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Abstract: The foremost aim of this paper is to suggest a local study for high order iterative
procedures for solving nonlinear problems involving Banach space valued operators. We only
deploy suppositions on the first-order derivative of the operator. Our conditions involve the Lipschitz
or Hölder case as compared to the earlier ones. Moreover, when we specialize to these cases, they
provide us: larger radius of convergence, higher bounds on the distances, more precise information
on the solution and smaller Lipschitz or Hölder constants. Hence, we extend the suitability of them.
Our new technique can also be used to broaden the usage of existing iterative procedures too. Finally,
we check our results on a good number of numerical examples, which demonstrate that they are
capable of solving such problems where earlier studies cannot apply.
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1. Introduction

One of the most primary and principal problems in numerical analysis associate with how to
approximate a locally unique zero λ∗ of

S(λ) = 0, (1)

where S : ∆ ⊂ E1 → E2 is a Fréchet-differentiable operator. In addition, E1,E2 are two Banach spaces
and ∆ is a convex subset of Banach space E1. We denote `(E1, E2) as the space of bounded linear
operators from E1 to E2.

Approximating a unique solution λ∗ is vital, since several problems can be transform to
Equation (1) by adopting mathematical modeling [1–8]. However, it is not always possible to
get λ∗ in a closed form. Therefore, most of the schemes to solve such problems are iterative.
The convergence study of iterative schemes involves the information about λ∗ is known as local
convergence. Convergence domain of an iterative method is an important task to guarantee
convergence. Hence, it is very essential to suggest the radius of convergence.

We are interested in the local study of multi-point high-order convergent method [1] given by

ηl = λl − βS′(λl)
−1S(λl),

θl = ηl − S′(λl)
−1S(ηl),

λl+1 = θl −
[

1
β

S′(ηl)
−1 −

(
1− 1

β

)
S′(λl)

−1
]

S(θl), β 6= 0, l = 0, 1, 2, . . .

(2)

Mathematics 2019, 7, 855; doi:10.3390/math7090855 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
http://www.mdpi.com/2227-7390/7/9/855?type=check_update&version=1
http://dx.doi.org/10.3390/math7090855
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 855 2 of 12

where λ0 ∈ ∆ is the starting point; for β 6= ±1, the method reaches at least fourth order and, for
β = ±1, fifth order. The hypotheses on the derivatives of S restrict the suitability of the scheme in
Equation (2). As a motivational example, we suggest a function S on E1 = E2 = R, ∆ = [− 3

2 , 1
2 ] by

S(t) =

{
t3 ln t2 + t5 − t4, t 6= 0
0, t = 0

.

Then, we have that
S′(t) = 3t2 ln t2 + 5t4 − 4t3 + 2t2,

S′′(t) = 6t ln t2 + 20t3 − 12t2 + 10t

and
S′′′(t) = 6 ln t2 + 60t2 − 24t + 22.

Then, obviously third-order derivative S′′′(t) is unbounded on ∆. There is a plethora of research
articles on iterative schemes [2–22]. The initial guess λ0 must be close enough to the required solution
for guaranteed convergence. However, it is not giving us any idea of: how to choose λ0, find a
convergence radius, the bounds on ‖λl − λ∗‖ and the uniqueness results. We deal with these problems
for the method in Equation (2) in Section 2.

We enlarge the suitability of the scheme in Equation (2) by adopting only hypotheses on the
first-order derivative of S and generalized conditions. In addition, we avoid the use of Taylor
series expansions. In this way, there is no need to use the higher-order derivatives to illustrate
the convergence order of the scheme in Equation (2). We adopt COC and ACOC for the order
of convergence, which avoid higher-order derivatives (see Remark 1 (d)). When the generalized
conditions are specialized to the Lipschitz case (see Remark 1 (a)), the Hölder case [1] (see Remark 1
(c)) or the advantages mentioned in the Introduction are obtained.

2. Convergence Analysis

The local convergence analysis stand on some parameters and scalar functions. Let us assume
β ∈ T− {0}, and let w0 be a non-decreasing continuous function on [0, +∞) having values in [0, +∞)

with w0(0) = 0, where T = R or T = C.
Suppose equation

w0(α) = 1, (3)

has a minimal positive solution τ0.
Consider that functions w, v on [0, τ0) are continuous and increasing with w(0) = 0. Moreover,

we choose functions φ1 and h1 on the interval [0, τ0) as follows:

φ1(α) =

∫ 1
0 w((1− ν)α)dν + |1− β|

∫ 1
0 v(να)dν

1− w0(α)
,

and

h1(α) = φ1(α)− 1.

Suppose that ∣∣∣1− β
∣∣∣v(0) < 1. (4)

From Equation (4), we have h1(0) = |1 − β|v(0) − 1 < 0 and h1(α) → +∞ as α → τ−0 .
Then, by the intermediate value theorem, we know that the function h1 has zeros in (0, τ0). Denote by
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τ1 the smallest such zero of function h1. Assume equations w0(φ1(α)α) = 1 and w0(φ2(α)α) = 1 have
minimal positive solutions τ̄0 and ¯̄τ0, respectively. Set

ρ = min{τ0, τ̄0, ¯̄τ0}.

Furthermore, define some functions φ2, h2, φ3 and h3 on I = [0, ρ) in the following way:

φ2(α) =

∫ 1
0 w((1− ν)φ1(α)α)dν

1− w0(φ1(α)α)
+

w((1 + φ1(α))α)
∫ 1

0 v(νφ1(α)α)dν

(1− w0(α))(1− w0(φ1(α)α))
φ1(α),

h2(α) = φ2(α)− 1,

φ3(α) =

[∫ 1
0 w((1− ν)φ2(α)α)dν

1− w0(φ2(α)α)
+

w((1 + φ1(α))α)
∫ 1

0 v(νφ2(α)α)dν

|β|(1− w0(α))(1− w0(φ1(α)α))
,

+
w((1 + φ1(α))α)

∫ 1
0 v(νφ2(α)α)dν

(1− w0(α))(1− w0(φ2(α)α))

]
φ2(α),

and

h3(α) = φ3(α)− 1,

We obtain again h2(0) = −φ3(0) = −1 < 0, and h2(α) → +∞, h3(α) → +∞ as α → ρ−. Let us
denote τ2 and τ3 as the smallest zero of the functions h2 and h3, respectively, on the interval (0, ρ).
Finally, we define the convergence radius τ as follows:

τ = min{τi}, i = 1, 2, 3. (5)

Then, we have
0 < τ < τ0, (6)

0 ≤ φi(α) < 1, (7)

0 ≤ w0(α) < 1, (8)

0 ≤ w0(φ1(α)α) < 1, (9)

and
0 ≤ w0(φ2(α)α) < 1, for each α ∈ [0, τ). (10)

Let U(z, ρ) and Ū(z, ρ) stand, respectively, for the open and closed balls in E1 with center z ∈ E1

and radius ρ > 0.
Next, we present the local convergence analysis of the method in Equation (2) using the

preceding notations.

Theorem 1. Let S : ∆ ⊆ E1 → E2 be a Fréchet-differentiable operator. We assume that v, w0, w : [0, ∞)→
[0, ∞) are non-decreasing continuous functions with w0(0) = w(0) = 0. Let β ∈ T − {0} be such that
Equation (4) is satisfied and τ0, τ̄0, ¯̄τ0 exist. In addition, we consider the zero λ∗ ∈ ∆ is well defined, such that,
for each λ ∈ ∆,

S(λ∗) = 0, S′(λ∗)−1 ∈ L(E2, E1) (11)

and
‖S′(λ∗)−1(S′(λ)− S′(λ∗)‖ ≤ w0(‖x− λ∗‖). (12)

Further, we consider that, for each λ, η ∈ ∆0 := ∆ ∩U(λ∗, τ0),

‖S′(λ∗)−1(S′(λ)− S′(η)
)
‖ ≤ w(‖λ− η‖), (13)
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‖S′(λ∗)−1S′(λ)‖ ≤ v(‖λ− λ∗‖), (14)

and
Ū(λ∗, τ) ⊆ ∆, (15)

where the convergence radius τ is given by Equation (5). Then, the sequence {λl} obtained for λ0 ∈ U(λ∗, τ)−
{λ∗} by the scheme in Equation (2) is well defined, remains in U(λ∗, τ) for each l = 0, 1, 2, . . ., and converges
to λ∗. Moreover, the following estimates hold

‖ηl − λ∗‖ ≤ φ1(‖λl − λ∗‖)‖λl − λ∗‖ ≤ ‖λl − λ∗‖ < τ, (16)

‖θl − λ∗‖ ≤ φ2(‖λl − λ∗‖)‖λl − λ∗‖ ≤ ‖λl − λ∗‖ (17)

and
‖λl+1 − λ∗‖ ≤ φ3(‖λl − λ∗‖)‖λl − λ∗‖ ≤ ‖λl − λ∗‖, (18)

where the functions φi, i = 1, 2, 3 are defined previously. Furthermore, if

∫ 1

0
w0(θR)dθ < 1, for R ≥ τ, (19)

then the point λ∗ is the unique zero of S(λ) = 0 in ∆1 := ∆ ∩ Ū(λ∗, R).

Proof. We adopt the mathematical induction technique in order to demonstrate that the sequence {λl}
is well defined in U(λ∗, τ) and also converges toward λ∗. By the hypothesis λ0 ∈ U(λ∗, τ)− {λ∗},
and Equations (3), (5) and (12), we obtain

‖S′(λ∗)−1(S′(λ0)− S′(λ∗))‖ ≤ w0(‖λ0 − λ∗‖) < w0(τ) < 1. (20)

In view of Equation (20) and Banach Lemma on non-singular operators [2,3],
S′(λ0)

−1 ∈ L(E2, E1), η0 and θ0 are well defined by the first two sub steps of the method in
Equation (2) and

‖S′(λ0)
−1S′(λ∗)‖ ≤

1
1− w0(‖λ0 − λ∗‖)

. (21)

Adopting the first sub step of the scheme in Equations (2), (5), (7) (for l = 1), (11), (13), (14)
and (21), we yield

‖η0 − λ∗‖ = ‖(λ0 − λ∗ − S′(λ0)
−1S(λ0)) + (1− β)S′(λ0)

−1S(λ0)‖

≤ ‖S′(λ0)
−1S(λ∗)‖

∥∥∥∥ ∫ 1

0
S′(λ∗)−1(S′(λ∗ + ν(λ0 − λ∗))− S′(λ0))(λ0 − λ∗)dν

∥∥∥∥
+ |1− β|‖S′(λ0)

−1S′(λ∗)‖‖S′(λ0)
−1S(λ0)‖

≤
∫ 1

0 w((1− ν)‖λ0 − λ∗‖)dν‖λ0 − λ∗‖+ |1− β|
∫ 1

0 v(ν‖λ0 − λ∗‖)dν‖λ0 − λ∗‖
1− w0(‖λ0 − λ∗‖)

= φ1(‖λ0 − λ∗‖)‖λ0 − λ∗‖ ≤ ‖λ0 − λ∗‖ < τ,

(22)

which implies Equation (16) for l = 0 and η0 ∈ U(λ∗, τ). We can write by the second sub step of the
method in Equation (2)

θ0 − λ∗ = η0 − λ∗ − S′(η0)
−1S(η0) + S′(η0)

−1(S′(η0)− S′(λ0))S′(λ0)
−1S(η0). (23)
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Notice that η0 ∈ U(λ∗, τ) with η0 = λ0 in Equation (20), S′(η0)
−1 ∈ L(E2, E1) and λ1 are well

defined and

‖S′(η0)
−1S′(λ∗)‖ ≤

1
1− w0(‖η0 − λ∗‖)

≤ 1
1− w0(φ1(‖λ0 − λ∗‖)‖λ0 − λ∗‖)

≤ 1
1− w0(‖λ0 − λ∗‖)

.
(24)

By Equations (5), (6) (for l = 2), (9), (11), (13), (14), and (21)–(24), we get

‖θ0 − λ∗‖ = ‖η0 − λ∗ − S′(η0)
−1S(η0))‖

+ ‖S′(η0)
−1S′(λ∗)‖‖S′(λ∗)−1(S′(λ0)− S′(η0))‖‖S′(λ0)

−1S′(λ∗)‖‖S′(λ∗)−1S′(η0)‖

≤
∫ 1

0 w((1− ν)‖η0 − λ∗‖)dν‖η0 − λ∗‖
1− w0(‖η0 − λ∗‖)

+
w(‖η0 − λ∗‖)

∫ 1
0 v(ν‖η0 − λ∗‖)dν‖η0 − λ∗‖

(1− w0(‖λ0 − λ∗‖))(1− w0(‖η0 − λ∗‖))
≤ φ2(‖λ0 − λ∗‖)‖λ0 − λ∗‖ ≤ ‖λ0 − λ∗‖ < τ,

(25)

which implies Equation (17) for l = 0 and θ0 ∈ U(λ∗, τ).
Then, by the third sub step of the method in Equations (2), (5), (7) (for l = 3), (9), (10), and

(21)–(25) (for η0 = θ0), we yield

‖λ1 − λ∗‖ ≤‖θ0 − λ∗ − S′(θ0)
−1S(θ0)‖+

1
|β| ‖S

′(η0)
−1(S′(λ0)− S′(η0))S′(λ0)

−1S′(λ∗)‖‖S′(λ∗)−1S(θ0)‖

+ ‖S′(θ0)
−1(S′(λ0)− S′(θ0))S′(λ0)

−1S′(λ∗)‖‖S′(λ∗)−1S(θ0)‖

≤
∫ 1

0 w((1− ν)‖θ0 − λ∗‖)‖θ0 − λ∗‖dν

1− w0(‖θ0 − λ∗‖)
+

1
|β|

w(‖η0 − λ∗‖)
∫ 1

0 v(ν‖θ0 − λ∗‖)dν‖θ0 − λ∗‖
(1− w0(‖η0 − λ∗‖))(1− w0(‖λ0 − λ∗‖))

+
w(‖θ0 − λ∗‖)

∫ 1
0 v(ν‖θ0 − λ∗‖)dν‖θ0 − λ∗‖

(1− w0(‖θ0 − λ∗‖))(1− w0(‖λ0 − λ∗‖))
≤φ3(‖λ0 − λ∗‖)‖λ0 − λ∗‖ ≤ ‖λ0 − λ∗‖ < τ,

(26)

which shows Equation (18) for l = 0 and θ0 ∈ U(λ∗, τ). By changing λ0, η0, θ0 λ1 by λl , ηl , θl , λl+1
in the preceding estimates, we attain at Equations (16)–(18). Therefore, in view of the estimates

‖λl+1 − λ∗‖ ≤ c‖λl − λ∗‖ < τ, c = φ3(‖λ0 − λ∗‖) ∈ [0, 1), (27)

we deduce that lim
l→∞

λl = λ∗ and λl+1 ∈ U(λ∗, τ).

Finally, we have to illustrate the uniqueness part. We assume that η∗ ∈ ∆1 with S(η∗) = 0 and
define Q =

∫ 1
0 S′(λ∗ + θ(λ∗ − η∗))dθ. Using Equations (12) and (19), we get

‖S′(λ∗)−1(Q− S′(λ∗))‖ ≤ ‖
∫ 1

0 w0(θ‖η∗ − λ∗‖)dν

≤
∫ 1

0 w0(θR)dθ < 1.
(28)

It is confirmed from Equation (28) that Q is an invertible operator. Then, in view of the identity

0 = S(λ∗)− S(η∗) = Q(λ∗ − η∗), (29)

we deduce that λ∗ = η∗.
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Remark 1.

(a) It is clear from Equation (12) that the condition in Equation(14) can be released and adopted as follow:

v(α) = 1 + w0(α) or v(α) = 1 + w0(τ0), (30)

since,
‖S′(λ∗)−1 [(S′(λ)− S′(λ∗)

)
+ S′(λ∗)

]
‖ = 1 + ‖S′(λ∗)−1(S′(λ)− S′(λ∗))‖
≤ 1 + w0(‖λ− λ∗‖)
= 1 + w0(α) for ‖x− λ∗‖ ≤ τ0.

(31)

Further, Singh et al. [1] considered the following conditions for each λ, η ∈ ∆ in the Hölder case∥∥∥S′(λ∗)−1(S′(λ)− S′(λ∗)
)∥∥∥ ≤ w0‖λ− λ∗‖p, (32)

∥∥∥S′(λ∗)−1(S′(λ)− S′(η)
)∥∥∥ ≤ w̄‖λ− η‖p, (33)

for β ∈
(

4
5 , 5

4

)
(corresponding to Equation (4)).

In our case, we have∥∥∥S′(λ∗)−1(S′(λ)− S′(λ∗)
)∥∥∥ ≤ w0‖λ− λ∗‖p, for each λ, η ∈ ∆0, (34)

thus
w ≤ w̄ (35)

holds, since ∆0 ⊆ ∆. Hence, the improvements, as stated in the Abstract of this paper, hold for w < w̄
(see the numerical examples too).

Estimates ∥∥∥S′(λ∗)−1S′(λ)
∥∥∥ ≤ 1 + w0‖λ− λ∗‖p, (36)∥∥∥S′(λ∗)−1S′(λ∗ + θ(λ− λ∗))

∥∥∥ ≤ 1 + w0‖λ− λ∗‖p, (37)

used in [1,23] are not better than ours∥∥∥S′(λ∗)−1S′(λ)
∥∥∥ ≤ v(‖λ− λ∗‖), for each λ ∈ ∆0. (38)

Indeed, use S(λ) = sin λ, then v(α) = 1. However, the corresponding one in Equations (36) and (37) are
less tight than Equation (38). Hence, the results using Equation (38) instead of Equations (36) and (37)
provide advantages, as stated in the Introduction.

(b) If w0 is a strictly increasing function, then we can consider

τ0 = w−1
0 (1) (39)

instead of Equation (3).
(c) If w0, w are constants functions, p = 1 and β = 1, then, we showed in [2,13] using only

Equations (12) and (13) for the case of Newton’s method (see the definition of function φ1 too)

τ1 =
2

2w0 + w,
(40)

thus
τ ≤ τ1. (41)
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Therefore, the convergence radius τ has maximum value τ1 and τ1 is the convergence radius of Newton’s
method

λl+1 = λl − S′(λl)
−1S(λl). (42)

Rheindoldt [22] and Traub [8] provided the following convergence radius instead of τ1

τTR =
2

3w1
. (43)

On the other hand, Argyros [2,3] proposed the following convergence radius

τA =
2

2w0 + w1
, (44)

where w1 is the Lipschitz constant for Equation (8) on ∆. However, we have

w ≤ w1, w0 ≤ w1, (45)

thus
τTR ≤ τA ≤ τ1 (46)

and
τTR
τA
→ 1

3
as

w0

w
→ 0. (47)

The convergence radius q adopted in [24] is smaller than the radius τDS proposed by Dennis and
Schnabel [3]

q < τDS =
1

2w1
< τTR. (48)

However, q cannot be computed using the Lipschitz constants.
(d) By adopting fifth-order derivative of S, the convergence order of the scheme in Equation (2) was

demonstrated in [24]. On the other hand, our approach required only hypotheses on first-order derivative
of S. To obtain the convergence order, we adopt the following techniques for the computational order of
convergence COC

ξ =
ln ‖λn+2−λ∗‖
‖λl+1−λ∗‖

ln ‖λl+1−λ∗‖
‖λl−λ∗‖

, for each l = 0, 1, 2, . . . (49)

or the approximate computational order of convergence (ACOC) [19],

ξ∗ =
ln ‖λl+2−λl+1‖
‖λl+1−λl‖

ln ‖λl+1−λn‖
‖λn−λn−1‖

, for each l = 1, 2, . . . . (50)

Neither technique t requires any kind of derivative(s). It is also vital to note that there is no need of exact
zero λ∗ in the case of ξ∗.

(e) Consider operator S satisfying the autonomous differential equation [2,3]

S′(λ) = T(S(λ)) (51)

where T is a given continuous operator. By S′(λ∗) = T(S(λ∗)) = P(0), we can use our results
without the prior knowledge of required solution λ∗. For example, S(λ) = ex − 1. Therefore, we obtain
T(λ) = x + 1.
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(f) In view of estimates

‖S′(λ∗)−1(S′(λ0)− S′(η0)
)
‖ = ‖S′(λ∗)−1(S′(λ0)− S′(λ∗))‖+ ‖S′(λ∗)−1(S′(η0)− S′(λ0)

)
‖

≤ w0(‖λ0 − λ∗‖) + w0(‖η0 − λ∗‖)
≤ w0(‖λ0 − λ∗‖) + w0(φ1(‖λ0 − λ∗‖)‖λ0 − λ∗‖)
≤ w0(τ) + w0(φ1(τ)τ),

(52)
and similarly

‖S′(λ∗)−1(S′(λ0)− S′(θ0)
)
‖ ≤ w0(‖λ0 − λ∗‖) + w0(‖θ0 − λ∗‖)
≤ w0(τ) + w0(φ2(τ)τ),

(53)

we can replace the terms w((1 + φ1(α))α), w((1 + φ2(α))α) in the definition of functions φ2 and φ3 by
w0(α) + w0(φ1(α)α), w0(α) + w0(φ2(α)α), respectively. If

w0(α) ≤ w(α), α ∈ [0, τ0)

and say w0, w are constants, then the new functions φ2 and φ3 are tighter than the old one leading to
larger τ and tighter error bounds on the distances ‖λl − λ∗‖ (if w0 < w).

3. Concrete Examples

Here, we test the convergence conditions using concrete examples.

Example 1. Here, we assume one of the well-known Hammerstein integral equations (see pp. 19–20, [25])
defined by:

x(s) =
1
5

∫ 1

0
S(s, t)x(t)3dt, x ∈ C[0, 1], s, t ∈ [0, 1], (54)

where the kernel S is:

S(s, t) =

{
s(1− t), s ≤ t,

(1− s)t, t ≤ s.

We use
∫ 1

0 φ(t)dt '
8

∑
k=1

wkφ(tk) in Equation (54), where tk and wk are the abscissas and weights,

respectively. Denoting the approximations of x(ti) with xi (i = 1, 2, 3, ..., 8), then it yields the following 8× 8
system of nonlinear equations:

5xi − 5−
8

∑
k=1

aikx3
k = 0, i = 1, 2, 3..., 8,

aik =

{
wktk(1− ti), k ≤ i,

wkti(1− tk), i < k.

By Gauss–Legendre quadrature formula, we obtained the values of tk and wk when k = 8, which are
depicted in Table 1.

The required approximate root is:

λ∗ = (1.002096 . . . , 1.009900 . . . , 1.019727 . . . , 1.026436 . . . , 1.026436 . . . ,
1.019727 . . . , 1.009900 . . . , 1.002096 . . . )T .

Then, we get w0(t) = w(t) = 3
40 t and v(t) = 1 + w0(t). We have the following radii of convergence for

this problem in Table 2.
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Table 1. Abscissas and weights for k = 8.

j tj wj

1 0.01985507175123188415821957... 0.05061426814518812957626567...
2 0.10166676129318663020422303... 0.11119051722668723527217800...
3 0.23723379504183550709113047... 0.15685332293894364366898110...
4 0.40828267875217509753026193... 0.18134189168918099148257522...
5 0.59171732124782490246973807... 0.18134189168918099148257522...
6 0.76276620495816449290886952... 0.15685332293894364366898110...
7 0.89833323870681336979577696... 0.11119051722668723527217800...
8 0.98014492824876811584178043... 0.05061426814518812957626567...

Table 2. Distinct convergence radii for Example 1.

β τ1 τ2 τ3 τ λ0 l ρ

1 8.88889 7.12148 6.73523 6.73523 (0.5, 0.5, . . . , 0.5 (8 times)) 3 4.9998
1
3 2.42424 3.1914 2.51312 2.42424 (0.5, 0.5, . . . , 0.5 (8 times)) 4 3.9999
1
4 1.77778 2.93819 2.14571 1.77778 (0.25, 0.25, . . . , 0.25 (8 times)) 4 3.9999

We follow in all examples the stopping criteria for programming of: (i) ‖F(λl)‖ < 10−100; and (ii) ‖λl+1 − λl‖ < 10−100.

Example 2. Consider the nonlinear integral Equations (13) and (16), when E1 = E2 = C[0, 1] as

λ(γ1) =
∫ 1

0
G(γ1, γ2)

(
λ(γ2)

3
2 +

λ(γ2)
2

2

)
dγ2, (55)

where the kernel G : [0, 1]× [0, 1] is

G(γ1, γ2) =

{
(1− γ2)γ2, γ2 ≤ γ1,

γ1(1− γ2), γ1 ≤ γ2.
(56)

The solution λ∗(γ1) = 0 is the same as the solution of Equation (1), where S : C[0, 1] → C[0, 1] is
defined by [

S(λ)
]
(γ1) = λ(γ1)−

∫ γ2

0
G(γ1, γ2)

(
λ(γ2)

3
2 +

λ(γ2)
2

2

)
dγ2. (57)

We get ∥∥∥∥∫ γ2

0
G(γ1, γ2)dγ2

∥∥∥∥ ≤ 1
8

. (58)

Moreover, [
S′(λ)η

]
(γ1) = η(γ1)−

∫ γ2

0
G(γ1, γ2)

(
3
2

λ(γ2)
1
2 + λ(γ2)

)
η(γ2)dγ2,

thus, since S′(λ∗(γ1)) = I,∥∥∥S′(λ∗)−1(S′(λ)− S′(η)
)∥∥∥ ≤ 1

8

(
3
2
‖λ− η‖

1
2 + ‖λ− η‖

)
. (59)

Hence, we have

w0(α) = w(α) =
1
8

(
3
2

α
1
2 + α

)
,

thus, by Remark 1 (a), we can choose
v(α) = 1 + w0(α).

Therefore, our results can be utilized but not the ones in [1] because S′ is unbounded on ∆. We have the
following radii of convergence for the problem in Example 2 mentioned in Table 3.
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Table 3. Distinct convergence radii for Example 2.

β τ1 τ2 τ3 τ

1 2.6303 1.72877 1.53391 1.53391
1
2 0.77579 0.678555 0.450781 0.450781
1
4 0.231922 0.454561 0.157970 0.157970

Example 3. Consider a system of differential equations,

s′1(λ)− s1(λ)− 1 = 0

s′2(η)− (e− 1)η − 1 = 0

s′3(θ)− 1 = 0

(60)

that describes the movement of a particle in three dimensions with λ, η, θ ∈ ∆ for s1(0) = s2(0) = s3(0) = 0.
Then, the solution v = (λ, η, θ)T relates to S := (s1, s2, s3) : ∆→ R3, given as

S(v) =
(

eλ − 1,
e− 1

2
η2 + η, θ

)T
. (61)

It follows from Equation (61) that

S′(v) =

eλ 0 0
0 (e− 1)η + 1 0
0 0 1

 .

Then, we have that w0(α) = L0α, w(α) = Lα and v(α) = M, where L0 = e − 1 < L = e
1

L0 =

1.789572397 and M = e
1

L0 = 1.7896. e have the following radii of convergence for Example 3, depicted in
Tables 4 and 5.

Table 4. Convergence radii for Example 3.

β τ1 τ2 τ3 τ λ0 l ρ

1 0.377542 0.16544 0.134375 0.134375 (0.09, 0.09, 0.09) 3 4.9996

Table 5. Convergence radii for Example 3 with w0(t) = w(t) = et, v(t) = e (call them barfunctions).

β τ1 τ2 τ3 τ λ0 l ρ

1 0.245253 0.0650807 0.0497009 0.0497009 (0.03, 0.03, 0.03) 3 4.9994

Example 4. The chemical reaction [26] illustrated in this case shows how Γ1 and Γ2 are utilized at rates q∗−Q∗
and Q∗, respectively, for a tank reactor (known as CSTR), given by:

Γ2 + Γ1 → Γ3

Γ3 + Γ1 → Γ4

Γ4 + Γ1 → Γ5

Γ5 + Γ1 → Γ6
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Douglas [27] analyzed the CSTR problem for designing simple feedback control systems. The following
mathematical formulation was adopted:

KC
2.98(λ + 2.25)

(λ + 1.45)(λ + 2.85)2(λ + 4.35)
= −1,

where the parameter KC has a physical meaning and is described in [26,27]. For the particular value of choice
KC = 0, we obtain the corresponding equation:

S(λ) = λ4 + 11.50λ3 + 47.49λ2 + 83.06325λ + 51.23266875. (62)

The function S has four solutions λ∗ = (−2.85, −1.45, −2.85, −4.35). Nonetheless, the desired zero is
λ∗ = −4.35 for Equation (62). We assume ∆ = [−4.5,−4]. Then, we have w0(α) = w(α) = 0.644828α and
v(α) = 0.238439.

The radii of converegnce for the method (2) on the basis of Example 4 are mentioned in Table 6.

Table 6. Different radii of convergence for Example 4.

β τ1 τ2 τ3 τ λ0 l ρ

1 1.03387 0.963489 0.942188 0.942188 −4.6 4 5.0000
−1 0.829407 0.81933 0.806711 0.806711 −4.5 4 5.0000

1
3 0.955364 0.906428 0.872289 0.872289 −4.4 4 4.0000

Example 5. By the example in the Introduction, we get L = L0 = 96.662907 and M = 2. The radii of
convergence of the method (2) for Example 5 are described in Table 7.

Table 7. Different radii of convergence for Example 5.

β τ1 τ2 τ3 τ λ0 l ρ

1 0.00689682 0.000104857 0.000074428 0.000074428 1.00001 2 5.0000
1.1 0.00551746 0.0104211 0.000459821 0.000459821 1.0001 3 4.0000
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