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Abstract: Sliced Latin hypercube designs (SLHDs) are widely used in computer experiments with
both quantitative and qualitative factors and in batches. Optimal SLHDs achieve better space-filling
property on the whole experimental region. However, most existing methods for constructing optimal
SLHDs have restriction on the run sizes. In this paper, we propose a new method for constructing
SLHDs with arbitrary run sizes, and a new combined space-filling measurement describing the
space-filling property for both the whole design and its slices. Furthermore, we develop general
algorithms to search for the optimal SLHD with arbitrary run sizes under the proposed measurement.
Examples are presented to illustrate that effectiveness of the proposed methods.

Keywords: computer experiment; optimal design; space-filling design; maximin distance criterion

1. Introduction

Computer experiments are becoming increasingly significant in many fields, such as finite element
analysis and computational fluid dynamics. Latin hypercube designs (LHDs) [1] are widely used
in computer experiments because of their optimal univariate uniformity. A design with n runs and
q factors is called an LHD; if the design is projected onto any one dimension, there is precisely
one point lying within one of the n intervals (0, 1/n], (1/n, 2/n], · · · , ((n− 1)/n, 1]. Such an LHD
is said to have optimal univariate uniformity. Sliced Latin hypercube designs (SLHDs) are LHDs
that can be partitioned into some LHD slices [2], which means that the SLHDs have the optimal
univariate uniformity for both the whole design and their slices. In [3], a central limit theorem
for SLHDs is proposed. SLHDs are popular for computer experiments with both qualitative and
quantitative variables; see [4–6] and the references therein. Each slice of an SLHD can be used under
one level-combination of the qualitative factors. However, the original SLHDs and almost all existing
methods for constructing variants of SLHDs require that the run sizes of each slice are equal; see [7–10].

An SLHD is called desirable if its design points are well spread out for both the whole design
and its slices. Randomly generated SLHDs usually have a poor space-filling property in the entire
experimental region, i.e., randomly generated SLHDs may not be desirable. There are many methods
that aim to improve the space-filling property of an SLHD. For instance, the method proposed
by [11] can be used to generate an optimal clustered-sliced Latin hypercube design (OCSLHD) which
has a good space-filling property in the whole experimental region. In a multi-fidelity computer
experiment, each slice of an OCSLHD can be used for each accuracy of the computer code [11].
Generally, we want to use more design points for the lower-accuracy experiments than those of the
higher-accuracy experiments, since the lower the accuracy is, the faster it runs [12,13]. However,
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many existing methods for constructing optimal SLHDs can only generate SLHDs with equal run
sizes of each slice, e.g., [11,14,15]. To overcome this restriction, we need a method that can construct
SLHDs with slices of arbitrary run sizes, and with a good space-filling property over the whole
experimental region. For example, the authors in [16] gave flexible sliced designs, but such designs are
not LHDs. The method given in [17] provided SLHDs with unequal batch sizes, but this type of design
only accommodates two different run sizes. A random sampling procedure for constructing flexible
SLHDs is given in [18]. However, the design is constructed by the procedure with slow efficiency if
the design has large design points. An algorithm is proposed in [19] to construct a midpoint SLHD
with unequal run sizes, which has the fast efficiency for constructing the design, but such a design is
difficult to be used as an initial design to search for the optimal design. Firstly, we are interested in
constructing randomized SLHDs with slices of arbitrary run sizes, and we want to have more flexible
elements to construct the design. Secondly, we can exchange some elements of different slices, and the
design still keeps the sliced structure, while the elements in each slice of the design are fixed in [19].
We can consider proposing a method that is easily adapted to generate the optimal design.

In this paper, we propose an improved method to construct SLHDs with slices of arbitrary run
sizes, which are called flexible sliced Latin hypercube designs (FSLHDs). The new construction
method can be easily adapted to generate the optimal design. Furthermore, we provide a combined
space-filling measurement (CSM) to describe the space-filling properties of both the whole design
and each of slices. Based on an optimization algorithm called the enhanced stochastic evolutionary
algorithm (ESE), we propose a sliced ESE (SESE) algorithm to find the optimal FSLHDs. We further
develop an efficient two-part algorithm to improve the efficiency in generating space-filling FSLHDs
with large runs and factors. The generated optimal FSLHDs have three attractive features: (i) arbitrary
run sizes of all slices, (ii) optimal univariate uniformity in the whole design and each slice, and (iii)
good space-filling property in the experimental region. We believe that they are suitable for many
multi-fidelity computer experiments in practice.

The remainder of this paper is organized as follows. The construction of FSLHDs is provided
in Section 2. In Section 3, an CSM is given to describe the space-filling properties of both the whole
design and each of slices, and then we develop an SESE algorithm to obtain optimal FSLHDs based on
the CSM and a two-part algorithm to improve efficiency. Some simulation results are illustrated in
Section 4. Section 5 provides some discussions. Section 6 concludes this paper. The corresponding
codes for Sections 2–4 can be found in the Supplementary Materials.

2. Construction of SLHDs with Slices of Arbitrary Run Sizes

For a real number a, let dae denote the smallest integer not smaller than a. Given u positive integers
n1, · · · , nu, let n = ∑u

i=1 ni and let L = lcm(n1, · · · , nu, n) be the least common multiple of n1, · · · , nu,
and n. Suppose that FSLHD(n1, · · · , nu; u, q) is an FSHLD with u slices of run sizes n1, · · · , nu and q
factors. Each column of the FSLHD is generated independently by the following algorithm:

Step 1. Let Hi = ∅ for i = 1, · · · , u, and R0 = ∅.
Step 2. For j = 1, · · · , n, let Rj,0 = Rj−1

⋃{j} and calculate

θj = ∑u
i=1 (dni(j + 1)/ne − dni j/ne).

If θj > 0, for k = 1, · · · , θj, let l denote the kth smallest integer of the set {p|dnp(j +
1)/ne − dnp j/ne = 1} and r = min{r|dnlr/ne = dnl j/ne, r ∈ Rj,k−1} add r to Hl and let
Rj,k = Rj,k−1 \ {r}. Let Rj = Rj,θj and go to the next j.

Step 3. For i = 1, · · · , u, generate a vector hi by randomly permuting Hi.
Step 4. For i = 1, · · · , u, calculate mi = Lhi/n, where mi = (mi

1, · · · , mi
ni
). Combine m1, · · · , mu

to obtain an n-dimensional column vector m = (m1, · · · , mn)T , then let di = (di
1, · · · , di

ni
)T

be constructed by
di

s = (mi
s − εi

s)/L, s = 1, · · · , ni, (1)
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where εi
s ∼ U(0, 1). Combine d1, · · · , du to obtain an n-dimensional column vector

d = (d1, · · · , dn)T , and d is one column of the design.

In the above algorithm, m is called a column of the flexible sliced Latin hypercube (FSLH).
The following theorem shows that both the whole FSLHD and its slices are LHDs.

Theorem 1. Let d = (d1, · · · , dn)T denote an arbitrary column of FSLHD(n1, · · · , nu; u, q) generated by the
above method. Let d1, · · · , du denote each slice. For i = 1, · · · , u, let ti = L/ni and t′ = L/n.

(i) Precisely, one point of d = (d1, · · · , dn)T lies within one of the n intervals
(0, 1/n], (1/n, 2/n], · · · , ((n− 1)/n, 1].

(ii) Precisely, one point of di = (di
1, · · · , di

ni
) lies within one of the ni intervals

(0, 1/ni], (1/ni, 2/ni],· · · , ((ni − 1)/ni, 1].

Proof. (i) Combine h1, · · · , hu to obtain h = (h1, · · · , hn)T that is a permutation of {1, · · · , n}.
Combine m1, · · · , mu to obtain m = (m1, · · · , mn)T . Therefore, m = Lh/n. For t′ = L/n
because dm/t′e = d(Lh/n)/t′e = dhe, dm/t′e is a permutation of {1, · · · , n}. Therefore, precisely one
point of d = (d1, · · · , dn)T lies within one of the n intervals (0, 1/n], (1/n, 2/n], · · · , ((n− 1)/n, 1].

(ii) According to Step 2, for i = 1, · · · , u, it is clear that card(Hi) = ∑n
j=1(dni(j + 1)/ne −

dni j/ne) = dni(n + 1)/ne − dni/ne = ni, and for j = 1, · · · , n, dni j/ne < dni(j + 1)/ne.
For any i,j, there is an integer h ∈ Hi that satisfies dnih/ne = dni j/ne. Therefore, we have
{m|m = dnih/ne, h ∈ Hi} = {1, · · · , ni}, which means that dnihi/ne is a permutation of {1, · · · , ni}.
Since mi = Lhi/n, we have dmi/tie = d(Lhi/n)/(L/ni)e = dnihi/ne. Thus, dmi/tie is a
permutation of {1, · · · , ni}. Therefore, precisely one point of di lies within one of the ni intervals
(0, 1/ni], (1/ni, 2/ni], · · · , ((ni − 1)/ni, 1].

We give an example to illustrate the process of the above method.

Example 1. Consider n1 = 3, n2 = 4, n3 = 5, u = 3, n = 12, and L = 60.

Step 1. H1 = H2 = H3 = R0 = ∅.
Step 2. Calculate (θ1, · · · , θn) = (0, 1, 1, 2, 0, 1, 1, 1, 2, 0, 0, 3). For j = 1, then R1,0 = {1}, since θ1 = 0,

we obtain R1 = R1,0 = {1}. For j = 2, R2,0 = R1 ∪ {2} = {1, 2}, θ2 = 1, only an integer
l = 3 satisfies dnl(j + 1)/ne − dnL j/ne = 1, and r =min{r|dn3r/ne = dn3 j/ne, r ∈ R2,0} =
min{1, 2} = 1. Hence, we add r = 1 to H3, R2,1 = R2,0\{1} = {2}, and R2 = R2,1 = {2}.
For j = 3, R3,0 = R2 ∪ {3} = {2, 3}, θ3 = 1, only an integer l = 2 satisfies dn2(j + 1)/ne −
dn2 j/ne = 1, and r =min{r|dn2r/ne = dn2 j/ne, r ∈ R3,0} = min{2, 3} = 2. Therefore, we
add r = 2 to H2 , R3,1 = R3,0\{2} = {3}, and R3 = R3,1 = {3}. After passing all j, we can get
R12 = ∅, H1 = {3, 7, 10}, H2 = {2, 5, 8, 11}, and H3 = {1, 4, 6, 9, 12}.

Step 3. We get h1 = (10, 7, 3) , h2 = (5, 8, 2, 11), and h3 = (6, 9, 12, 1, 4) by randomly permuting H1 ,
H2, and H3.

Step 4. We obtain m1 = (50, 35, 15), m2 = (25, 40, 10, 55), and m3 = (30, 45, 60, 5, 20). Then, di =

(di
1, · · · , di

ni
)T is constructed through di

s = (mi
s − εi

s)/60, where i = 1, · · · , 3, s = 1, · · · , ni,
and εi

s ∼ U(0, 1). Thus, we obtain an arbitrary column d = (d1, · · · , dn)T of the design.

3. Optimal SLHDs with Slices of Arbitrary Run Sizes

Given n1, · · · , nu, u, q, a number of possible FSLHDs can be generated through the proposed
method in Section 2. Among such FSLHDs, we can find the optimal FSLHD through a given
space-filling criterion. We first propose a combined space-filling measurement (CSM) to evaluate
space-filling property of FSLHD in Section 3.1. Then, to keep the structure of the design during the
optimization process, three methods are proposed to change position of the elements in one column in
Section 3.2. Finally, we present a sliced ESE algorithm to optimize FSLHD in Section 3.3. An efficient
two-part algorithm for generating the space-filling FSLHD is given in Section 3.4.
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3.1. A Combined Space-Filling Measurement for FSLHDs

Various space-filling criteria are used to evaluate the LHDs, such as the maximin distance
criterion [20–23], the φt criterion [24–27], and the centered L2-discrepancy (CD2) criterion [28,29].
All the space-filling criteria can be extended to describe the space-filling property of the FSLHDs.
We mainly focus on the φt criterion, which is an attractive extension of maximin distance criterion.

The maximin distance criterion is a popular space-filling criterion introduced in [20]. Let D =

[x1, · · · , xn]T denote a design matrix with n runs and q factors, where each row xT
i = (xi1, · · · , xiq) is a

design point and each column is a factor with i = 1, · · · , n. A maximin distance design is generated by
maximizing the minimum inter-site distance, which is expressed as

min
∀1≤i,j≤n,i 6=j

dij, (2)

where dij is the distance between the design points xi and xj given by:

dij =

(
q

∑
k=1
|xik − xjk|m

)1/m

, m = 1 or 2. (3)

Here, m = 1 and m = 2 are the rectangular and Euclidean distances, respectively. In this article, we
use the Euclidean distance. An extension of the maximin distance criterion [24] is given by

φt =

(
∑

1≤i<j≤n
(dij)

−t

)1/t

, (4)

where t is a positive integer. It is obvious that as t −→ ∞, minimizing (4) is equivalent to maximizing (2).
The calculation of φt is simpler compared with the maximin distance criterion.

We search for an optimal design by minimizing φt, i.e.,

D∗ = arg min
D

φt(D). (5)

Suppose that D is the design matrix of an FSLHD(n1, . . . , nu; u, q). For i = 1, . . . , u, let D(i) denote each
slice of D. We need to consider both the space-filling properties of the whole FSLHD and that of its
slices. Consequently, our goal is to find a maximin FSLHD that minimizes φt(D) for the entire design
as well as φt(D(i)) for each slice of D (i = 1, . . . , u). This is a multi-objective optimization problem. It is
a common method in a multi-objective problem to use a weighted average of all individual objectives.
It motivates us to develop a combined space-filling measurement (CSM) as follows:

φCSM(D) = wφt(D) + (1− w)

(
u

∑
i=1

λiφt(D(i))

)
, (6)

where λi = ni/n , ∑u
i=1 λi = 1, and w ∈ (0, 1). Since run sizes of slices are n1, . . . , nu, respectively,

it makes sense that we take the weight of each slice to be λi = ni/n, for i = 1, . . . , u. The weight w
is selected flexibly. The space-filling property of the whole FSLHD is more important, hence we set
w = 1/2 in general. We can define a maximin distance FSLHD with respect to the CSM as the one that
minimizes (6).

Note that other space-filling criteria can also evaluate the FSLHD. For instance, we can obtain an
uniform FSLHD by minimizing a similar CSM given by

φCSM(D) = wφCD2(D) + (1− w)

(
u

∑
i=1

λiφCD2(D(i))

)
, (7)
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where φCD2 is the centered L2-discrepancy defined as

φCD2 =

((
13
12

)2
− 2

n

n

∑
i=1

q

∏
k=1

(
1 +

1
2
|xik − 0.5| − |xik − 0.5|2

)

+
1
n2

n

∑
i=1

n

∑
j=1

q

∏
k=1

(
1 +

1
2
|xik − 0.5|+ 1

2
|xjk − 0.5| − |xik − xjk|

))1/2 (8)

proposed in [28].

3.2. Exchange Procedures for FSLHDs

In the literature, some optimization algorithms have been widely used to construct an
optimal LHD. They utilize an exchange procedure to iteratively search for the optimal LHD in the
design space. In this way, two randomly selected elements in an arbitrary column of an LHD are
exchanged to generate a new design. The exchange procedure for an FSLHD is more complex since the
design should keep the sliced structure. In this subsection, in the optimization process of an FSLHD,
we present three exchange procedures to generate a neighbour of the design which do not change the
sliced structure of the design. A neighbour of an FSLH corresponds to a neighbour of an FSLHD. Let
M be the FSLH(n1, · · · , nu; u, q) constructed in Section 2. Let MN denote a neighbour of an FSLH and
let DN denote a neighbour of an FSLHD.

3.2.1. The Within-Slice Exchange Procedure

Given an FSLH(n1, · · · , nu; u, q)(M), let n0 = 0, r0 = 0, and ri = ∑i
k=0 nk, for i = 1, · · · , u.

The within-slice exchange procedure in the ith slice of M is to draw an MN by the following four steps:

Step 1. Randomly select a column of M.
Step 2. Select any two different elements dj, dk in ith slice of the column, where ri−1 + 1 ≤ j, k ≤ ri.
Step 3. Exchange dj and dk in the same slice.
Step 4. Generate MN.

After this procedure, the neighbour design MN still keeps the sliced structure. The within-slice
exchange procedure is explained by an example about FSLH(4,6;2,2) illustrated in Figure 1.
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Figure 1. The within-slice exchange procedure. Left: The original FSLH(4,6;2,2). Right: The neighbour
of the FSLH after exchanging 6 and 30 in the second slice and in the second column of the design.

3.2.2. The Different-Slice Exchange and the Out-Slice Exchange Procedures

We first give some notations. Given an FSLH(n1, · · · , nu; u, q)(M), let M(l : m, j) denote the lth to
mth rows of the jth column, and M(l, j) denotes its (l, j) element. For i = 1, · · · , u, let ri = ∑i

k=0 nk,
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and Bij = M(ri−1 + 1 : ri, j) denotes ith slice in the jth column of M , where n0 = 0, r0 = 0. Define
Eij = {M(ri + 1, j), · · · , M(n, j)}, where i = 1, · · · , u − 1 and n = ∑u

i=1 ni. Let AL = {1, · · · , L}
denote a set of integers from 1 to L, where L = lcm(n1, · · · , nu, n). Set B = {M(1, j), · · · , M(n, j)}.
Let C = AL \ B denote A minus B.

It is observed that elements of each slice on an FSLHD are fixed by the construction method in
Section 2. There are two situations. On the one hand, some elements in an arbitrary column of an
FSLH from different slices are exchanged, and the resulting FSLH does not change the sliced structure.
On the other hand, some elements that are used to construct a column of an FSLH are not selected in
C; in addition, we exchange some elements between Bij and C, and the resulting FSLH still keeps the
sliced structure. This motivates us to propose a different-slice exchange procedure and an out-slice
exchange procedure to generate more diverse neighbours of the design. By the above methods, we can
more easily find the optimal design. The detailed process of the two procedures is as follows.

The different-slice exchange procedure in the ith slice: we select any element b of Bij. Let ρ(b)
be a subset of Eij satisfying that the generated FSLH still keeps the sliced structure by exchanging b
with arbitrary c in ρ(b), where i = 1, · · · , u− 1.

The out-slice exchange procedure in the ith slice: the elements in C are called out-slice elements
in a column of the design. For the same b, let σ(b) be a subset of C satisfying that the obtained FSLH
still maintains the sliced structure through exchanging b with arbitrary c in σ(b), where i = 1, · · · , u.
Let τ(b) = ρ(b) ∪ σ(b). In the last slice, we only consider the out-slice exchange procedure, thus
τ(b) = σ(b). For a set R, Rk denotes the kth smallest element of R. Suppose that MN(1 : n, j) is a new
column generated from M(1 : n, j). Here, for i = 1, · · · , u, recall that ti = L/ni. We provide a method
to generate τ(b) in the ith slice of M by the following steps:

Step 1. Randomly select an element b in M(ri−1 + 1 : ri, j).
Step 2. Generate a set R = {(db/tie − 1)× ti + 1, (db/tie − 1)× ti + 2, · · · , db/tie × ti}\{b}.
Step 3. If i < u, go to Step 4; else, go to Step 5.
Step 4. For k from 1 to ti − 1, if Rk belongs to M(ri + 1 : n, j), go to Step 5; else, go to Step 6.
Step 5. Generate MN(1 : n, j) by exchanging b with Rk. If MN(1 : n, j) still satisfies Theorem 1(ii),

go to Step 7.
Step 6. Generate MN(1 : n, j) by exchanging b with Rk. If MN(1 : n, j) still satisfies Theorem 1(i),

go to Step 7.
Step 7. Add Rk to τ(b).

Step 5 and Step 6 are critical for generating τ(b). In Step 5, since both b and Rk are in M(1 : n, j),
MN(1 : n, j) still satisfies Theorem 1(i), when we exchange b with Rk. Thus, we just guarantee that
MN(1 : n, j) still satisfies Theorem 1(ii). In Step 6, it is clear that changing b with any element of R
can guarantee that MN(1 : n, j) still satisfies Theorem 1(ii); therefore, we only ensure that MN(1 : n, j)
satisfies Theorem 1(i).

We introduce the different-slice exchange and the out-slice exchange procedures in Figure 2.
For an FSLH(4,6; 2,2)(M), we randomly select b = 54 in M(1 : 4, 1) in Figure 2a, then t1 = 60/4 = 15
and R = {45, 46, · · · , 53, 55, · · · , 60}. We obtain τ(b) = {49, 50, 51, 52, 53, 60} after conducting the
above steps.

In the different-slice exchange procedure, we can exchange 54 with 60 of τ(b) in Figure 2a. In the
out-slice exchange procedure, we can replace 54 with 49 of τ(b) in Figure 2b. It can be seen that the
two resulting designs still keep the sliced structure.
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(a) Different-slice exchange procedure
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(b) Out-slice exchange procedure

Figure 2. (a) the different-slice procedure: exchange 54 in M(1 : 4, 1) with 60 of τ(b) in M(5 : 10, 1); (b)
the out-slice procedure: replace 54 in M(1 : 4, 1) with 49 of τ(b) in the out-slice elements.

3.3. A Sliced ESE Algorithm for Generating Optimal FSLHDs

Researchers utilize various optimization algorithms to construct optimal LHDs, such as the
enhanced stochastic evolutionary (ESE) algorithm [24], the simulated annealing search algorithm [25],
the column wise-pairwise swap algorithm [26], the threshold accepting algorithm [29], the particle
swarm algorithm [30,31], and the genetic algorithm [32,33]. All of the above algorithms can be
extended to optimize FSLHDs. In this paper, we choose the ESE algorithm as a basic algorithm to
find optimal FSLHDs.

The ESE algorithm can quickly construct an optimal LHD in a limited calculative resource and it
can also move from a locally optimal LHD. The ESE algorithm includes double loops, i.e., an inner
loop and an outer loop. The inner loop randomly generates neighbours of the design by the exchange
procedures and decides whether to accept them on the basis of an acceptance criterion. The outer loop
aims to adjust the threshold Th in the acceptance criterion through the performance of the inner loop,
so the outer loop can control the whole optimization process. When extending the ESE algorithm for
searching for an optimal FSLHD, we need to consider the sliced structure of an FSLHD. Thus, based
on the three exchange procedures in Section 3.2, we develop a sliced enhanced stochastic evolutionary
(SESE) algorithm that contains double loops in [24] and the slice by slice loop proposed in this article.
Such a combined algorithm can suit the sliced structure of the FSLHD. It is a dynamic optimization
approach to optimize the FSLHD slice by slice. This algorithm can search for the optimal FSLHD by
minimizing the CSM. Algorithm 1 describes the SESE algorithm.

The slice by slice loop: We start with an initial FSLHD denoted by D0. When we optimize the
first slice of the design, D0 is an initial design in the outer loop. When optimizing the ith (i ≥ 2) slice of
the design, we make Dbest, generated from outer loop in the (i− 1)th slice optimization, as the initial
FSLHD. It means that a new slice optimization is based on the previous slice optimization until the
last slice. The parameter settings of the inner loop and the outer loop have been discussed in [24].
The parameter settings are similar in [24] for the construction method of an FSLHD.

The inner loop: The iterations P should be set larger for larger problems but no larger than 100.
The acceptance criterion is φCSM(DN)− φCSM(D) ≤ Th · random(0, 1), where random(0, 1) generates
uniform numbers between 0 and 1. According to the discussion in [24], if the settings of I1, I2, and I3

are too large, the locally optimal design for designs with small run sizes and low efficiency for designs
with large run sizes can appear. Let I1 = min (nin-slice/5, 50), where nin-slice is the number of all
possible neighbours of the design in within-slice exchange procedure. Let ndiff-slice and nout-slice be
the number of all possible neighbours of the design for the different-slice exchange procedure and
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the out-slice exchange procedure, respectively. According to the construction method of the FSLHD,
we can clearly know that ndiff-slice and nout-slice are usually small; therefore, it is reasonable to set
I2 + I3 = min(ndiff-slice + nout-slice, 50).

The outer loop: The setting of Th is a small value, i.e., Th0 = 0.005× (criterion value of the
initial design). The threshold Th is adjusted by an improvement process and an exploration process.
After the Inner Loop, if the search process has improved, then go to the improvement process, while,
if the search process has no improvement, then go to the exploration process. We adjust Th by the
same way in [24] as follows. In the improvement process, when Th maintains a small value, only
slightly worse designs or better designs will be accepted. The parameter P is the number of tries in the
inner loop. The threshold Th is adjusted by the acceptance ratio pac = nac/P (nac, the number of the
accepted designs) and the improvement ratio pim = nim/P (nim, the number of the improved designs).
For f lagim = 1, if pac > 0.1 and pim < pac, let Th_try = β1Th, where 0 < β1 < 1; if pac > 0.1 and
pim = pac, let Th_try = Th; otherwise, Th_try = Th/β1. We set β1 = 0.8, since it appears to do well in all
tests. In the exploration process, Th is adjusted by pac. For f lagim = 0, let Th_try = Th/β2 and Th will
be quickly increased until pac > 0.8; if pac > 0.8, let Th_try = Thβ3 and Th will be quickly decreased
until pac < 0.1, where 0 < β2, β3 < 1. On the basis of some tests, the settings of β2 = 0.7 and β3 = 0.9
perform well. Increasing rapidly Th (more worse designs can be accepted) is useful to move away
from a locally optimal design. After moving away from a locally optimal design, decreasing Th slowly
helps to search for better designs. An improved design is found by repeating the exploration process;
then, we go into the improvement process. The tol is a small fixed value, i.e., tol = 0.1. The stopping
criterion N is set to be 10 in our procedure, which is selected flexibly.



Mathematics 2019, 7, 854 9 of 16

Algorithm 1: The SESE algorithm.
Input: An initial design D0.

1 Initialization: Dbest = D0.
2 for i = 1, · · · , u do
3 Slice-by-Slice Loop:
4 D0 = Dbest.
5 Outer Loop:
6 Initialization: D = D0, Dbest = D, Th = Th0 .
7 for j = 1, · · · , N do
8 Dold_best = Dbest,
9 nac = 0, nim = 0.

10 Inner Loop:
11 for k = 1, · · · , P do
12 In the ith slice of the design, randomly choose I1, I2 and I3 neighbours of the design

by the within-slice exchange, the different-slice exchange, and the out-slice
exchange procedures within column (k mod q) + 1 , respectively. Select the best
design DN from (I1 +I2 +I3) designs.

13 if φCSM(DN)− φCSM(D) ≤ Th · random(0, 1) then
14 D = DN,
15 nac = nac + 1.
16 if φCSM(D) < φCSM(Dbest) then
17 Dbest = D,
18 nim = nim + 1.
19 end
20 end
21 end
22 if φCSM(Dold_best)− φCSM(Dbest) > tol then
23 f lagim = 1.
24 else
25 f lagim = 0.
26 end
27 Update Th according to f lagim, nac, nim.
28 end
29 end

Output: Dbest.

3.4. Efficient Two-Part Algorithm for Generating Space-Filling FSLHDs

For an FSLHD with n runs and q factors, when n and q are small, the SESE algorithm is
more efficient and provides much better resulting designs. However, if n and q are getting larger,
the convergence of the SESE algorithm may be slow because of the large number of neighbours of the
design. In this subsection, we consider a similar strategy which is broadly applied in [14,34] to avoid
the poor space-filling designs and improve the efficiency when n and q are large.

We first give the strategy for our proposed design as follows: for an FSLHD(n1, · · · , nu; u, q)
and n = ∑u

i=1 ni, the q-dimensional input region in the ith slice of FSLHD is partitioned into nq
i cells

through the ni×, · · · ,×ni︸ ︷︷ ︸
q

coarser grid (i = 1, · · · , u). Since run sizes ni of each slice are different,

the number nq
i of divided cells is different. It is possible that some of n design points sampled from the

nq
i cells can fall into the same cell. If nq

i > n, we need to avoid design points falling into in the same
cells and ensure the design still an FSLHD.
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We give a detailed process of the above strategy. Let 1{·} denote the indicator function. For an
n× q matrix A = [a1, · · · , an]T, denote

P(A) = ∑
1≤i<j≤n

1{d(ai, aj) = 0}, (9)

where 1{d(ai, aj) = 0} = 1 if d(ai, aj) = 0 is true and 1{d(ai, aj) = 0} = 0, otherwise. It is clear
that some rows of matrix A are the same if P(A) > 0. We call the same rows as repeating rows
which fall into the same cell. We can find repeating rows of a design by (9). For FSLH(n1, · · · , nu; u, q)
(M), recall that ti =lcm (n1, · · · , nu, n)/ni, for i =, . . . , u − 1. Let Mi = dM/tie. If nq

i > n and
P(Mi) = ∑1≤i<j<n 1{d(ai, aj) = 0} > 0, then the matrix has repeating rows.

Let us look at the following example of a design matrix FSLH (4,6;2,2) (M)

M =

(
54 12 24 42 60 30 6 18 48 36
54 42 12 24 18 6 36 48 60 30

)T

.

By (10) and (11), both M1 = dM/15e and M2 = dM/10e have repeating rows, which indicates that
P(M1) = 4 > 0 and P(M2) = 1 > 0. The FSLH corresponding to the design under different divided
cells is depicted in Figure 3a,b, respectively. The design points of repeating rows fall into the same cell
(filled with blue).

M1 =

(
4 3 1 2 2 1 3 4 4 2
4 1 2 3 4 2 1 2 4 3

)T

, (10)

M2 =

(
6 5 2 3 2 1 4 5 6 3
6 2 3 5 6 3 1 2 5 4

)T

. (11)

To make the design with better space-filling properties, we consider putting all the points into
the different cells. Therefore, we can select randomly a column of the repeating rows, and conduct a
within-slice exchange procedure in the randomly chosen column of the same slice, until P(M1) = 0
and P(M2) = 0. The resulting designs are shown in Figure 4a,b, respectively, in which all the points
fall into the different cells. In summary, the above strategy can quickly eliminate undesirable designs
that contain repeating rows.

(a) (b)

Figure 3. A poor design with some repeating rows. (a) the two-dimensional input region is divided
into 4× 4 cells, and some repeating rows lie in the same cell; (b) the two-dimensional input region is
divided into 6× 6 cells, and some repeating rows lie in the same cell.
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(a) (b)

Figure 4. A resulting design with design points spread out. (a) the n design points fall into different
cells in the 4× 4 grid; (b) the n design points fall into different cells in the 6× 6 grid.

Given an FSLHD with large n runs and q factors, we develop an efficient two-part algorithm
for finding the space-filling FSLHDs based on the above strategy. Without loss of generality, assume
n1, · · · , nu with n1 ≤ n2 ≤, · · · ,≤ nu. Recall that DN denotes a neighbour of FSLHD(D) and MN

denotes a neighbour of FSLH(M). This algorithm is provided as follows:

Part-I Algorithm

The Part-I algorithm is useful for speeding up by removing some undesirable designs from
neighbours of the design. It starts with an initial FSLH (n1, · · · , nu; u, q)(M0). According to the run
sizes of the design, it can be stopped by some flexible stopping criterions. In our proposed algorithm,
when 100 iterations have been operated, we stop the program. The algorithm is given below:

Step 1. Let M = M0, and set the index i = 1.
Step 2. If P(dM/tie) = 0, compute φCSM(D), go to Step 5.
Step 3. If nq

i > n, randomly choose a repeating row of dM/tie, and randomly choose another row
in the same slice. We exchange two elements which correspond to a randomly selected
column of the two rows. Generate an MN; else, go to Step 5.

Step 4. If P(dMN/tie) < P(dM/tie), M = MN, go back to Step 2; else, go back to Step 3.
Step 5. Under the condition of P(dMN/tie) = 0, generate an MN by the within-slice procedure in

the ith slice of M, then calculate φCSM(DN).
Step 6. If φCSM(DN) < φCSM(D), then replace M by MN; else, go back to Step 3.
Step 7. Repeat Step 4 and Step 5 until meeting the stopping criterion.
Step 8. Update i = i + 1, if i < u, go to Step 2; else, output Mbest = M.

Part-II Algorithm

We take Mbest from the Part-I algorithm as an initial design in the Part-II algorithm. We generate
a neighbour of FSLHD based on the different-slice or the out-slice exchange procedures in the
Part-II algorithm. For i = 1, · · · , u, if q is large and nq

i >> n, then the n design points is very sparse
by the Part-I algorithm; consequently, the Part-II algorithm brings smaller effect for the space-filling
properties of the design D. Therefore, in this case, the Part-I algorithm is more important, and we can
skip the Part-II algorithm and focus on the Part-I algorithm. We also can stop the running of Part-II
algorithm when the repeating times arrive at 100:
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Step 1. Let M = Mbest, and set the index i = 1.
Step 2. In the ith slice of M, generate an MN by the different-slice or the out-slice exchange

procedures under the condition of P(dMN/tie) = 0.
Step 3. If φCSM(DN) < φCSM(D), replace M by MN.
Step 4. Repeat Step 2 and Step 3 until meeting the stopping criterion.
Step 5. Update i = i + 1, if i < u, go to Step 2; else, output Mbest = M.

4. Simulation Results

In this section, the first example illustrates that the SESE algorithm has good properties. In our
second example, for the design with large runs and factors, we give some comparative studies, which
show the efficient two-part algorithm with desirable performance. In these examples, we select the
combined space-filling measurement (6). For simplicity, we only consider εi

s of any column of FSLHDs
with all in (1) being 1/2 when updating (6) in our proposed algorithm.

4.1. Example 1

As depicted in Figure 5a, we randomly generate an initial design FSLHD(4, 8, 12; 3, 2) with optimal
univariate uniformity. It is clear that the space-filling property is poor for the whole design and for
each slice of the design. Based on the combined space-filling measurement φCSM (t = 50 ) in (6),
we improve the space-filling property of the design by the SESE algorithm (P = 20). The initial design
with φCSM = 14.4740 is shown in Figure 5a. After operating the SESE algorithm, the resulting design
with φCSM = 5.7958 in Figure 5b has good space-filling property over the experiment region.

For comparison, we randomly generate FSLHDs by the method in Section 2 for 100,000 times and
calculate the corresponding values of φCSM. The resulting FSLHDs with good space-filling properties
account for a small portion of 100,000 FSLHDs. The smallest value of φCSM from the 100,000 FSLHDs
is 6.8387, while the value of φCSM in Figure 5b is 5.7958. The values between 6.8387 and 8 of φCSM

account for 0.22 percent of all φCSM values from the 100,000 FSLHDs. It can be seen that the SESE
algorithm is useful to improve the space-filling property of the whole design and each slice of the
initial design.

(a) φCSM = 14.4223 (b) φCSM = 5.6844

Figure 5. Optimization results for finding optimal FSLHD. (a) the initial FSLHD(4, 8, 12; 3, 2) in
Example 1, different types of points denote difference three slices, respectively; (b) the optimization
results of FSLHD(4, 8, 12; 3, 2) after using the SESE algorithm.
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4.2. Example 2

To show the good performance of the two-part algorithm for design with large runs and factors,
we compare its performance with the SESE algorithm. We repeat each algorithm for 100 times with
a random initial design FSLHD in Table 1. In the SESE algorithm, we set stopping rules P = 30 for
FSLHD(15, 30; 2, 2) and P = 40 for FSLHD(5, 10, 15, 30; 4, 6). Conclusions can be obtained from Table 1
as follows:

(i) The average time of the operation shows that the two-part algorithm has higher efficiency than
the SESE algorithm.

(ii) For FSLHD(5, 10, 15, 30; 4, 6), since nq
i >> n with i = 1 · · · 4, the φCSM values of the resulting

FSLHD from Part-I algorithm are desirable when compared with those values from the two-part
algorithm. However, the results of Part-I algorithm for FSLHD(15, 30; 2, 2) are not good enough.
Therefore, if q is large and nq

i >> n, we need not to run the Part-II algorithm.
(iii) Based on the φCSM values of the resulting FSLHDs, we can see that the φCSM values are close to

each other. It can be concluded that both the two-part algorithm and the SESE algorithm are
stable and do not heavily rely on the initial design.

Table 1. Performance of the efficient two-part algorithm for repeating 100 times

Algorithm Design Min Mean Max Standard Deviation Average Time

SESE FSLHD(15, 30; 2, 2) 7.8943 8.2941 8.7239 0.0199 94 s
Part-I FSLHD(15, 30; 2, 2) 9.0673 10.4267 14.2223 0.5904 3 s

Part-I + Part-II FSLHD(15, 30; 2, 2) 8.3720 9.1520 11.4659 0.1421 5 s
SESE FSLHD(5, 10, 15, 30; 4, 6) 1.8803 2.0923 2.5968 0.0082 249 s
Part-I FSLHD(5, 10, 15, 30; 4, 6) 1.9747 2.2325 2.7115 0.0124 13 s

Part-I + Part-II FSLHD(5, 10, 15, 30; 4, 6) 1.8945 2.0347 2.2390 0.0030 18 s

By comparison, the resulting designs are better after using SESE algorithm. However,
for generating space-filling FSLHDs with large runs and factors as well as considering the cost
of time, the two-part algorithm is preferable.

5. Discussion of the Methods for Evaluating the Combined Space-Filling Measurement

Recall that D is the design matrix of an FSLHD(n1, . . . , nu; u, q). In the optimization process,
the optimality critertion is repeatedly calculated whenever a neighbour of design is obtained. Therefore,
the efficiency of this calculation is critical for optimizing the FSLHD. It can be observed that we
generate the neighbour of the design by exchanging two elements in one column of D; we do not need
to recalculate all the indexes when we update combined space-filling measurement of φt criterion.
The calculative efficiency of optimality criteria for the LHD has been discussed in [24]. Here, based on
above three exchange procedures for the FSLHD, we give updating expressions of φCSM(D) using the
previous φt(D) , φt(D(i)) for our proposed algorithm.

For the design matrix D = (xij)n×q with n design points {x1, · · · , xn}, we exchange xrk and xsk in
the kth column of the design. Let d(·, ·) be the inter-site distance before exchanging. Letting v 6= r, s,
1 ≤ v ≤ n, as defined in (3), the new related inter-site distance of the two design points xr and xs

should be updated:
d′(xr, xv) = ((d(xr, xv))

m + h(r, s, k, v))1/m,

d′(xs, xv) = ((d(xr, xv))
m − h(r, s, k, v))1/m,

where h(r, s, k, v) = |xsk − xvk|m − |xrk − xvk|m and the other inter-site distances are unchanged.
We give a new φ′CSM(D) based on the previous φt(D) and φt(D(i)) as follows:

φ′CSM(D) = wφ′t(D) + (1− w)

(
u

∑
i=1

λiφ
′
t(D(i))

)
.
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For three different procedures, the values of φ′t(D) and φ′t(D(i)) are determined as follows:
(i) Within-slice exchange procedure. For e ∈ {1, · · · , u}, suppose that the design points xr and

xs are in the eth slice. Let n0 = 0. Then, we have r, s ∈ Je = {∑e−1
l=0 nl + 1, · · · , ∑e

l=0 ne} and

φ′t(D) =

(
(φt(D))t + ∑

1≤v≤n,v 6=r,s

(
d
′
(xr, xv)

−t − d(xr, xv)
−t
)
+ ∑

1≤v≤n,v 6=r,s

(
d
′
(xs, xv)

−t − d(xs, xv)
−t
))1/t

,

φ′t(D(i)) =



φt(D(i)), i f i 6= e;((
φt(D(i))

)t
+ ∑

v∈Je ,v 6=r,s
(d′(xr, xv)

−t − d(xr, xv)
−t)

+ ∑
v∈Je ,v 6=r,s

(d′(xs, xv)
−t − d(xs, xv)

−t

)1/t

, i f i = e.

(ii) Different-slice exchange procedure. For e, e′ ∈ {1, · · · , u}, suppose that the design points xr

are in the eth slice and xs in the e′th slice. Let n0 = 0. Then, we have r ∈ Je = {∑e−1
l=0 nl + 1, · · · , ∑e

l=0 ne},
s ∈ Je′ = {∑e′−1

l=0 nl + 1, · · · , ∑e′
l=0 ne′} and

φ′t(D) =

(
(φt(D))t + ∑

1≤v≤n,v 6=r,s
(d
′
(xr, xv)

−t − d(xr, xv)
−t) + ∑

1≤v≤n,v 6=r,s
(d
′
(xs, xv)

−t − d(xs, xv)
−t)

)1/t

,

φ′t(D(i)) =



φt(D(i)), i f i 6= e, e′;((
φt(D(i))

)t
+ ∑

v∈Je ,v 6=r

(
d′(xr, xv)

−t − d(xr, xv)
−t))1/t

, i f i = e;

(φt(D(i))
)t

+ ∑
v∈Je′ ,v 6=s

(
d′(xs, xv)

−t − d(xs, xv)
−t)1/t

, i f i = e′.

(iii) Out-slice exchange procedure. For e ∈ {1, · · · , u}, suppose that the element xrk is in the
eth slice and the element x′sk ∈ (0, 1) is in the out slice. Let n0 = 0. Then, we have r ∈ Je =

{∑e−1
l=0 nl + 1, · · · , ∑e

l=0 ne}, h(r, s, k, v) = |x′sk − xvk|m − |xrk − xvk|m, v 6= r and

φ′t(D) =

(
(φt(D))t + ∑

1≤v≤n,v 6=r

(
d
′
(xr, xv)

−t − d(xr, xv)
−t
))1/t

,

φ′t(D(i)) =


φt(D(i)), i f i 6= e;((

φt(D(i))
)t

+ ∑
v∈Je ,v 6=r

(
d′(xr, xv)

−t − d(xr, xv)
−t))1/t

, i f i = e.

Through the above description of the updating formulas, we can improve the efficiency of re-evaluating
φCSM(D) for our proposed algorithm.

6. Conclusions

In this article, we propose a method to construct SLHDs with arbitrary run sizes. Based on such
designs, we give an SESE algorithm to search for the optimal FSLHDs. Moreover, we provide an
efficient two-part algorithm to improve the optimization efficiency in generating the space-filling
FSLHDs with large runs and factors. We believe that FSLHDs with optimal univariate uniformity and
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good space-filling properties are more widely used in computer experiments. Orthogonality is also an
appealing feature for SLHDs. Orthogonal SLHDs are constructed in [35–37]; however, orthogonality
does not ensure a good space-filling property. In the future, we will study the construction of an
orthogonal-maximin SLHD with slices of arbitrary run sizes. Such a design have both orthogonality
and space-filling property.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, The codes for
Sections 2–4.
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