mechanisms. An artificial neural network (ANN) approach was discussed to recognize CCPs
for a multivariate process [7]. ANNs were employed to identify a set of subclasses of abnormal
multivariate CCPs, and the χ2 statistic served as the input to the ANNs. Additionally, the proposed
mechanism was evaluated for a real case study, and good results were reported. In [8], a hybrid
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ANN model was proposed to detect and classify single and mixture CCPs (MCCPs), determine the
major corresponding parameters and estimate the starting point of unnatural patterns. That work also
developed a method for pattern simulation in variable and attribute control charts.

In [9], researchers indicated that ANNs with features extracted from process data as an input
vector representation can facilitate efficient pattern recognition. Based on a set of seven shape
features, they designed a multilayered perceptron neural network to recognize CCPs for a process.
A procedure, including a clustering module and a classifier module, was proposed to recognize
CCPs [10]. The classifier module, which contained the multilayer perceptron, probabilistic neural
networks, and radial basis function neural networks (RBFNNs), was used to determine the membership
of the patterns. In [11], a mechanism based on an RBFNN was proposed for CCP recognition.
Four modules, including feature extraction, feature selection, classification, and a learning algorithm,
were designed in the proposed mechanism. The experimental results demonstrated that the proposed
approach had good performance for recognition of eight CCPs. The researchers also designed
two modules, a feature extraction module and a classifier module, for CCP recognition. Multilayer
perceptron neural networks and a radial basis function were used in the classifier module [12].

In addition to the use of ANNs, support vector machine (SVM) is another commonly used
classifier for CCP recognition. A method combining fuzzy SVM, a hybrid kernel function, and a genetic
algorithm (GA) was designed for CCP recognition [13]. The results showed that the fuzzy SVM-based
classifier outperformed the methods of a learning vector quantization network, multilayer perceptron
network, and probability neural network. In [6], a weighted support vector machine (WSVM) method
was proposed for automated process monitoring. The researchers discussed the superiority of WSVM
over traditional SVM in the situations of various fault scenarios. A hybrid procedure containing
independent component analysis (ICA) and SVM was proposed for CCP recognition [3]. In this
procedure, ICA was used to capture independent components (ICs), and the ICs served as the input
variables of the SVM for building a CCP recognition model. In [14], the researchers indicated that
SVM classifiers were better than ANNs for CCP recognition. They also demonstrated an SVM-based
CCP recognition model for process outputs with first-order autoregressive (AR(1)) noise. Instead
of identifying single CCPs, they designed a hybrid model that included the wavelet transform and
improved particle swarm optimization-based support vector machine (P-SVM) for the recognition of
MCCPs [15]. A raw mixture pattern signal was decomposed into two basic pattern signals through
the wavelet transform. Then, those two basic pattern signals were recognized by multiclass SVMs.
Because of the generalization capability, they presented a fuzzy SVM classifier for CCP recognition [16].
The proposed combined scheme included the fuzzy classifier subnetwork, SVM subnetwork, and
optimization subnetwork.

While most studies have focused on the use of ANN and SVM classifiers for CCP recognition,
extreme learning machine (ELM) techniques have been used to identify MCCPs for a process [17,18].
The multivariate adaptive regression splines (MARS) scheme was also applied to the recognition of
MCCPs for an SPC and engineering process control (EPC) process [19,20].

By conducting this little review, we have found that CCP recognition has been extensively
addressed; however, little research has investigated CCP recognition for an SPC-EPC system.
The reasons why SPC-EPC is important to industrial processes can be described as follows. Traditional
SPC charts presume that the process outputs should be independent, which is not a practical
consideration for real-world applications [21–23]. Correlated process outputs cause increases in false
alarm signals and misinterpretation of the function of SPC charts [4,18]. In fact, correlation broadly
exists in continuous and chemical processes [4,24,25]. The integration of EPC and SPC mechanisms is
commonly used to overcome this independence difficulty for SPC applications [18,20,26,27]. Although
the approach is able to overcome the correlation problems for SPC applications, the use of EPC may
conceal the effects of underlying process disturbances. These embedded disturbance effects imply that
process personnel have more difficulty recognizing underlying CCPs [28].
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In [4], the systems were represented as an AR(1), a moving average (MA(1)) or an autoregressive
moving average (ARMA(1, 1)) model. The effect of autocorrelation on the pattern recognition capabilities
was investigated. However, the study did not utilize EPC actions for CCP recognition. The authors also
reported that the first-order integrated moving average (IMA(1, 1)) component was used as the noise
in the SPC-EPC system [19,20]. Although they considered EPC actions in the CCP recognition scheme,
they only considered the univariate system of an SPC-EPC. In this study, we refer to a multivariate
SPC-EPC system as a multiple-input multiple-output (MIMO) process. It is a challenging task to
recognize the underlying CCPs in an MIMO system since two or more process outputs, EPC actions,
and various disturbances are involved in the system. Little attention has been given to the utilization
of ML classifiers for CCP recognition in MIMO systems that are commonly encountered in practical
manufacturing processes. Accordingly, the purpose of the present study is to present an effective
approach for recognizing MCCPs for an MIMO system.

Because the ANN and SVM techniques have the ability to seize nonlinear and complex features
of an SPC-EPC process with a high degree of accuracy, this study is motivated to propose ANN
and SVM classifiers for MCCP recognition for an MIMO system. The present study also considers
ELM and MARS as classifiers for the proposed mechanism. The reason for using ELM is that it has
the advantages of fast learning speed and good generalization performance [29,30]. The reason for
choosing MARS is that it has been adopted for CCP recognition in only a few studies, although MARS
is effective in classification [31,32].

Since they are used to tune the MIMO system, EPC actions are extracted and serve as the inputs
for the classifiers in this study. Experimental results show that the proposed ML classifiers with EPC
inputs are able to effectively recognize various MCCPs for an MIMO system. The rest of this study is
organized as follows. Section 2 discusses models of MIMO systems and four types of disturbances.
Additionally, the difficulty of MCCP recognition for an MIMO system is presented. Four ML techniques
for CCP recognition used in this study are introduced in Section 3. Section 4 presents the results of
simulated experiments and demonstrates the performance of the proposed approaches. The final
section addresses the research findings and conclusions inferred from this study.

2. MIMO and Disturbance Models

2.1. MIMO Models

Suppose a process with m inputs and p outputs is expressed by [33–35]:

yi = α+ βxi−1 + di, (1)

where yi(p× 1) represents a vector of process outputs at time i, α(p× 1) is the offset parameters,
β(p×m) is defined as the gain parameters, xi(m× 1) is a vector of controllable variables at time i
(i.e., EPC adjustments), and di(p× 1) is defined as the process noise at time i. This study assumes that
the process noise follows a white noise.

This study assumes that B is the estimate of β. In addition, this study assumes that α̂0 is the
estimate of α at i = 0. Because the output offset would be updated after each run, the predicted model
is depicted as follows:

ŷi = α̂0 + Bxi−1. (2)

Before implementing the EPC adjustments, the initial process input is:

x0 = B−1(τ− α̂0), (3)

where τ is the target vector.
This study considers a multivariate exponentially weighted moving average (MEWMA) controller

as the EPC scheme [33]. This MEWMA controller is defined as follows:
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α̂i = ω (yi − Bxi−1) + (1−ω) α̂i−1, (4)

where ω is a discount factor, and the range of ω is from 0 to 1. For the ith run, xi can be described
as follows:

xi = (I − B′
(
BB′)−1B

)
xi−1 + B′(BB′)−1

(
τ− d̂i

)
. (5)

Let α0 = 0 and τ = 0; then, the off-target amount at run i can be described as follows:

yi = (1−ω)i−1γ0 +
i−1∑
t=0

(1−ω)t(di−t − di−t−1). (6)

Since di has mean vector µ and variance Σ, the covariance of yi becomes:

Σyi = (1 +
ω

2−ω
(1− (1−ω)2(i−1)))Σ. (7)

2.2. Disturbance Models

For an MIMO process, disturbances may interrupt the system at any time. When a disturbance
has intruded, the noise for an MIMO process can be expressed as follows:

di = Di, (8)

where Di stands for a vector of certain disturbance at time i. As a result, Equation (1) is remodeled
as follows:

yi = α+ βxi−1 + Di. (9)

This study examines four types of disturbances for an MIMO process. Those disturbances are
defined as follows [15,36]:

Cycle : DCYC
i = sin

(2πi
e

)
Ai + ai, (10)

Systematic : DSYS
i = h(−1)i + ai, (11)

Shift : DSHI
i = Ri + ai, (12)

Stratification : DSTA
i = vai, (13)

where DCYC
i represents the value of cycle (CYC) disturbance at time i, Ai stands for the cycle amplitude,

which is assumed to follow a uniform distribution within the range of (1.5, 2.5), e represents the cycle
period, which is assumed to be e = 8, DSYS

i represents the value of systematic (SYS) disturbance at
time i, and h stands for the magnitude of the systematic pattern in terms of σ2, which is assumed to
follow a uniform distribution within the range of (1.0, 3.0), DSHI

i represents the value of shift (SHI)
disturbance at time i, Ri stands for the level of shift disturbance, which is assumed to follow a uniform
distribution within the range of (1, 2), DSTA

i represents the value of stratification (STA) disturbance at
time i, and v stands for random noise, which is assumed to follow a uniform distribution within the
range of (0.2, 0.4).

3. Methodology and Experimental Results

In [19], although their CCP recognition designs were associated with EPC actions, they only
implemented their designs for a univariate SPC-EPC system. However, it is much more complex
to recognize MCCPs for MIMO systems since more than two process outputs and EPC actions are
involved. Furthermore, in addition to the method of ELM, this study will employ their methods
(i.e., ANN, SVM and MARS) to illustrate the classification capability.
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Because the ANN, SVM, and MARS techniques were introduced by [19,37–39], this study briefly
addresses the modeling concepts of ELM here.

3.1. ELM Classifier

For ELM modeling, it randomly assigns the input weights and analytically determines the
output weights for the single-hidden-layer feedforward neural networks (SFNNs) [40]. The concept
of ELM is provided as follows [40]. Suppose there are N arbitrary distinct samples (xi, ti),
where xi = [xi1, xi2, . . . , xin]

T
∈ Rn and ti = [ti1, ti2, . . . , tim]

T
∈ Rm. SFNNs with Ñ hidden neurons and

activation function f (x) can reach N samples with zero error. Thus [40],

Fβ = T, (14)

where

F
(
w1, . . . , wÑ, b1, . . . , bÑ, x1, . . . , xN

)
=


f (w1 · x1 + b1) · · · f

(
wÑ · x1 + bÑ

)
...

. . .
...

f (w1 · xN + b1) · · · f
(
wÑ · xN + bÑ

)


N×Ñ

;

βÑ×m = (βT
1 , . . . , βT

Ñ
)

t
;

TN×m = (TT
1 , . . . , TT

N)
t
;

wi = [wi1, wi2, . . . , win]
T;

i = 1, 2, . . . , Ñ, represents the weight vector connecting the ith hidden node and the input nodes;
βi = [βi1, βi2, . . . , βim]

T, stands for the weight vector connecting the ith hidden node and the output
nodes; wi · x j stands for the inner product of wi and x j; bi stands for the threshold of the ith hidden
node; and F represents the hidden layer output matrix.

Subsequently, the establishment of the output weights attain the least-square solution of the given
linear system. The minimum norm least-square solution of the linear system becomes

β̂ = FΨT, (15)

where FΨ is the Moore–Penrose generalized inverse of matrix F.

3.2. MCCPs for an MIMO Process

This study assumes that an MIMO process is disturbed by four single disturbances, which are
described by Equations (10)–(13). When any one of those four disturbances (i.e., Equations (10)–(13))
is introduced in the MIMO system, this study refers to that situation as the presence of a single CCP.
When any two or more of those four disturbances are concurrently present in the MIMO system,
we refer to that situation as the presence of an MCCP in this study. Additionally, this study considers
two cases of process outputs for an MIMO process. The first case is that two process outputs and
two single disturbances concurrently exist in an MIMO process. The second case is that three process
outputs and three single disturbances concurrently exist in an MIMO process. Since this study assumes
that two and three single disturbances may be concurrently introduced into the MIMO process, there are
six and four types of MCCPs that need to be recognized. Table 1 shows those types of MCCPs for
two and three process outputs, respectively.

To demonstrate the difficulty of recognizing MCCPs for an MIMO process, this study performs
a series of computer simulations. Assume that an MIMO process (i.e., Equation (1)) includes two process
outputs (i.e., y1 and y2). Additionally, suppose that there are no disturbances occurring before time 100,
and the mean vector of the process output is on target at [0, 0]1 for the first 100 observations. After time
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101, single SHI and CYC disturbances are concurrently introduced into the first and second outputs
of the MIMO process, respectively. Figure 1 shows the output observations of the MIMO system for
600 runs. Figure 1 clearly shows that the SHI and CYC disturbances are hardly differentiated since the
two outputs exhibit similar patterns. A similar pattern results from the compensation of EPC. Figure 2
displays the three output observations when single SHI, CYC, and STR disturbances are concurrently
introduced into an MIMO process after time 101. These three disturbances are much more difficult
to differentiate.

Table 1. Types of mixture control chart patterns (MCCPs) for two and three single disturbances in
an MIMO process.

2 Single Disturbances 3 Single Disturbances

(1) {SHI-CYC} (1) {SHI-CYC-SYS}
(2) {SHI-SYS} (2) {SHI-CYC-STR}
(3) {SHI-STR} (3) {SHI-SYS-STR}
(4) {CYC-SYS} (4) {CYC-SYS-STR}
(5) {CYC-STR}
(6) {SYS-STR}
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3.3. Research Framework

Figure 3 presents a generalized depiction of the research methodologies used in this study.
As shown in Figure 3, from left to right, the data vectors for the classifiers are generated by
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computer simulations. In this study, RStudio [41] was used to generate the MIMO process data
vectors. Additionally, because the previous studies used the ratio of 7:3 for training and testing data
vectors [19,20], we followed their suggestion. Therefore, a ratio of 7:3 for training and testing data
vectors is used for all cases. The four ML classifiers, ANN, SVM, ELM, and MARS, are investigated
for MCCP recognition. The final phase addresses the recognition results and comparative analysis.
To recognize the MCCPs for an MIMO system, we design two different schemes for those four classifiers.
In the first scheme, the process outputs y (i.e., Equation (6)) is the only variable that serves as the input
for the classifiers. Therefore, the first scheme is similar to traditional approaches for CCP recognition.
Since this study considers the case of EPC in the underlying system, the second scheme includes x
(i.e., Equation (5)) and y (i.e., Equation (6)) as the classifiers’ inputs and considers Z (i.e., the classification
category) as the classifiers’ output.
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3.4. Four Cases and the Recognition Results

(1) Case 1: Two process outputs with the first scheme (i.e., without the use of EPC)

In this study, the first scheme only employs the process outputs y to serve as the input variable
for the classifiers. In the case of two outputs for an MIMO process, this study uses 1400 and 600 data
vectors for the training and testing phases, respectively. As an example, by considering the type of
{SHI-CYC} in Table 1, the first 700 data vectors are generated from the first process output (i.e., y1)
with the presence of {SHI} alone, and the data vectors from 701 to 1400 are generated from the second
process output (i.e., y2) with the presence of {CYC} alone. The testing data structure is similar to the
training data structure. That is, the first 300 data vectors are generated from the first process output
(i.e., y1) using the {SHI} disturbance alone, and the final data vectors from 301 to 600 are generated
from the second process output (i.e., y2) using the {CYC} disturbance alone. In this example, this study
sets the values of the output node (i.e., Z) as either 0 or 1. A value of 0 represents the presence of the
SHI disturbance, and a value of 1 stands for the presence of the CYC disturbance.

This study considers the accurate identification rate (AIR) as the model performance measurement.
The AIR is described as follows:

AIR =
na

N
, (16)
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where N represents the total number of data vectors used for the recognition process and na stands for
the number of data vectors in N where the true disturbance type is accurately recognized.

After performing classification tasks with the ANN, SVM, ELM and MARS classifiers, Table 2
shows the recognition results for six types of MCCPs for an MIMO process. In this study, the parameters
of ANN include {ni, nh, no}. The meanings of those parameters are the number of neurons in the input
layer, hidden layer and output layer, respectively. Typically, because there are no specific rules for
choosing the number of hidden nodes, we use the rules of thumb to determine the numbers for the
ANN design. The hidden nodes were settled to range from (2a − 2) to (2a + 2), where a is the number
of input variables. Because a = 1 in this experiment, the hidden nodes were settled to 1, 2, 3, or 4.
Furthermore, we use the learning rate at the default value (i.e., 0.01) to ensure consistency. A total of
10,000 training iterations (i.e., default value) were implemented for each network. The ANN design
with the highest AIR is employed as the optimal network topology.

Table 2. Results of MCCP recognition for two process outputs (first scheme: without the use of EPC).

Types of MCCPs AIR-ANN
(Parameters: {ni, nh, no})

AIR-SVM
(Parameters: {C, γ})

AIR-ELM
(Parameters: {En, Eh, Eo})

AIR-MARS
(Parameters: {null})

SHI-CYC
68.50% 68.67% 68.60% 68.50%
{1, 1, 1} {2−5, 2−5} {1, 6, 1}

SHI-SYS
65.00% 64.00% 65.32% 64.17%
{1, 4, 1} {2−5, 2−5} {1, 6, 1}

SHI-STR
76.50% 77.50% 77.05% 76.50%
{1, 3, 1} {2−4, 2−5} {1, 5, 1}

CYC-SYS
51.50% 57.33% 56.38% 58.50%
{1, 4, 1} {2−2, 2−5} {1, 29, 1}

CYC-STR
64.33% 64.17% 61.00% 64.83%
{1, 3, 1} {2−1, 2−5} {1, 6, 1}

SYS-STR
73.67% 73.00% 71.81% 73.00%
{1, 2, 1} {20, 2−5} {1, 18, 1}

For the SVM design, because the radial basis function (RBF) is one of the most popular kernel
functions for various learning algorithms, we use an RBF in our experiments. In addition, the values
of two parameters (C and γ) would mainly affect the performance of the SVM [38]. There are no
specific rules for determining the values of C and γ. This study uses a grid search for the parameter
settings [42]. The grid search method utilizes exponentially growing sequences of C and γ to obtain
the appropriate parameters. The settings of C and γ that would generally generate the highest AIR
were selected. The trained SVM model with the best parameter settings, denoted {C, γ}, is employed
for the MCCP recognition process.

For the ELM design, we used the notation of {En, Eh, Eo} to represent the parameter settings.
They include the number of neurons in the input layer, hidden layer and output layer, respectively.
The most important ELM parameter is the number of hidden nodes. Because the previous study used
the hidden nodes varying from 1 to 30 [19], we followed their suggestion. For each number of nodes,
an ELM model is repeated 30 times, and the average root mean squared error (RMSE) of each node is
computed. The number of hidden nodes that provides the smallest average RMSE value is chosen as
the best parameter setting for the ELM scheme. Furthermore, because there are no specific parameter
settings for the MARS scheme, this study simply denotes the parameter settings as {null} for the
MARS classifier.

Table 2 shows that the average AIRs of MCCPs are 66.58%, 67.45%, 66.69%, and 67.58% for the
ANN, SVM, ELM, and MARS classifiers, respectively. The accurate identification percentages for
MCCP recognition seem to be acceptable but are not satisfactory. Accordingly, the second scheme of
the classifiers is considered for performing MCCP recognition tasks.

(2) Case 2: Two process outputs with the second scheme (i.e., with the use of EPC)
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In this study, the second scheme employs both EPC actions x and process outputs y as the input
variables for the classifiers. For this case, this study uses two sets of inputs for the training and testing
phases of the classifiers.

Again, consider the type of {SHI-CYC} in Table 1 as an example. The first set of inputs is the
EPC actions, and the first 700 data vectors are captured from the first EPC outputs (i.e., x1) with the
compensation of {SHI}, and the data vectors from 701 to 1400 are captured from the second EPC
outputs (i.e., x2) with the compensation of {CYC}. The second set of inputs is the process outputs; the
first 700 data vectors are generated from the first process outputs (i.e., y1) with the presence of {SHI},
and the data vectors from 701 to 1400 are generated from the second process outputs (i.e., y2) with the
presence of {CYC}.

The testing data structure is as follows. The first input set contains 600 data vectors. The first 300
data vectors contain the first EPC outputs (i.e., x1) with the compensation of {SHI}, and the data vectors
from 301 to 600 are generated from the second EPC outputs (i.e., x2) with the compensation of {CYC}.
The second input set also contains 600 data vectors. The first 300 data vectors contain the first process
outputs (i.e., y1) with the compensation of {SHI}, and the data vectors from 301 to 600 are generated
from the second process outputs (i.e., y2) with the compensation of {CYC}. The structure of the output
node of the classifiers is the same as in case 1. That is, a value of Z = 0 represents the presence of the
SHI disturbance, and a value of Z = 1 stands for the presence of the CYC disturbance.

After implementing classification tasks with the ANN, SVM, ELM, and MARS classifiers using
both EPC and process outputs as inputs, Table 3 displays the recognition results for six types of MCCPs
for an MIMO process. Table 3 shows that the average AIRs of MCCPs are 81.09%, 82.72%, 81.41%,
and 78.19% for the ANN, SVM, ELM, and MARS classifiers, respectively. The accurate identification
percentages for MCCP recognition are now satisfactory.

Table 3. Results of MCCP recognition for two process outputs (second scheme: with the use of EPC).

Types of MCCPs AIR-ANN
(Parameters: {ni, nh, no})

AIR-SVM
(Parameters: {C, γ})

AIR-ELM
(Parameters: {En, Eh, Eo})

AIR-MARS
(Parameters: {null})

SHI-CYC
99.67% 99.67% 99.93% 99.17%
{2, 3, 1} {25, 20} {2, 29, 1}

SHI-SYS
100.00% 100.00% 99.98% 100.00%
{2, 2, 1} {23, 25} {2, 30, 1}

SHI-STR
98.67% 99.83% 99.76% 99.83%
{2, 3, 1} {25, 22} {2, 30, 1}

CYC-SYS
58.67% 53.33% 58.85% 55.50%
{2, 6, 1} {23, 2−4} {2, 21, 1}

CYC-STR
72.33% 69.83% 70.57% 62.33%
{2, 3, 1} {2−3, 2−5} {2, 29, 1}

SYS-STR
57.17% 73.67% 59.38% 52.33%
{2, 2, 1} {2−3, 2−3} {2, 30, 1}

(3) Case 3: Three process outputs with the first scheme (i.e., without the use of EPC)

In this case, we use 2100 and 900 data vectors for the training and testing phases, respectively.
Since there are three process outputs for an MIMO process, the training phase contains the first 700 data
vectors generated from the first process output (i.e., y1), the data vectors from 701 to 1400 are generated
from the second process output (i.e., y2), and the data vectors from 1401 to 2100 are generated from the
third process output (i.e., y3). The testing phase contains the first 300 data vectors generated from the
first process output (i.e., y1), the data vectors from 301 to 600 are generated from the second process
output (i.e., y2), and the data vectors from 601 to 900 are generated from the third process output
(i.e., y3). In addition, this study sets the values of the output node (i.e., Z) as 0, 1, or 2. A value of 0
represents the presence of the first single disturbance, a value of 1 represents the presence of the second
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single disturbance, and a value of 2 represents the presence of the third single disturbance. All other
parameter settings are the same as in case (1).

After completing classification tasks with the four classifiers, Table 4 shows the recognition results
for four types of MCCPs for an MIMO process. This table shows that the average AIRs of MCCPs
are 50.42%, 45.00%, 49.44%, and 36.75% for the ANN, SVM, ELM, and MARS classifiers, respectively.
Most of the average AIRs are lower than 50.00%, especially for MARS, which has the lowest average
AIR value. The accurate identification percentages for MCCP recognition are still not satisfactory.
Therefore, this study investigates the use of the second scheme for the four classifiers.

Table 4. Results of MCCP recognition for three process outputs (first scheme: without the use of EPC).

Types of MCCPs AIR-ANN
(Parameters: {ni, nh, no})

AIR-SVM
(Parameters: {C, γ})

AIR-ELM
(Parameters: {En, Eh, Eo})

AIR-MARS
(Parameters: {null})

{SHI-CYC-SYS} 47.11% 42.33% 32.23% 33.33%
{1, 1, 1} {25, 2−5} {1, 10, 1}

{SHI-CYC-STR} 53.89% 30.67% 48.18% 42.33%
{1, 4, 1} {25, 2−5} {1, 13, 1}

{SHI-SYS-STR} 54.78% 43.00% 56.88% 38.22%
{1, 4, 1} {25, 2−5} {1, 7, 1}

{CYC-SYS-STR} 45.89% 64.00% 60.45% 33.11%
{1, 3, 1} {25, 2−5} {1, 14, 1}

(4) Case 4: Three process outputs with the second scheme (i.e., with the use of EPC)

In this case, the structure of the data vectors for the classification tasks is almost the same as in
case (3), except that one more data vector, the EPC outputs, was included and acted as another input
variable for the classifiers. Table 5 shows the outputs of MCCP recognition under case 4. The average
AIRs of MCCPs are 64.06%, 67.69%, 52.37%, and 55.84% for the ANN, SVM, ELM, and MARS classifiers,
respectively. These AIRs are greatly enhanced after using the extra EPC outputs.

Table 5. Results of MCCP recognition for three process outputs (second scheme: with the use of EPC).

Types of MCCPs AIR-ANN
(Parameters: {ni, nh, no})

AIR-SVM
(Parameters: {C, γ})

AIR-ELM
(Parameters: {En, Eh, Eo})

AIR-MARS
(Parameters: {null})

{SHI-CYC-SYS} 72.11% 67.44% 50.00% 66.67%
{2, 3, 1} {25, 22} {2, 29, 1}

{SHI-CYC-STR} 77.78% 79.56% 60.66% 66.67%
{2, 3, 1} {2−1, 25} {2, 30, 1}

{SHI-SYS-STR} 78.56% 79.33% 49.97% 66.33%
{2, 3, 1} {25, 23} {2, 30, 1}

{CYC-SYS-STR} 27.78% 44.44% 48.86% 23.67%
{2, 6, 1} {25, 2−3} {2, 30, 1}

4. Discussion

In this study, an MIMO system is assumed to be disturbed by four types of disturbances
characterized by Equations (10)–(13). This study used ANN, SM, ELM and MARS to recognize the
mixture CCPs in an MIMO system.

Because multivariate EPC adjustments were implemented, the disturbances could be embedded in
the MIMO system. As a result, the recognition capability of CCPs may not be acceptable. On the other
hand, the lack of acceptable recognition capability leads to involvement of some other important
factors. Since the recognition performance of the first design is not satisfactory for the cases of two and
three process outputs in an MIMO process, this study proposes the use of EPC outputs to serve as
an extra input variable for the classifiers. This favorable design brings good improvement in MCCP
recognition in an MIMO process.
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For MCCP recognition by the ANN classifier, the AIR percentage improvement (denoted by
AIR_ANNPI) of the proposed second scheme over the first scheme is defined as follows:

AIR_ANNPI =
(AIR_ANN2nd − AIR_ANN1st)

AIR_ANN1st
∗ 100%, (17)

where AIR_ANN2nd is the AIR from performing the ANN classifier with the second scheme and
AIR_ANN1st is the AIR from performing the ANN classifier with the first scheme.

Similarly, for MCCP recognition by the SVM, ELM and MARS classifiers, the AIR percentage
improvements (denoted by AIR_SVMPI, AIR_ELMPI, and AIR_MARSPI, respectively) of the proposed
second scheme over the first scheme can be defined as follows:

AIR_SVMPI =
(AIR_SVM2nd − AIR_SVM1st)

AIR_SVM1st
∗ 100%, (18)

AIR_ELMPI =
(AIR_ELM2nd − AIR_ELM1st)

AIR_ELM1st
∗ 100%, (19)

AIR_MARSPI =
(AIR_MARS2nd −AIR_MARS1st)

AIR_MARS1st
∗ 100%. (20)

For MCCP recognition in an MIMO process with two outputs using the ANN classifier, AIR_ANNPI
of the second scheme over the first scheme was 21.78%. In addition, AIR_SVMPI, AIR_ELMPI,
and AIR_MARSPI of the second scheme over the first scheme were 22.65%, 22.07%, and 15.70%,
respectively. Furthermore, for an MIMO process with three outputs using the ANN, SVM, ELM,
and MARS classifiers, the associated AIR_ANNPI, AIR_SVMPI, AIR_ELMPI and AIR_MARSPI were
27.05%, 50.43% and 5.94% and 51.94%, respectively.

Figures 4 and 5 display the AIR percentage improvements obtained by employing the proposed
scheme instead of the first scheme for an MIMO process with two and three outputs, respectively.
As shown in Figures 4 and 5, considerable accuracy improvements can be achieved by using the
proposed scheme.
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multiple-output (MIMO) process with two outputs, using the second scheme instead of the first scheme.
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5. Conclusions

The automation (i.e., EPC) and information technology of big data are two of the primary
concepts of the Industry 4.0. Therefore, intelligent and automated production systems that can
effectively monitor multivariate quality characteristics of a process (i.e., MIMO system) have attracted
considerable attention. When an MSPC signal is triggered, remedial actions that include the recognition
of CCPs, determination of faults, and removal of the root causes should be taken to stabilize the process
and return to in control conditions.

This paper is concerned with the recognition of mixture CCPs for MIMO systems. This task is
particularly challenging since it encounters the difficulties of embedded and MCCPs in an MIMO
system. This study presents several ML techniques for recognizing six and four types of MCCPs
for two and three process outputs, respectively. Two schemes exist for designing the ML techniques.
While there is no EPC involved in the first scheme, the second scheme includes EPC actions for all the
ML classifiers. The performance of the proposed classification technique (i.e., the second scheme) is
confirmed through a series of computer experiments. The proposed scheme maintains satisfactory
performance in recognizing MCCPs for an MIMO process.

In this study, the MCCPs consist of four single CCPs, and an attempt to combine five or more single
CCPs would be a valuable contribution of future research. However, one difficulty in classification
design that will be encountered is that the number of categories of the classifiers’ output nodes
will increase when more types of MCCPs are involved in an MIMO system. Hybrid modeling
techniques [31,32] and/or other ML techniques, such as artificial immune systems and random forests,
may be worthy of implementation to decrease the number of output categories in the future.

Author Contributions: Conceptualization, Y.E.S.; Methodology, Y.E.S.; Software, Y.-T.H.; Writing and editing,
Y.E.S. and Y.-T.H. All authors have read and agreed to the published version of the manuscript.

Funding: This work is partially supported by the Ministry of Science and Technology of the Republic of China
(Taiwan), Grant No. 108-2221-E-030-005.

Acknowledgments: The authors would like to thank editors and anonymous reviewers for their careful reading
and helpful remarks.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shewhart, W.A. Economic Control of Quality of Manufactured Product; D. Van Nostrand Company, Inc.:
New York, NY, USA, 1931.



Mathematics 2020, 8, 102 13 of 14

2. Western Electric Company. Statistical Quality Control Handbook; Western Electric Company: New York, NY,
USA, 1956.

3. Lu, C.J.; Shao, Y.E.; Li, P.H. Mixture control chart patterns recognition using independent component analysis
and support vector machine. Neurocomputing 2011, 74, 1914–2011. [CrossRef]

4. De la Torre Gutiérrez, H.; Pham, D.T. Identification of patterns in control charts for processes with statistically
correlated noise. Int. J. Prod. Res. 2018, 56, 1504–1520. [CrossRef]

5. Gutierrez, H.D.; Pham, D.T. Estimation and generation of training patterns for control chart pattern
recognition. Comput. Ind. Eng. 2016, 95, 82–2016.

6. Xanthopoulos, P.; Razzaghi, T. A weighted support vector machine method for control chart pattern
recognition. Comput. Ind. Eng. 2014, 70, 134–149. [CrossRef]

7. El-Midany, T.T.; El-Baz, M.A.; Abd-Elwahed, M.S. A proposed framework for control chart pattern recognition
in multivariate process using artificial neural networks. Expert Syst. Appl. 2010, 37, 1035–1042. [CrossRef]

8. Ghomi, S.F.; Lesany, S.A.; Koochakzadeh, A. Recognition of unnatural patterns in process control charts
through combining two types of neural networks. Appl. Soft Comput. 2011, 11, 5444–5456. [CrossRef]

9. Gauri, S.; Chakraborty, S. Improved recognition of control chart patterns using artificial neural networks. Int.
J. Adv. Manuf. Technol. 2008, 36, 1191–1201. [CrossRef]

10. Ebrahimzadeh, A.; Addeh, J.; Rahmani, Z. Control chart pattern recognition using K-MICA clustering and
neural networks. ISA Trans. 2012, 51, 111–119. [CrossRef]

11. Addeh, A.; Khormali, A.; Golilarz, N.A. Control chart pattern recognition using RBF neural network with
new training algorithm and practical features. ISA Trans. 2018, 79, 202–216. [CrossRef]

12. Ebrahimzadeh, A.; Ranaee, V. Control chart pattern recognition using an optimized neural network and
efficient features. ISA Trans. 2010, 49, 387–393. [CrossRef]

13. Zhou, X.; Jiang, P.; Wang, X. Recognition of control chart patterns using fuzzy SVM with a hybrid kernel
function. J. Intell. Manuf. 2015, 29, 51–67. [CrossRef]

14. Lin, S.Y.; Guh, R.S.; Shiue, Y.R. Effective recognition of control chart patterns in autocorrelated data using
a support vector machine based approach. Comput. Ind. Eng. 2011, 61, 1123–1134. [CrossRef]

15. Du, S.; Huang, D.; Lv, J. Recognition of concurrent control chart patterns using wavelet transform
decomposition and multiclass support vector machines. Comput. Ind. Eng. 2013, 66, 683–695. [CrossRef]

16. Khormali, A.; Addeh, J. A novel approach for recognition of control chart patterns: Type-2 fuzzy clustering
optimized support vector machine. ISA Trans. 2016, 63, 256–264. [CrossRef]

17. Yang, W.A.; Zhou, W.; Liao, W.; Guo, Y. Identification and quantification of concurrent control chart patterns
using extreme-point symmetric mode decomposition and extreme learning machines. Neurocomputing 2015,
147, 260–270. [CrossRef]

18. Shao, Y.E.; Chiu, C.C. Applying emerging soft computing approaches to control chart pattern recognition for
an SPC–EPC process. Neurocomputing 2016, 201, 28–2016. [CrossRef]

19. Shao, Y.E.; Chang, P.Y.; Lu, C.J. Applying two-stage neural network based classifiers to the identification of
mixture control chart patterns for an SPC-EPC process. Complexity 2017, 2017, 10. [CrossRef]

20. Shao, Y.E.; Lin, S.C. Using a time delay neural network approach to diagnose the out-of-control signals for
a multivariate normal process with variance shifts. Mathematics 2019, 7, 959. [CrossRef]

21. Alshraideh, H.; Khatatbeh, E. A gaussian process control chart for monitoring autocorrelated process data.
J. Qual. Technol. 2014, 46, 317–322. [CrossRef]

22. Qiu, P.; Li, W.; Li, J. A new process control chart for monitoring short-range serially correlated data.
Technometrics 2019. [CrossRef]

23. Kadri, F.; Harrou, F.; Chaabane, S.; Sun, Y.; Tahon, C. Seasonal ARMA-based SPC charts for anomaly detection:
Application to emergency department systems. Neurocomputing 2016, 173, 2102–2114. [CrossRef]

24. He, Q.P.; Wang, J. Statistical process monitoring as a big data analytics tool for smart manufacturing. J. Process
Control 2017, 67, 35–43. [CrossRef]

25. Capaci, F.; Vanhatalo, E.; Kulahci, M.; Bergquist, B. The revised Tennessee Eastman process simulator as
testbed for SPC and DoE methods. Qual. Eng. 2019, 31, 212–229. [CrossRef]

26. John, B.; Singhal, S. An application of integrated EPC–SPC methodology for simultaneously monitoring
multiple output characteristics. Int. J. Qual. Reliab. Manag. 2019, 36, 669–685. [CrossRef]

27. Diao, G.; Zhao, L.; Yao, Y. A dynamic quality control approach by improving dominant factors based on
improved principal component analysis. Int. J. Prod. Res. 2015, 53, 4287–4303. [CrossRef]

http://dx.doi.org/10.1016/j.neucom.2010.06.036
http://dx.doi.org/10.1080/00207543.2017.1360530
http://dx.doi.org/10.1016/j.cie.2014.01.014
http://dx.doi.org/10.1016/j.eswa.2009.05.092
http://dx.doi.org/10.1016/j.asoc.2011.05.014
http://dx.doi.org/10.1007/s00170-006-0925-4
http://dx.doi.org/10.1016/j.isatra.2011.08.005
http://dx.doi.org/10.1016/j.isatra.2018.04.020
http://dx.doi.org/10.1016/j.isatra.2010.03.007
http://dx.doi.org/10.1007/s10845-015-1089-6
http://dx.doi.org/10.1016/j.cie.2011.06.025
http://dx.doi.org/10.1016/j.cie.2013.09.012
http://dx.doi.org/10.1016/j.isatra.2016.03.004
http://dx.doi.org/10.1016/j.neucom.2014.06.068
http://dx.doi.org/10.1016/j.neucom.2016.04.004
http://dx.doi.org/10.1155/2017/2323082
http://dx.doi.org/10.3390/math7100959
http://dx.doi.org/10.1080/00224065.2014.11917974
http://dx.doi.org/10.1080/00401706.2018.1562988
http://dx.doi.org/10.1016/j.neucom.2015.10.009
http://dx.doi.org/10.1016/j.jprocont.2017.06.012
http://dx.doi.org/10.1080/08982112.2018.1461905
http://dx.doi.org/10.1108/IJQRM-04-2018-0104
http://dx.doi.org/10.1080/00207543.2014.997400


Mathematics 2020, 8, 102 14 of 14

28. Yang, W.A.; Zhou, W. Autoregressive coefficient-invariant control chart pattern recognition in autocorrelated
manufacturing processes using neural network ensemble. J. Intell. Manuf. 2015, 26, 1180–2015. [CrossRef]

29. Luo, M.; Zhang, K. A hybrid approach combining extreme learning machine and sparse representation for
image classification. Eng. Appl. Artif. Intell. 2014, 27, 228–235. [CrossRef]

30. Cao, J.; Hao, J.; Lai, X.; Vong, C.M.; Luo, M. Ensemble extreme learning machine and sparse representation
classification. J. Frankl. Inst. 2016, 353, 4526–4541. [CrossRef]

31. Shao, Y.E.; Hou, C.-D.; Chiu, C.-C. Hybrid intelligent modeling schemes for heart disease classification.
Appl. Soft Comput. 2014, 14, 52–2014. [CrossRef]

32. Shao, Y.E.; Hou, C.-D. Change point determination for a multivariate process using a two-stage hybrid
scheme. Appl. Soft Comput. 2013, 13, 1527–2013. [CrossRef]

33. Tseng, T.S.; Chou, J.R.; Lee, P.S. A study on a multivariate EWMA controller. IIE Trans. 2002, 34, 541–549.
[CrossRef]

34. Tseng, S.T.; Mi, H.C.; Lee, I.C. A multivariate EWMA controller for linear dynamic processes. Technometrics
2016, 58, 104–115. [CrossRef]

35. Yang, L.; Sheu, S.H. Economic design of the integrated multivariate EPC and multivariate SPC charts.
Qual. Reliab. Eng. Int. 2007, 23, 218–2007. [CrossRef]

36. Gauri, S.K.; Chakraborty, S. Feature-based recognition of control chart patterns. Comput. Ind. Eng. 2006, 51,
726–742. [CrossRef]

37. Vapnik, V.N. The Nature of Statistical Learning Theory; Springer: Berlin/Heidelberg, Germany, 2000.
38. Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression.

Neural Netw. 2004, 17, 126–2004. [CrossRef]
39. Friedman, J.H. Multivariate adaptive regression splines (with discussion). Ann. Stat. 1991, 19, 141–1991.
40. Huang, G.B.; Zhu, Q.Y.; Siew, C.K. Extreme learning machine: Theory and applications. Neurocomputing

2006, 70, 501–2006. [CrossRef]
41. RStudio. Available online: https://rstudio.com/products/rstudio/ (accessed on 23 May 2017).
42. Hsu, C.W.; Chang, C.C.; Lin, C.J. A Practical Guide to Support Vector Classification; Technical Report; Department

of Computer Science and Information Engineering, National Taiwan University: Taipei, Taiwan, 2003.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s10845-013-0847-6
http://dx.doi.org/10.1016/j.engappai.2013.05.012
http://dx.doi.org/10.1016/j.jfranklin.2016.08.024
http://dx.doi.org/10.1016/j.asoc.2013.09.020
http://dx.doi.org/10.1016/j.asoc.2012.02.008
http://dx.doi.org/10.1080/07408170208928890
http://dx.doi.org/10.1080/00401706.2015.1006795
http://dx.doi.org/10.1002/qre.785
http://dx.doi.org/10.1016/j.cie.2006.07.013
http://dx.doi.org/10.1016/S0893-6080(03)00169-2
http://dx.doi.org/10.1016/j.neucom.2005.12.126
https://rstudio.com/products/rstudio/
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	MIMO and Disturbance Models 
	MIMO Models 
	Disturbance Models 

	Methodology and Experimental Results 
	ELM Classifier 
	MCCPs for an MIMO Process 
	Research Framework 
	Four Cases and the Recognition Results 

	Discussion 
	Conclusions 
	References

