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Abstract: This paper is devoted to investigating a class of nonhomogeneous Choquard equations
with perturbation involving p-Laplacian. Under suitable hypotheses about the perturbation term,
the existence of at least two nontrivial solutions for the given problems is obtained using Nehari
manifold and minimax methods.
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1. Introduction and Main Results

In this paper we are interested in the following generalized nonlinear Choquard equation with
perturbation involving p-Laplacian

− ∆pu + V(x)|u|p−2u =

∫
<N

∣∣∣u(y)
∣∣∣q∣∣∣x− y
∣∣∣µ dy

|u|q−2u + g(x), x ∈ <N (1)

where N ≥ 3, 2 ≤ p < N, 0 < µ < N, p
2 (2 −

µ
N ) < q <

p∗

2 (2 −
µ
N ), 0 < V ∈ C1(<N,<),

∆p = div(
∣∣∣∇u

∣∣∣p−2∇u) is the p-Laplacian operator, and g :<N
→< is perturbation. Here p∗ =

Np/(N − p) denotes the Sobolev conjugate of p.
The homogeneous, a.e. g(x) ≡ 0, which means zero is a solution of problem (1). It was investigated

in [1]. A special case of problem (1) is the well-known Choquard-Pekar equation

− ∆u + u =

(
1
|x|µ
∗ |u|2

)
u, x ∈ <N (2)

which was investigated by Pekar [2] in relationship with the quantum field theory of a polaron. In
particular, when u is a solution to (2), we know that φ(x, t) = u(x)e−it is a solitary wave of the following
Hartree equation

i
∂φ

∂t
= −∆φ−

(
1
|x|µ
∗ |φ|2

)
φ, in<3

×<+

which was introduced by Choquard in 1976 to describe an electron trapped in its own hole as
approximation to Hartree-Fock theory of a one-component plasma; see [3,4]. This equation was also
proposed by Penrose in [5] as a model of self-gravitating matter and is usually known in that context as
the nonlinear Schrödinger-Newton equation. For more details, discussion about the physical aspects
of the problem we refer the readers to [6–11] and the references therein.

From a mathematical point of view, the Choquard-Pekar Equation (2) and its generalizations
have been widely studied. Take for instance, Lieb [4] investigated the existence and uniqueness, up
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to translations, of the ground state to problem (2) by using symmetric decreasing rearrangement
inequalities. Later, Lions [6] proved the existence of infinitely many radially symmetric solutions to
problem (2) via critical point theory. Ackermann [12] established some existence and multiplicity results
for a type of periodic Choquard-Pekar equation with nonlocal superlinear part. Further interesting
results on Choquard equations may be found in [13–26], the survey [27], and the references therein.

In [15], Ma and Zhao investigated the generalized stationary nonlinear Choquard equation

− ∆u + u =

∫
<N

∣∣∣u(y)
∣∣∣q∣∣∣x− y
∣∣∣µ dy

|u|q−2u, x ∈ <N (3)

where N ≥ 3, 0 < µ < N, q ≥ 2 Under the suitable conditions on µ, N, and q, which include the classical
case, they showed that every positive solution to problem (3) is radially symmetric and monotone
decreasing on some point. Using the same condition, Cingolani et al. [9] treated (3) with the case where
both the vector and the scalar potential have some symmetries, and they established the regularity
and some decay asymptotically at infinity of the ground states to problem (3). In [28], Moroz and
Van Schaftingen eliminated this restriction and in the optimal range of parameters they derived the
regularity, positivity, and radial symmetry of the ground states, and also gave decay asymptotically at
infinity for them.

When the potential V(x) is continuous and bounded below in<N, Alves and Yang [13] studied
the multiplicity and concentration behavior of positive solutions for quasilinear Choquard equation
involving p-Laplacian:

− εp∆pu + V(x)|u|p−2u = εµ−N

∫
<N

Q(y)F(u(y))∣∣∣x− y
∣∣∣µ dy

Q(x) f (u), x ∈ <N (4)

where N ≥ 3, 0 < µ < N, V, and Q are two continuous real functions in<N, ε is a positive parameter and
F(t) be the primate function of f (t), and ∆p = div(

∣∣∣∇u
∣∣∣p−2∇u) is p-Laplacian operator, 1 < p < N In [1],

suppose that the potential V and the nonlinearity f satisfy suitable assumption, Sun considered the case
ε = 1 and Q = 1, and proved the existence of solutions in the level of mountain pass for problem (4).
Further, Alves et al. [29] considered a class of generalized Choquard equation with the nonlinearities
involving N-functions, and they obtained the existence of solutions for the given Choquard equation
involving the ∆Φ-Laplacian operator, where ∆Φ = div(φ(

∣∣∣∇u
∣∣∣)∇u) and Φ :<→< is a N-function.

Other related results about Choquard equation involving p-Laplacian can be found in [25,30–36] and
the references therein.

In 2003, Küpper et al. [37] studied the existence of positive solutions and the bifurcation point for
the following Choquard equation

− ∆u + u =


∫
<3

∣∣∣u(y)
∣∣∣2∣∣∣x− y
∣∣∣ dy

u + λg(x), x ∈ <3 (5)

where g(x) ∈ H−1(<3), g(x) ≥ 0, g(x) ≡ 0. They proved that there exist positive constants λ∗ and λ∗∗
such that problem (5) has at least two positive solutions for λ ∈ (0,λ∗), and no positive solution for
λ > λ∗∗ Furthermore, they showed that λ∗ = λ∗∗ is a bifurcation point of problem (5).

Very recently, Xie et al. [23] showed the following nonhomogeneous Choquard equation

− ∆u + V(x)u =

∫
<N

∣∣∣u(y)
∣∣∣q∣∣∣x− y
∣∣∣µ dy

|u|q−2u + g(x), x ∈ <N

had two nontrivial solutions if 2− µ/N < q < (2N − µ)/(N − 2) satisfies the following compactness
condition:
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(A1) V ∈ C(<N,<+) is coercive, i.e., lim|x|→+∞V(x) = +∞.
In [24], Zhang, Xu and Zhang also investigated the bound and ground states for nonhomogeneous

Choquard equation under the following assumption.
(A2) V ∈ C(<N,<+), inf

<N V > 0, and there exists a positive constant r such that, for any M > 0,
meas

{
x ∈ <N :

∣∣∣x− y
∣∣∣≤ r , V(x) ≤M

}
→ 0 as

∣∣∣y∣∣∣→ +∞ , where meas stands for the Lebesgue measure.
In [38], Shen, Gao and Yang considered a class of critical nonhomogeneous Choquard equation

− ∆u =

∫
<N

∣∣∣u(y)
∣∣∣q∗∣∣∣x− y
∣∣∣µ dy

|u|q∗−2u + λu + g(x), x ∈ Ω

where Ω is a smooth bounded domain of <N, 0 in interior of Ω, λ ∈ <, 0 < µ < N, N ≥ 7,
q∗ = (2N − µ)/(N − 2) is the upper critical exponent. By applying variational methods, they obtain
the existence of multiple solutions for the above problem when λ ∈ (0,λ1), where λ1 is the first
eigenvalue of −∆. Other related results about non-homogeneous Choquard equation can be found
in [1,29,33,39–43] and the references therein.

Our work is motivated by the above work [23,37,41,44] where authors used the structure of
associated Nehari manifold to obtain the multiplicity of solutions for the studied problems. Concerning
the nonhomogeneous problem, Wang [41] dealt with the problem (1) in the case p = 2, V ≡ 1 and
obtained the multiple solutions of problem (1). In this paper, we investigate the nonhomogeneous
problem (1) in case of 2 ≤ p < N and extend the results in the literatures [23,24,41,44]. The used
approach of our paper comes from the literatures [23,24,41]. However, owe to dealing with p-Laplacian
and nonlocal terms the calculation of our problem will be more complicated.

Before giving our main results, we need the following function spaces. W1,p(<N) is the usual
Sobolev space with norm

||u||p1 =

∫
<N

(
∣∣∣∇u

∣∣∣p + |u| p)dx

and Lr(<N), for 1 ≤ r ≤ ∞ denotes the Lebesgue space with the norm

||u||r =
(∫
<N
|u|

r
dx

)1/r

, if 1 ≤ r < ∞

In what follows, we consider the following Banach space

EV =

{
u ∈W1,p(<N) :

∫
<N

V(x)|u|pdx < +∞

}
endowed with the inner product and norm

〈u, v〉 =
∫
<N
|∇u|p−2

∇u∇vdx +
∫
<N
|u|

p−2
uvdx,‖u‖p =

∫
<N

(|∇u|
p
+ V(x)|u|pdx

Throughout this paper, we assume the following condition on the function V.
(A0) V ∈ C(<N,<), infx∈<N V(x) > 0 and there exists a constant M > 0 such that

meas
{
x ∈ <N : V(x) ≤M

}
< ∞, where meas is the Lebesgue measure.

Now we recall the well-known embedding results in [45] (Lemma 2.1).

Lemma 1. The following statements hold.
(i) There exists a continuous embedding from W1,p(<N) into Lr(<N) for any r ∈ [p, p∗).
(ii) Under the condition (A0) on V, the embedding from EV into Lr(<N) is compact for any r ∈ [p, p∗).
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Denote Sr be the best constant of the embedding from EV into Lr(<N) as

|u|r ≤ Sr‖u‖, ∀u ∈ EV

To obtain our result, we make the following assumption on perturbation term g:

(G). The perturbation function g ∈ L
2Nq

2N(q−1)+µ (<N), g is nonzero, and there is a positive constant

α = α(N, p, q,µ, S 2Nq
2N−µ

), such that

∣∣∣∣∣∣g
∣∣∣∣∣∣ 2Nq

2N(q−1)+µ
< α .

Obviously, if g = 0, then we always get a solution for problem (1) that is the trivial solution. Now,
the main result of this article reads as follows.

Theorem 1. Suppose (A0), g ≡ 0 , and (G) hold. Then problem (1) admits two weak solutions. One of which is
a local minimum solution with the ground state energy, and another is bound state solution. In additional, if
g ≥ 0 then the two weak solutions are nonnegative.

This paper is organized as follows. In Section 2, we introduce the variational setting for problem
(1) and give some related preliminaries. In Section 3, we study the Palais-Smale sequences and the
minimization problems. Finally, we give the proof of Theorem 1 in Section 4.

2. Variational Setting and Fibering Map Analysis

This section is devoted to stating the variational setting and giving some lemmas which
will be used as tools to prove our main results. The key inequality is the following classical
Hardy-Littlewood-Sobolev inequality [3].

Lemma 2. (Hardy-Littlewood-Sobolev inequality [3]). Let t, s > 1 , and 0 < µ < N with µ/N + 1/s+ 1/t = 2
, f ∈ Lt(RN) and g ∈ Ls(RN). Then there exists a constant C(N, t,µ, s) independent of f , g such that∫

<N

∫
<N

f (x)g(y)∣∣∣x− y
∣∣∣µ dxdy ≤ C(N, t,µ, s)

∣∣∣ f ∣∣∣Lt ·

∣∣∣g∣∣∣Ls

By the Hardy-Littlewood-Sobolev inequality we have that

∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy

is well defined if
∣∣∣u∣∣∣q ∈ Lt(RN) for some t > 1 satisfying

µ

N
+

2
t
= 2

For we will be working in the space W1,p(<N), by Sobolev embedding theorem we obtain that
qt ∈ [p, p∗], where p∗ = Np/(N − p); that is

p
2
(2−

µ

N
) ≤ q ≤

p∗

2
(2−

µ

N
) =

p
2

(
2N − µ
N − p

)
Define

ql :=
p
2
(2−

µ

N
), and qu :=

p
2

(
2N − µ
N − p

)
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Therefore, ql and qu are called as lower and upper critical exponents in the sense of the
Hardy-Littlewood-Sobolev inequality. We constrain our discussion only when q ∈ (ql, qu) We define
the energy functional corresponding to problem (1) as

I(u) =
1
p

∫
<N

(|∇u|p + V(x)|u|
p
)dx−

1
2q

∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy−
∫
<N

g(x)udx, u ∈ EV

By the condition (G), Hardy-Littlewood-Sobolev inequality and Sobolev inequality, we have

∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy ≤ C(N,µ)
∣∣∣uq

∣∣∣22Nq
2N−µ
≤ C(N,µ)S2q

2Nq
2N−µ

‖u‖2q (6)

and ∫
<N

g(x)udx ≤
∣∣∣g∣∣∣ 2Nq

2N(q−1)+µ
|u| 2Nq

2N−µ
≤

∣∣∣g∣∣∣ 2Nq
2N(q−1)+µ

S 2Nq
2N−µ
‖u‖ (7)

for any uq
∈ Lr(<N), r > 1,µ ∈ (0, N) and ql ≤ q ≤ qu, g ∈ L

2Nq
2N(q−1)+µ (<N). Therefore, one knows that I is

well defined and I(u) ∈ C2(EV,<) and its critical points are weak solutions of problem (1). Moreover,

〈I′(u), v〉 =
∫
<N

(|∇u|p−2
∇u∇v + V(x)|u|p−2uv)dx

−

∫
<N

∫
<N

∣∣∣u(y)
∣∣∣q∣∣∣u(x)∣∣∣q−2u(x)v(x)∣∣∣x− y

∣∣∣µ dxdy−
∫
<N

g(x)vdx

for all v ∈ EV. Thus, we will constrain our functional I on the Nehari manifold

Λ = {u ∈ EV :
〈
I′(u), u

〉
= 0

}
Clearly, every nontrivial weak solution of problem (1) belongs to Λ. Denote Ψ(u) =

〈
I′(u), u

〉
, so

we can see that

〈I′(u), u〉 = ‖u‖p −
∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy−
∫
<N

g(x)u(x)dx

and

〈Ψ′(u), u〉 = p‖u‖p − 2q
∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy−
∫
<N

g(x)u(x)dx

Notice that, if u0 is a local minimum solution of the functional I, one has〈
I′(u0), u0

〉
= 0,

〈
Ψ′(u0) , u0

〉
≥ 0

Thus, we can subdivide the Nehari manifold Λ into three parts as follows:

Λ+ =
{
u ∈ Λ :

〈
Ψ′(u), u

〉
> 0

}
Λ− =

{
u ∈ Λ :

〈
Ψ′(u), u

〉
< 0

}
Λ0 =

{
u ∈ Λ :

〈
Ψ′(u), u

〉
= 0

}
Clearly, only Λ0 contains the element 0. It is easy to see that Λ0

∪Λ+ and Λ0
∪Λ− are closed

subsets of EV . In the due course of this paper, we will subsequently give reason to divide the set Λ into
above three subsets.
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For the convenience of calculations, for u ∈ EV, we denote

A := A(u) =
∫
<N

(|∇u|p−1
∇u + V(x)|u|p−1u)dx = ‖u‖p

B := B(u) =
∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy

C := C(u) =
∫
<N

g(x)udx

For u ∈ EV, we define the fibering map ϕ : (0,+∞)→< as

ϕ(t) := I(tu) =
A
p

tp
−

B
2q

t2q
−Ct, t > 0 (8)

From (8) we have

ϕ′(t) =
1
t
〈I′(tu), tu〉 =

Ψ(tu)
t

= Atp−1
− Bt2q−1

−C (9)

which implies that u ∈ Λ if and only if ϕ′(1) = 0. It is easy to see that tu ∈ Λ with t > 0 if and only if
ϕ′(t) = 0, i.e., Λ =

{
u ∈ EV : ϕ′(t) = 0

}
. Moreover,

ϕ′′ (t) =
〈
Ψ′(tu), tu

〉
−Ψ(tu)

t2 = (p− 1)Atp−2
− (2q− 1)Bt2q−2 (10)

which implies that for u ∈ Λ,
〈
Ψ′(tu), tu

〉
> 0 or < 0 if and only if ϕ′′ (t) > 0 or < 0, respectively. That is

to say, from the sign of ϕ′′ (t) the stationary points of ϕ(t) can be divided into three types, namely local
minimum, local maximum, and turning point. Thus, Λ± and Λ0 can also be written as

Λ± =
{
tu ∈ Λ : ϕ′′ (t) > 0 or < 0}, and Λ0 =

{
u ∈ Λ : ϕ′′ (t) = 0

}
Lemma 3. Assume that g ≡ 0 and satisfies (G). Then for any u ∈ EV\{0}, there exists a unique t1 = t1(u) > 0
such that t1u ∈ Λ−. In particular,

t1 >

[
(p− 1)A
(2q− 1)B

]1/(2q−p)

:= t0

and I(t1u) = maxt≥0I(tu) for
∫
<N gudx ≤ 0.

Moreover, if
∫
<N gudx > 0, then there exist unique 0 < t2 = t2(u) < t3 = t3(u) such that t2u ∈ Λ+.

In particular, I(t3u) = maxt≥t2 I(tu), I(t2u) = min
0≤t≤t3

I(tu).

Proof. Set k(t) = Atp−1
− Bt2q−1, then ϕ′(t) = k(t) −C and k′(t) = ϕ′′ (t) Obviously, limt→0+k(t) = 0,

limt→+∞k(t) = −∞ and k(t) > 0 for t > 0 sufficiently small. Due to 2q > p, if k′(t0) = 0, then

t0 = (
(p−1)A
(2q−1)B )

1/(2q−p)
. Thus, we have k′(t) > 0 for t ∈ (0, t0), and k′(t) < 0 for t ∈ (t0,+∞).

In the case C =
∫
<N g(x)udx ≤ 0, there exists a unique t1 with t1 > t0 such that k(t1) =

∫
<N gudx

and k′(t1) < 0. Therefore,〈
I′(t1u), t1u

〉
= At1

p
− Bt1

2q
−Ct1 = t1(At1

p−1
− Bt1

2q−1
−C) = t1(k(t1) −C) = 0
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This implies t1u ∈ Λ. Moreover,〈
Ψ′(t1u), t1u

〉
= Aptp

1 − 2Bqt2q
1 −Ct1 = (p− 1)Atp

1 − (2q− 1)Bt2q
1 = t2

1k′(t1) < 0

which implies that t1u ∈ Λ−, and I(t1u) = maxt≥0I(tu).
In the case C =

∫
<N g(x)udx > 0, for any u ∈ E1, where E1 = {u ∈ EV : ‖u‖ = 1}. By the assumption

(G) and t̃0 = t̃0(u) = (
p−1

(2q−1)B̃(u)
)

1/(2q−p)
, we have

max
t≥0

ϕ′(t) ≥ ϕ′ (̃t0) = t̃p−1
0 − B̃̃t2q−1

0 − C̃

= [
p−1

(2q−1)B̃
]

p−1
2q−p
− B̃[ p−1

(2q−1)B̃
]

2q−1
2q−p
− C̃

= [
p−1

(2q−1)B̃
]

p−1
2q−p
− B̃[ p−1

(2q−1)B̃
]

2q−p
2q−p

[
p−1

(2q−1)B̃
]

p−1
2q−p
− C̃

= [
p−1

(2q−1)B̃
]

p−1
2q−p
−

p−1
2q−1 [

p−1
(2q−1)B̃

]
p−1
2q−p
− C̃

≥
(p−1)

p−1
2q−p (2q−p)

(2q−1)
2q−1
2q−p B0

p−1
2q−p
−

∣∣∣g∣∣∣ 2Nq
2N(q−1)+µ

S 2Nq
2N−µ

≥ (α−
∣∣∣g∣∣∣ 2Nq

2N(q−1)+µ
)S 2Nq

2N−µ
> 0

(11)

where

B0 = sup
‖u‖=1

∫
<N

∫
<N

∣∣∣u(x)∣∣∣q∣∣∣u(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy, andα = α(N, p, q,µ, S 2Nq
2N−µ

) :=
(p− 1)

p−1
2q−p (2q− p)

(2q− 1)
2q−1
2q−p B0

p−1
2q−p S 2Nq

2N−µ

From (27), we have for u ∈ E1,

lim
t→0+

k(t) = 0 <
∫
<N

g(x)udx ≤
∣∣∣g∣∣∣ 2Nq

2N(q−1)+µ
S 2Nq

2N−µ
‖u‖ =

∣∣∣g∣∣∣ 2Nq
2N(q−1)+µ

S 2Nq
2N−µ
≤ k(̃t0)

Hence, there exist unique 0 < t2 = t2(u) < t̃0 < t3 = t3(u) such that

k(t2) =

∫
<N

g(x)udx = k(t3) and k′(t3) < 0 < k′(t2)

Consequently, t2u ∈ Λ+ and t3u ∈ Λ− It is easy to see that d
dt I(tu) = ϕ′(t) = 0 for t = t2 or t = t3,

andϕ′′ (t) > 0 for t ∈ (0, t̃0) andϕ′′ (t) < 0 for t ∈ (̃t0,+∞). Then I(t3u) = max
t≥t2

I(tu), I(t2u) = min
0≤t≤t3

I(tu).

This proof is completed. �

Lemma 4. For g ≡ 0, the condition (G) is satisfied, then Λ0 = {0}.

Proof. To prove Λ0 = {0}, we need to show that for any u ∈ EV\{0}, the fibering map ϕ(t) has no critical
point that is a turning point. For any u ∈ Λ−, set ũ = u(‖u‖)−1, then ũ ∈ E1. By the proof of Lemma 3,

k(t) has a unique global maximum point t0 = (
p−1

(2q−1)B(ũ) )
1/(2q−p)

, and

k(t0) =
(2q− p)
2q− 1

[
p− 1

(2q− 1)B(ũ)

] p−1
2q−p

:= k0

According to (8)–(10), we deduce that if 0 < C(ũ) < k0, the equation ϕ′(t) = 0 has exactly two
roots t1, t2 satisfying 0 < t1 < t0 < t2 and if C(ũ) ≤ 0, ϕ′(t) = 0 has only one point t3 such that t3 > t0.
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Since ϕ′′ (t) = k′(t), we have ϕ′′ (t1) > 0, ϕ′′ (t2) < 0 and ϕ′′ (t3) < 0. Hence, if 0 < C(ũ) < k0, then
t1ũ ∈ Λ+, t2ũ ∈ Λ− and if C(ũ) ≤ 0, then t3ũ ∈ Λ−. This implies Λ± ∩

{
u ∈ EV : ũ ∈ E1, 0 < C(ũ) < k0

}
,

∅ and Λ−∩ {u ∈ EV : ũ ∈ E1, C(ũ) ≤ 0
}
, ∅. As a consequence, we infer that Λ± are nonempty. It is

easy to see that for any sign of C(ũ), critical point of the fibering map ϕ(t) is either a point of local
maximum or local minimum which implies Λ0 = {0}. Therefore, it remains to show that k0 > C(ũ). By
the condition (G) and Lemma 3 we have

k0 −C(ũ) = k(t0) −C(ũ) = t
p−1
0 − B(ũ)t

2q−1
0 −C(ũ) > 0

This completes the proof. �

Lemma 5. Assume the condition (G) holds, then Λ− is closed.

Proof. Let cl(Λ−) denote the closure of Λ−. Due to cl(Λ−) ⊂ Λ− ∪ {0}, it is sufficient to prove that
0 < cl(Λ−) or equivalently the distance dist(u, Λ−) > 0. Set u ∈ Λ− and denote ũ = u(‖u‖)−1, then
ũ ∈ E1. Under the assumption (G) and the proof of Lemma 4, one has

C(ũ) < t̃p−1
0 − B(ũ)̃t2q−1

0 =

[
p− 1

(2q− 1)B(ũ)

] p−1
2q−p

− B(ũ)
[

p− 1
(2q− 1)B(ũ)

] 2q−1
2q−p

=
2q− p
2q− 1

·

[
p− 1

(2q− 1)B(ũ)

] p−1
2q−p

= k0

(12)
Moreover, we have that if C(ũ) ≤ 0 then ϕ′(t) = 0 has only one point t3 > t0 such that t3ũ ∈ Λ−.

Then we have t3ũ = u with
∣∣∣∣∣∣u∣∣∣∣∣∣= t3 > t0 . Also, if 0 < C(ũ) < k0, the equation ϕ′(t) = 0 has exactly

two roots t1, t2 with 0 < t1 < t0 < t2 such that t1ũ ∈ Λ+ and t2ũ ∈ Λ−. Hence, we have t2ũ = u and∣∣∣∣∣∣u∣∣∣∣∣∣= t2 > t0 . In a word, for any u ∈ Λ−, we get
∣∣∣∣∣∣u∣∣∣∣∣∣> t0 . By (7) we know that B(ũ) is bounded from

above. It follows from definition of t0 that

t0 =

[
p− 1

(2q− 1)B(ũ)

]1/(2q−p)

≥

 p− 1

(2q− 1)B̃0

1/(2q−p)

:= τ (13)

where

B̃0 = sup
‖ũ‖=1

∫
<N

∫
<N

∣∣∣ũ(x)∣∣∣q∣∣∣ũ(y)
∣∣∣q∣∣∣x− y

∣∣∣µ dxdy

which implies that dist(u, Λ−) = infu∈Λ−
∣∣∣∣∣∣u∣∣∣∣∣∣≥ τ > 0 . Hence cl(Λ−) = Λ− and this proves the Lemma.

�

Lemma 6. Assume (A0) and (G) hold. Then the functional I(u) is coercive and bounded below on Λ Thus I(u)
is bounded below on Λ+ and Λ−.

Proof. Let u ∈ Λ, from
〈
I′(u), u

〉
= 0 and (7) we derive that

I(u) = 1
p

∫
<N (|∇u|p + V(x)|u|

p
)dx− 1

2q

∫
<N

∫
<N
|u(x)|

q
|u(y)|

q

|x−y|
µ dxdy−

∫
<N g(x)udx

= 1
p A(u) − 1

2q B(u) −C(u)
= ( 1

p −
1
2q )A(u) − (1− 1

2q )
∫
<N g(x)udx

≥
2q−p
2pq ‖u‖

p
−

2q−1
2q

∣∣∣g∣∣∣ 2Nq
2N(q−1)+µ

S 2Nq
2N−µ
‖u‖

(14)

where S 2Nq
2N−µ

denotes the best constant of the embedding from EV into L
2Nq

2N−µ (<N). It is to see that I is

coercive and bounded below in the manifold Λ. This completes the proof. �
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3. Minimization Problems and Palais-Smale Analysis

According to Lemma 6, we can define the following two minimization problems:

i− := infu∈Λ− I(u) (15)

i+ := infu∈Λ+ I(u) (16)

Clearly, if the infimum of (15) and (16) are achieved, then we can show that they produce a weak
solution of our problem (1).

Lemma 7. If u is a local minimizers of I on Λ+ and Λ− respectively, then I′(u) = 0.

Proof. If u is a local minimizers of I on Λ±, then ∇(I
∣∣∣N±)(u) = 0 . Using Theorem 4.1.1 of [46] we infer

that there exists Lagrangian multiplier λ ∈ < such that〈
I′(u), u

〉
= λ

〈
Ψ(u), u

〉
Since u ∈ Λ±,

〈
I′(u), u

〉
= 0 and

〈
Ψ(u), u

〉
, 0. This implies λ = 0. Thus u is a nontrivial weak

solution of our problem (1). �

By Lemma 6 we know that the problem of investigating solutions of problem (1) can be translated
into that of studying minimizers of (15) and (16).

Lemma 8. Assume (A0) and (G) are satisfied. Then the functional I(u) satisfies (PS)c condition with c ∈ <.
That is, if {un} is a sequence in EV satisfying

I(un)→ c and I′(un)→ 0, as n→ +∞ (17)

for some c ∈ <, then {un} possesses a convergent subsequence.

Proof. If {un} be a sequence in EV satisfies (17), then similar to Lemma 6 we get that un is bounded in
EV . Since EV is reflexive Banach space, up to a subsequence, we may assume that un weakly converges
to u in EV. By using compact embedding of EV in Lr(<N) for r ∈ [p, p∗), un strongly converges to u in
Lr(<N). Since q ∈ (ql, qu) and p < 2Nq

2N−µ < p∗, it follows from Hardy-Littlewood-Sobolev inequality that

∫
<N

∫
<N

∣∣∣un(y)
∣∣∣q∣∣∣un(x)

∣∣∣q−2
un(x)[un(x) − u(x)]∣∣∣x− y

∣∣∣µ dxdy ≤ C(N,µ)|un|
2q−1

2Nq
2N−µ

|un − u| 2Nq
2N−µ
→ 0

as n→∞ . Then, we also get

∫
<N

∫
<N

∣∣∣un(y)
∣∣∣q∣∣∣un(x)

∣∣∣q−2
un(x)[un(x) − u(x)]∣∣∣x− y

∣∣∣µ dxdy→ 0, n→∞

Thus
o(1) =

〈
I′(un) − I′(u), un − u

〉
= ||un − u||p −

∫
<N

∫
<N
|un(y)|

q
|un(x)|

q−2un(x)[un(x)−u(x)]

|x−y|
µ dxdy

+
∫
<N

∫
<N
|u(y)|

q
|u(x)|

q−2u(x)[un(x)−u(x)]

|x−y|
µ dxdy

=
∣∣∣∣∣∣un − u

∣∣∣∣∣∣p + o(1)

which implies that un → u in EV and consequently ends the proof. �
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The following result is an observation regarding the minimizers of Λ+ and Λ−.

Lemma 9. Assume (A0) and (G) are satisfied. Then i+ < 0 and i− > 0.

Proof. Let u ∈ Λ, by the proof of Lemma 4 we have that if 0 < C(ũ) < k0 corresponding to

ũ = u (
∣∣∣∣∣∣u∣∣∣∣∣∣)−1

∈ E1, then ϕ′(t) = 0 has exactly two roots t1, t2 such that 0 < t1 < t0 < t2 and t1ũ ∈ Λ+

and t2ũ ∈ Λ−. Since ϕ′(t) = tp−1
− B(ũ)t2q−1

− C(ũ), we get that limt→0+ϕ
′(t) = −C(ũ) < 0 and

ϕ′′ (t) > 0 for any t ∈ (0, t0). Due to t1 is point of local minimum of ϕ(t) and t1 > 0, we have that
ϕ(t1) < limt→0+ϕ(t) = 0 and then i+ ≤ I(t1ũ) = ϕ(t1) < 0. Moreover i := infu∈ΛI(u) ≤ infu∈Λ+ I(u) =
i+ < 0.

Now we claim that i− > 0. In fact, from (7) we know that B ≤M0||u||2q, where M0 = C(N,µ)S2q
2Nq

2N−µ

.

This implies that there is a positive constant M1 which is independent of u such that

(
∣∣∣∣∣∣u∣∣∣∣∣∣p) 2q/(2q−p)

Bp/(2q−p)
=

A2q/(2q−p)

Bp/(2q−p)
≥M1 (18)

By the given assumption and (18) we discuss ϕ(t0) corresponding to u as

ϕ(t0) =
1
p

∣∣∣∣∣∣∣∣u∣∣∣∣∣∣∣∣ptp
0 −

1
2q Bt2q

0 −Ct0

= A
p

[
(p−1)A
(2q−1)B

]p/(2q−p)
−

B
2q

[
(p−1)A
(2q−1)B

]2q/(2q−p)
−C

[
(p−1)A
(2q−1)B

]1/(2q−p)

=
(2q−p)(2q+p−1)

2pq(2q−1) ·
A2q/(2q−p)

Bp/(2q−p) −C
( p−1

2q−1

)1/(2q−p)
·

A1/(2q−p)

B1/(2q−p)

≥
(2q−p)(2q+p−1)

2pq(2q−1) ·
A2q/(2q−p)

Bp/(2q−p)

≥
(2q−p)(2q+p−1)

2pq(2q−1) ·M1 := M∗

where the positive constant M∗ is independent of u. Hence,

i− = infu∈Λ\{0}max
{
I(u)

}
≥ infu∈Λ\{0}ϕ(t0) ≥M∗ > 0.

This completes the proof. �

Now we study the nature of minimizing sequences for the functional I(u). Using the idea of [44]
to obtain a (PS)i+ sequence from the minimization sequence of our problem (1). The following lemma
is a consequence of Lemma 4.

Lemma 10. Assume (A0) and (G) hold. Then for u ∈ Λ+, there exists a constant ρ > 0 and a differentiable
function η+ : B(0,ρ)→<+ := (0,+∞) such that η+(0) = 1, η+(w)(u−w) ∈ Λ+, and

〈(η+)′(0), w〉 = M∗[p
∫
<N (|∇u|p−2

∇u∇w + V(x)|u|p−2uw)dx

−2q
∫
<N

∫
<N
|u(y)|

q
|u(x)|

q−2u(x)w(x)

|x−y|
µ dxdy−

∫
<N gwdx]

(19)

for any w ∈ B(0,ρ), where B(0,ρ) denotes the ball centered at 0 with radius ρ, and M∗ =

[(p− 1)‖u‖p − (2q− 1)B(u)]−1.

Proof. Fixing a function u ∈ Λ+, we define a C1 mapping Φ :<× EV →< as follows

Φ(t, w) = tp−1
‖u−w‖p − t2q−1

∫
<N

∫
<N

∣∣∣(u−w)(y)
∣∣∣q∣∣∣(u−w)(x)

∣∣∣q∣∣∣x− y
∣∣∣µ dxdy−

∫
<N

g(x)(u−w)dx
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Notice that Φ(1, 0) =
〈
I′(u), u

〉
= 0. Moreover

Φ(t, 0) = Atp−1
− t2q−1B−C = ϕ′(t)

where ϕ is the fibering map defined in (8). Since u ∈ Λ+, we have ϕ′′ (1) > 0, and then so
Φt(1, 0) = ϕ′′ (1) , 0. By Applying the implicit function theorem at point (1,0), we get that there is
ρ = ρ(u) > 0 and a differentiable function η+ : B(0,ρ)→<+ such that η+(0) = 1, η+(w)(u−w) ∈ Λ
for any w ∈ B(0,ρ), and

〈(η+)′(0), w〉 = −
〈
Φw(1, 0), w

〉
Φt(1, 0)

Now we only show that η+(w)(u−w) ∈ Λ+ for any w ∈ B(0,ρ). In fact, from Lemma 5 it follows
that Λ− ∪Λ0 is closed, then the distance dist(u, Λ− ∪Λ0) > 0. Since the function η+(w)(u − w) is
continuous with respect to w, taking ρ = ρ(u) > 0 sufficiently small, such that

||η+(w)(u−w) − u|| <
1
4

dist(u, Λ− ∪Λ0),∀w ∈ B(0,ρ)

Then η+(w)(u −w) does not belong to Λ− ∪Λ0. Thus η+(w)(u −w) ∈ Λ+. Finally, (19) can be
obtained by direct differentiating Φ(w, η+(w)) = 0 with respect to w.

This completes the proof. �

To derive a sequence (PS)i− from the minimizing sequence of our problem (1), similar to Lemma
10 we can obtain the following proposition.

Proposition 1. If (A0) and (G) are satisfied. Then for u ∈ Λ−, there exists a constant ρ > 0 and a differentiable
function η− : B(0,ρ)→<+ such that η−(0) = 1, η−(w)(u−w) ∈ Λ−, and

〈(η−)′(0), w〉 = M∗[p
∫
<N (|∇u|p−2

∇u∇w + V(x)|u|p−2uw)dx

−2q
∫
<N

∫
<N
|u(y)|

q
|u(x)|

q−2u(x)w(x)

|x−y|
µ dxdy−

∫
<N gwdx]

for any w ∈ B(0,ρ), and M∗ = [(p− 1)‖u‖p − (2q− 1)B(u)]−1.

Lemma 11. If (A0) and (G) are satisfied. There exists a positive constant M such that

−
(2q− p)(p− 1)

2pq
θ

p
p−1 ≤ i = infu∈ΛI(u) ≤ −

(2pq− 2q− p)(2q− p)
4pq2 ·M (20)

where θ =
2q−1
2q−p

∣∣∣g∣∣∣ 2Nq
2N(q−1)

S 2Nq
2N−µ

Proof. For any u ∈ Λ, According to (13) one has

I(u) ≥
2q− p

2pq
‖u‖p −

2q− 1
2q

∣∣∣g∣∣∣ 2Nq
2N(q−1)+µ

S 2Nq
2N−µ
‖u‖≥ −

(2q− p)(p− 1)
2pq

θ
p

p−1

Thus,

i ≥ −
(2q− p)(p− 1)

2pq
θ

p
p−1

On the other hand, set u0 ∈ Λ be the unique solution of the following equation

−∆pu + V(x)
∣∣∣u∣∣∣p−1u = g(x), ∀x ∈ <N
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Due to g , 0,
∫
<N g(x)u0dx = ||u0||

p > 0. Then by Lemma 4, there exists t1 > 0 such that
t1u0 ∈ Λ+. Therefore,

I(t1u0) =
1−p

p ||u0||
ptp

1 +
2q−1

2q t2q
1 B(u0)

<
1−p

p ||u0||
ptp

1 +
p(2q−1)

4q2 tp
1||u0||

p

= −
(2pq−2q−p)(2q−p)

4pq2 tp
1||u0||

p < 0

Choose M = tp
1

∣∣∣∣∣∣u0
∣∣∣∣∣∣p we obtain the result. �

Lemma 12. If (A0) and (G) are satisfied, then there exists a sequence {un} ⊂ Λ+ such that I(un)→ i+ and
I′(un)→ 0 as n→∞ .

Proof. From Lemma 6, we already show that I is bounded from below on Λ, and Λ+
∪ {0} is closed in

Λ. Obviously Ekeland’s variational principle (see [44]) applies to the minimization problem (16). It
admits a minimizing sequence {un} ⊂ Λ+ such that

(i) I(un) < infu∈Λ+
∪{0}

{
I(u)

}
+ 1

n , and
(ii) I(w) ≥ I(un) −

1
n

∣∣∣∣∣∣w− un
∣∣∣∣∣∣,∀w ∈ Λ+

∪ {0}
Then by (i) we have

I(u) =
2q− p

p
||un||

p
−

2q− 1
2q

∫
<N

g(x)undx < i +
1
n

(21)

for n large enough. This together with Lemma 11 shows∫
<N

g(x)undx ≥
(2pq− 2q− p)(2q− p)

2pq(2q− 1)
M > 0 (22)

which implies un , 0 for any n. By Lemma 4, we know i ≤ infu∈Λ+ I(u) = i+ < 0. Notice that I(0) = 0,
then infu∈Λ+

∪{0}
{
I(u)

}
= i+. Hence I(un)→ i+ as n→∞ , and we can assume that un ∈ Λ+. Then

||un||
p = B(un) + C(un). Furthermore, we deduce from (13) and (i) that

i+ +
1
n
≥ I(un) ≥

2q− p
2pq

||u||p −
2q− 1

2q

∣∣∣g∣∣∣ 2Nq
2N(q−1)+µ

S 2Nq
2N−µ
||u|| (23)

which implies that {un} is bounded. Now we claim that infn||un||≥ ξ > 0 for some constant ξ. In fact, if
not, by (23), I(un)→ 0 , as n→∞ . Using (23) which is a contradiction to first assertion. Therefore,
there exist positive constants ξ2 > ξ1 such that

ξ1 ≤ ||un|| ≤ ξ2 (24)

Now to finish the proof, we only need to show that I′(un)→ 0 , as n→∞ . By Lemma 10, for each
n, we get a differentiable function η+n : B(0, ε)→<+ for ε > 0 as follows

η+n (δ) := η+n (δhn),−ε < δ < ε

where hn =
I′(un)

||I′(un)||
. According to Lemma 10, we get η+n (0) = 1, and

wδ := η+n (δ)[un − δhn] ∈ Λ+

By Taylor’s expansion and (ii), since wδ ∈ Λ+ we have

1
n

∣∣∣∣∣∣wδ − un
∣∣∣∣∣∣≥ I(un) − I(wδ)

= (1− η+n (δ))
〈
I′(wδ), un

〉
+ δη+n (δ)

〈
I′(wδ), hn

〉
+ o(

∣∣∣∣∣∣wδ − un
∣∣∣∣∣∣)
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which implies

(
1
n
+ o(1))||wδ − un|| ≥ (1− η+n (δ))〈I

′(wδ), un〉+ δη+n (δ)〈I
′(wδ), hn〉 (25)

Dividing (25) by δ for δ , 0 and passing to the limit as δ→ 0 , we obtain

(
1
n
+ o(1))(1 +

∣∣∣(η+n )′(0)∣∣∣||un||) ≥ −(η
+
n )
′(0)〈I′(un), un〉+ ||I′(un)|| (26)

Since un ∈ Λ+, it follows from (26) that

||I′(un)|| ≤ (
1
n
+ o(1))(1 +

∣∣∣(η+n )′(0)∣∣∣ · ||un||) (27)

From (24) we know that un is bounded. Then it remains to prove that
∣∣∣(η+n )′(0)∣∣∣ is uniformly

bounded with respect to n. In fact, according to the definition of η+n and Lemma 5, we have

〈(η+n )
′(0), hn〉 =

1
(p−1)||un||p−(2q−1)B(un)

[p
∫
<N (|∇un|

p−2
∇un∇hn + V(x)|un|

p−2unhn)dx

−2q
∫
<N

∫
<N
|un(y)|

q
|un(x)|

q−2un(x)hn(x)

|x−y|
µ dxdy−

∫
<N ghndx]

(28)

By the boundedness of un and (28), we say that there exists a constant λ such that∣∣∣(η+n )′(0)∣∣∣ = ∣∣∣∣〈(η+n )′(0), hn
〉∣∣∣∣ ≤ λ

(p− 1)
∣∣∣∣∣∣un

∣∣∣∣∣∣p − (2q− 1)B(un)

Therefore, it remains to show that χ(un) := (p− 1)
∣∣∣∣∣∣un

∣∣∣∣∣∣p − (2q− 1)B(un) possesses a positive
lower bound.

To prove the existence of positive lower bound of χ(un), passing to a subsequence, we assume

χ(un) = (p− 1)‖un‖
p
− (2q− 1)B(un) = o(1),n→∞ (29)

Since un ∈ Λ+, we obtain
‖un‖

p
− B(un) = C(un)

This along with (29) gives

C(un) =
2q− p
2q− 1

‖un‖
p + o(1) (30)

It follows from the condition (G) that there is a sufficiently small µ > 0 such that
∣∣∣g∣∣∣ 2Nq

2N(q−1)+µ
≤

(1− µ)α. Similarly to the proof of (12), we have

C(u) <
2q− p
2q− 1

(1− µ)
(

p− 1
(2q− 1)B(u)

) p−1
2q−p

(31)

for any u ∈ E1. Therefore, by the principle of homogeneity,

2q− p
2q− 1

+
o(1)
‖un‖

p =
C(un)

‖un‖
p <

2q− p
2q− 1

(1− τ)
(
(p− 1)‖un‖

p

(2q− 1)B(un)

) p−1
2q−p

(32)

If ‖un‖ → 0 , then similar to (7) one has C(un)→ 0 . Therefore

i+ + on(1) = I(un) −
1
2q
〈I′(un), un〉 =

2q− p
2pq

‖un‖
p
−

2q− 1
2q

C(un)→ 0
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which is a contradiction with i+ < 0. Thus ‖un‖ → 0, as n→∞ . Consequently, from (30)–(32) we can
deduce that

2q− p
2q− 1

≤
2q− p
2q− 1

(1− µ),n→∞

which is a contradiction. Therefore, we conclude that I′(un)→ 0, as n→∞ . The proof is completed.
�

Proposition 2. Under assumptions (A0) and (G), there exists a sequence {ûn} ⊂ Λ− such that I(ûn)→ i−

and I′(ûn)→ 0 as n→∞ .

Proof. By Lemma 5 we know that Λ− is closed. Thus, by Ekeland’s variational principle on Λ− we get
a sequence {ûn} ⊂ Λ− such that

(iii) I(ûn) < infu∈Λ−
{
I(u)

}
+ 1

n , and (iv) I(w) ≥ I(ûn) −
1
n

∣∣∣∣∣∣w− ûn
∣∣∣∣∣∣,∀w ∈ Λ− .

From (24) we know that ûn is bounded. By coercivity of I, {ûn} forms a bounded sequence in Λ.
Moreover, from Lemma 5 we know that infu∈Λ−

∣∣∣∣∣∣u∣∣∣∣∣∣≥ τ > 0 , which implies that Λ− stays away from
the origin. Then using Proposition 1 and following the proof of Lemma 12 we conclude the result. �

4. The Proof of Theorem 1

In this section, we show that the minimums are achieved for i+ and i−, and also give the proof of
Theorem 1.

Proposition 3. Assume g , 0, (A0) and (G) are satisfied. Then i can be achieved at point u∗ ∈ Λ, which is a
weak solution of problem (1). Moreover, u∗ ∈ Λ+ and u∗ is a local minimum for I on EV.

Proof. By Lemma 8, there exists a sequence {un} ⊂ Λ such that I(un)→ i and I′(un)→ 0 as n→∞ .
Set u∗ be the weak limit of the sequence {un} on EV, then un ∈ Λ satisfies (22) we get∫

<N
g(x)u∗(x)dx > 0 (33)

On the other hand, I′(un)→ 0 as n→∞ implies that〈
I′(u∗), v

〉
= 0, for every v ∈ Λ

i.e., u∗ is a weak solution of problem (1). In particular, u∗ ∈ Λ, and

i ≤ I(u∗) ≤ lim
n→+∞

inf{I(un)} = i

This implies that u∗ is the minimum of I over EV.
For u∗ ∈ Λ be such that i = I(u∗), using Lemma 9 we have I(u∗) < 0. Then we get u∗ , 0. Therefore

u∗ is a nontrivial weak solution of problem (1). Since (33) holds, applying Lemma 4 we see that there
exist t1, t2 > 0 such that u1 := t1u∗ ∈ Λ+ and t2u∗ ∈ Λ−. We claim that t1 = 1 i.e., u∗ ∈ Λ+. If t1 < 1,
then t2 = 1 which means u∗ ∈ Λ−. Now I(t1u∗) ≤ I(u∗) = i < 0 which is a contradiction with t1u∗ ∈ Λ+.

Next we will prove that u∗ is also a local minimum of I on EV. Obviously, for any u ∈ Λ with
C(u) > 0 we can deduce that

I(̃t2u) ≤ I(̃tu) for any t̃ ∈ (0, t0)

where t0 = (
(p−1)A
(2q−1)B )

1/(2q−p)
, t̃2 is corresponding to u. Moreover, if u = u∗ then

t̃2 = 1 < t̂0 =

[
(p− 1)A(u∗)
(2q− 1)B(u∗)

]1/(2q−p)
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Taking ρ > 0 small enough so that

1 < t̂w =

[
(p− 1)A(u∗ −w)

(2q− 1)B(u∗ −w)

]1/(2q−p)∣∣∣∣∣∣w∣∣∣∣∣∣< ρ (34)

Thus, it follows from Lemma 10 that there exists a differentiable map η+ : B(0,ρ) →<+ such
that η+(w)(u∗ −w) ∈ Λ+ for

∣∣∣∣∣∣w∣∣∣∣∣∣< ρ small. Then for any t̃ ∈ (0, t̂w) we have

I(̃t(u∗ −w)) ≥ I(η+(w)(u∗ −w)) ≥ I(u∗) (35)

Since (34) holds, taking t̃ = 1 in (35) we get I(u∗) ≤ I(u∗ −w) for
∣∣∣∣∣∣w∣∣∣∣∣∣< ρ , which implies that u∗ is

a local minimum of I on EV. The proof is completed. �

Proof of Theorem 1. Firstly, we deal with the minimization problem (16). According to Proposition
3, we only need to show that there exist a nonnegative solution on Λ+ if g ≥ 0. Assume g ≥ 0, from
the proof of Lemma 3, it is easy to see that B(u∗) = B(

∣∣∣u∗∣∣∣) and C(u∗) ≤ C(
∣∣∣u∗∣∣∣) . Moreover, it follows

from the proof of Lemma 4 that there exists t1 > 0 such that t1
∣∣∣u∗∣∣∣∈ Λ+ and t1|u∗|> 0 . If ϕu(t) denotes

the fibering map corresponding to u ∈ EV as introduced in Section 2, we have ϕ′
|u∗ |(1) ≤ ϕ

′
u∗(1) = 0.

Since t1 is the point of local minimum of ϕ|u∗ |(t) for t ∈ (0, t0(
∣∣∣u∗∣∣∣)) , where

t0(|u∗|) =

 (p− 1)A(
∣∣∣u∗∣∣∣)

(2q− 1)B(
∣∣∣u∗∣∣∣)

1/(2q−p)

and t1 ≥ 1. Consequently, we have that I(t1
∣∣∣u∗∣∣∣) ≤ I(

∣∣∣u∗∣∣∣) . Then

i+ ≤ I(t1
∣∣∣u∗∣∣∣) ≤ I(

∣∣∣u∗∣∣∣) ≤ I(u∗) = i+

This means that t1|u∗| solves the minimization problem (16). Therefore, we find a nonnegative
solution for problem (1) using the maximum principle.

Now we show that the infimum i− is achieved and the minimizer is second weak solution of
problem (1). Consider the minimization problem (15). From Proposition 2, we know that there exists a
sequence {ûn} ⊂ Λ− such that I(ûn)→ i− and I′(ûn)→ 0 as n→∞ . By Lemma 4, we get that there
exists ũ∗ ∈ cl(Λ−) = Λ− such that I(ũ∗) = i−, I′(ũ∗) = 0. Therefore, Lemma 7 implies that ũ∗ is a weak
solution of problem (1). In addition, if g ≥ 0, it follows from the proof of Lemma 4 and Proposition 1
that there exists t2 > 0 such that t2

∣∣∣ũ∗∣∣∣∈ Λ− . Let

t0(|ũ∗|) =

 (p− 1)A(
∣∣∣ũ∗∣∣∣)

(2q− 1)B(
∣∣∣ũ∗∣∣∣)

1/(2q−p)

then since ũ∗ ∈ Λ−, taking account of the graph of the fibering map corresponding to ũ∗ we can
deduce that

i− ≤ I(t2
∣∣∣ũ∗∣∣∣) ≤ I(t2ũ∗) ≤ maxt≥t0(|ũ∗ |)

{
I(t2ũ∗)

}
= I(ũ∗) = i−

This means that t2
∣∣∣ũ∗∣∣∣ solves the minimization problem (15) and then we know that it is a

nonnegative weak solution of problem (1) using the maximum principle again. Due to Λ+
∩Λ− = ∅

and Lemma 9 shows that i+ < i−, then u∗ , ũ∗. This ends the proof. �

5. Conclusions

In this work, we study a class of nonhomogeneous Choquard equations with perturbation
involving p-Laplacian. We give sufficient conditions of the existence of at least two nontrivial solutions
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for problems (1). Next it is worth investigating infinitely many solutions for nonhomogeneous
Choquard equations involving p-Laplacian.
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