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Abstract: This paper deals with the construction of numerical solutions of random hyperbolic models
with a finite degree of randomness that make manageable the computation of its expectation and
variance. The approach is based on the combination of the random Fourier transforms, the random
Gaussian quadratures and the Monte Carlo method. The recovery of the solution of the original
random partial differential problem throughout the inverse integral transform allows its numerical
approximation using Gaussian quadratures involving the evaluation of the solution of the random
ordinary differential problem at certain concrete values, which are approximated using Monte Carlo
method. Numerical experiments illustrating the numerical convergence of the method are included.

Keywords: random hyperbolic problem; mean square random calculus; numerical solution; random
integral transform; random Gauss quadrature rules

1. Introduction

Analytic-numerical solutions of random mean square partial differential models have been treated
recently using random integral transforms [1–3]. It is well-known [4] that the type of appropriated
integral transform depends closely on the type of equation and initial/boundary conditions due to
the properties of the operational calculus of the underlying integral transform. Important hyperbolic
models of the telegraph type are relevant in wave propagation [5,6], signal analysis [7] and random
walk theory [8]. In real problems, parameters, coefficients and initial/boundary conditions are subject
to uncertainties, not only by error measurement but also due to heterogeneity of the media, or the lack
of access to the measurement. The evaluation of microwave heating processes in ferrite materials [9]
using the classical deterministic model gives inaccurate results because of the complication of the
distribution within the oven and the fluctuation in dielectric properties of the material with respect to
the density, temperature, moisture content and other elements. Since the seminal paper by Kac [10],
several authors have treated telegraph equation with uncertainties with other objectives [11,12].

Efficient methods for solving numerically deterministic problems such as finite-difference methods
become unsuitable for the random case because the computation of the expectation and the variance
of the approximation stochastic process. This computational complexity arises from the operational
random calculus involving big random matrices throughout the iterative levels of the discretization
steps and the necessity to store the information of all the previous levels of the iteration process.

These drawbacks for solving random partial differential models, essentially of computational
complexity, motives the search for non-iterative alternatives. The random integral transform approach
previously quoted has two main steps: The first step is the transformation of the original random
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partial differential problem into a random ordinary differential system. The second step is the recovery
of the solution of the original problem throughout the random inverse integral transform. At this
point, the random Gaussian quadrature technique provides an easy expression involving evaluations
at the zeros of the underlying family of orthogonal polynomials linked to the Gaussian quadrature.
This approach allows the treatment of both cases: the first case where the explicit solution of the
random transformed ordinary differential problem is available, as well as when one needs to solve
numerically because the evaluation of the Gaussian quadrature rules is required only at concrete points.

In this paper, we address the numerical solution of random hyperbolic models of telegraph type.
Section 3 deals with the random linear telegraph type problem

utt(x, t) + 2 b ut(x, t) + a u(x, t) = c uxx(x, t) + φ(x, t) , x ∈ R, t > 0 , (1)

u(x, 0) = f1(x) , (2)

ut(x, 0) = f2(x) , (3)

where the damping coefficient b, the reaction coefficient a and the diffusion coefficient c, all are random
variables (r.v.’s). We also assume that source term φ(x, t) and initial conditions f1(x) and f2(x) are
mean square (m.s.) continuous stochastic processes (s.p.’s) with a finite degree of randomness [13,14],
and absolutely integrable with respect to the spatial variable in the real line. In this problem, the random
numerical approximation of the random inverse Fourier transform is performed using Gauss–Hermite
quadrature rule.

Section 4 studies the random heterogeneous telegraph type problem

utt(x, t) = (k(x) ux(x, t))x + a(x) u(x, t) + ψ(x, t) , x > 0, t > 0 , (4)

u(0, t) = g1(t) , (5)

ux(0, t) = g2(t) , (6)

u(x, 0) = g(x) , (7)

where a(x), k(x), ψ(x, t), g1(t), g2(t) and g(x) are m.s. continuous s.p.’s with a finite degree of
randomness, and absolutely integrable with respect to the time variable those depending on t. Here, the
diffusivity coefficient k(x) is also assumed to be positive and m.s. differentiable. In this section, we use
random Gauss–Laguerre quadrature rules. Section 2 includes some preliminaries about the solution
of random linear differential systems that are used in further sections [14]. The paper ends with a
conclusion in Section 5.

2. Numerical Solution of Random Linear Differential Problems via Simulations

For the sake of clarity in the presentation, we begin this section recalling some definitions and
results of [15].

Given a complete probability space, (Ω,F ,P), Lm×n
p (Ω) denotes the set of all random matrices

X = (xi,j)m×n (denoted by capital case letters) whose entries xi,j (denoted by lower case letters) are
r.v.’s satisfying ∥∥xi,j

∥∥
p =

(
E
[
|xi,j|p

])1/p
< +∞, p ≥ 1 , (8)

that is, xi,j ∈ Lp(Ω), where E [·] denotes the expectation operator. The space of all random matrices

together with the matrix p-norm, that is,
(

Lm×n
p (Ω), ‖ · ‖p

)
defined as follows

‖X‖p =
m

∑
i=1

n

∑
j=1

∥∥xi,j
∥∥

p , E
[
|xi,j|p

]
< +∞, (9)

is a Banach space. Note that, in the case m = n = 1, both norms are the same and (L1×1
p (Ω) ≡

Lp(Ω), ‖·‖p) represents the Banach space of real r.v.’s verifying Equation (8). The definition of matrix
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p-norm in Equation (9) can be extended to matrix s.p.’s X(t) = (xi,j(t))m×n of Lm×n
p (Ω) where now

each entry xi,j(t) is a s.p., that is a r.v. for each t. We say that a matrix s.p. X(t) lies in Lm×n
p (Ω) if

(xi,j(t))m×n ∈ Lp(Ω) for every 1 ≤ i ≤ m and 1 ≤ j ≤ n. The definitions of continuity, differentiability
and integrability of matrix s.p.’s lying in Lm×n

p (Ω) follow in a straightforwardly manner using matrix
p-norm in Equation (9). The cases p = 2 and p = 4 correspond to the so-called mean square (m.s.)
and mean fourth (m.f.) convergence, respectively. Specifically, when dealing with random differential
equations, the reference space is Lm×n

2 (Ω) (p = 2) because in practise most r.v.’s have finite variance.
However, the space Lm×n

4 (Ω) (p = 4), Lm×n
4 (Ω) ⊂ Lm×n

2 (Ω), is also used in order to legitimize some
mean square operational rules. Let us consider the random vector initial value problem (IVP)

Y′(s) = L(s)Y(s) , Y(0) = Y0 , s > 0 , (10)

where L(s) ∈ Ln×n
2p (Ω) is a matrix s.p. and Y0 ∈ Ln×1

2p (Ω), being L(s) 2p-locally absolutely integrable,

that is
∫ T

0 ‖L(s)‖2pds < +∞. Assume that the random system in Equation (10) is random 2p-regular,
p ≥ 1, in the sense of Definition 3, page 943, of [15], and let ΦL(s; 0) be the random fundamental matrix
solution of Equation (10) satisfying

Φ′L(s; 0) = L(s)ΦL(s; 0) ; ΦL(0; 0) = In , (11)

being In the identity matrix of size n.
If B(s) lies in Ln×1

2p (Ω) and is 2p-integrable, with previous hypothesis on the random problem
in Equation (10) and assuming that the entries of matrix s.p. L(s) =

(
`i,j(s)

)
n×n satisfies the moment

condition of [15] for every s > 0, that is

E
[∣∣`i,j(s)

∣∣r] ≤ mi,j
(
hi,j
)r

< +∞ , ∀ r ≥ 0 , ∀ i, j : 1 ≤ i, j ≤ m , (12)

then, by Theorem 1, page 944, of [15], the solution of the non-homogeneous problem

X′(s) = L(s)X(s) + B(s) , X(0) = Y0 , (13)

is given by

X(s) = ΦL(s; 0)Y0 + ΦL(s; 0)
∫ s

0
Φ−1

L (v; 0) B(v)dv . (14)

In particular, if L(s) = L is a constant random matrix, see Section 3 of [16], the corresponding
solution in Equation (14) of Equation (13) can be written as

X(s) = eLs
{

Y0 +
∫ s

0
e−Lv B(v)dv

}
. (15)

Note that the m.s. solution of Equation (13), given by Equation (14), is not available, apart
from very limited cases, see Example 5 of [15], because the random fundamental matrix ΦL(s; 0) is
not known.

This motivates the search of alternative approximations via simulations, the so called Monte Carlo
approach [17], that provides the expectation E[X(s)] throughout the average of an appropriate number
of realizations ω ∈ Ω of the deterministic problem

X′(s, ω) = L(s, ω) X(s, ω) + B(s, ω) , X(0, ω) = Y0(ω) . (16)

For the sake of convenience, we introduce an interesting example with known exact solution that
is used below for solving a random hyperbolic problem.
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Example 1. Let m(s), n(s), and q(s) be 2p-continuous s.p.’s and let [y1, y2]
T be a r.v. in L2×1

2p (Ω). Assume
that n(s) and q(s) satisfy the moment condition in Equation (12) for each s. Consider the random initial value
problem in L2×1

2p (Ω).

X′(s) =

[
0 1

n(s) q(s)

]
X(s) +

[
0

m(s)

]
, X(0) =

[
y1

y2

]
, (17)

with

n(s) = n(s; a, b) = −e(b−a)s , q(s) = q(s; b) = b ,
m(s) = m(s; a, b) = 1 + (a− b)(a− 2b)e(a−b)s ,
y1 = 1 ; y2 = y2(a, b) = a− b ,

 (18)

where a is the truncated Gaussian r.v., a ∼ N[0.9,1.1](1, 0.05), and b is the truncated beta r.v., b ∼
Beta[0.1,0.8](2, 0.25). Both r.v.’s, a and b, are independent.

It is easy to check that the exact m.s. solution of the test random problem in Equations (17) and (18) is
given by

X(s) =

[
e(a−b)s

(a− b)e(a−b)s

]
= e(a−b)s

[
1

a− b

]
. (19)

The expectation and the standard deviation of the random vector exact solution s.p. in Equation (19) at
s = 1, denoted by X(1) = [x1(1), x2(1)]T , take the following values

E[X(1)] = [E[x1(1)],E[x2(1)]]
T = [1.52728, 0.671897]T (20)√

Var[X(1)] =

[√
Var[x1(1)],

√
Var[x2(1)]

]T
= [0.284533, 0.43069]T . (21)

Now, we illustrate and compare the numerical approximations with the exact solutions for the unfavorable
and usual case when the solution s.p. of a random system of the type in Equation (17) is not available because the
random fundamental matrix ΦL(s; 0) is not known. The search of alternative approximations is made via Monte
Carlo approach, as we have just commented in this Section. Firstly, we consider in the system in Equations (17)
and (18), for both r.v.’s, a and b, a different number of realizations K0 = 104, K1 = 2× 104, K2 = 4× 104,
K3 = 8× 104 and K4 = 1.6× 105 for fixed value of s, obtaining Ki, i = 0, . . . , 4, deterministic numerical
solutions, denoted by X̄(s) = [x̄1(s), x̄2(s)]T . Then, for a fixed realization Ki and taking the average of the
Ki numerical solutions obtained, we compute the expectation EKi

MC[X̄(1)]. In a similar way, we compute the

standard deviation
√

VarKi
MC[X̄(1)] for a fixed realization Ki. Tables 1–3 include all these values together with

the absolute errors and the numerical convergence ratios for a number Ki of realizations, computed by

ErrAbs
EKi

MC(s)
=

∣∣∣EKi
MC[x̄j(s)]−E[xj(s)]

∣∣∣ , j = 1, 2 , (22)

ErrAbs√
Var

Ki
MC(s)

=

∣∣∣∣√VarKi
MC[x̄j(s)]−

√
Var[xj(s)]

∣∣∣∣ , j = 1, 2 , (23)

ratio
E

Ki−1Ki
MC (s)

=

∣∣∣EKi−1
MC [x̄j(s)]−E[xj(s)]

∣∣∣∣∣∣EKi
MC[x̄j(s)]−E[xj(s)]

∣∣∣ , j = 1, 2 , (24)

ratio√
Var

Ki−1Ki
MC (s)

=

∣∣∣∣√VarKi−1
MC [x̄j(s)]−

√
Var[xj(s)]

∣∣∣∣∣∣∣∣√VarKi
MC[x̄j(s)]−

√
Var[xj(s)]

∣∣∣∣ j = 1, 2 , (25)

respectively. Tables 1 and 2 show the values of both the expectation and the standard deviation of the numerical
approximations at s = 1 obtained when simulations via Monte Carlo are used considering a different number
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of realizations Ki of both r.v.’s a and b in the system in Equations (17) and (18). Using the definition of the
numerical convergence ratio for a number Ki of realizations, given by Equations (24) and (25), the expected
numerical convergence of both the expectation and the standard deviation of the numerical solutions of the Monte
Carlo simulated problems to those of the exact random solution is shown. Although the convergence provided
by Monte Carlo method is slow, it is a useful tool to manage the high computational problem. Tables 1 and 2
show the good approximations to the exact values, E[xj(s)] and

√
Var[xj(s)], j = 1, 2, obtained by Monte Carlo

method for K = 1.6× 105 realizations, although the value of parameter s increases.
Computations were carried out by Mathematica c© software version 11.3.0.0 [18] for Windows 10Pro

(64-bit) Intel(R) Core(TM) i7-7820X CPU, 3.60 GHz 8 kernels. The timings (CPU time spent in the Wolfram
Language kernel) for K = 1.6× 105 and s = 1.5 in Table 3 correspond to the most expensive scenario. They were
86.25 s for the generation of these K realizations of both r.v.’s a and b, and 174.047 s to obtain the approximations
of both the expectation and the standard deviation in Table 3.

Table 1. Approximate values of the expectations, EKi
MC[x̄j(1)], their absolute errors, ErrAbsEKi

MC(1)
(Equation (22)), and the numerical convergence ratios, ratio

EKi−1Ki
MC (1)

(Equation (24)), at s = 1 for each

component j = 1, 2 of the approximate vector solution of Equations (17) and (18) obtained by Monte
Carlo method, X̄(1) = [x̄1(1), x̄2(1)], considering consecutive simulations Ki, i = 0, · · · , 4.

EKi
MC[x̄j(1)] ErrAbsEKi

MC(1)
ratio

EKi−1Ki
MC (1)

K0 = 104 j = 1 1.52545 1.82301e− 03 −
j = 2 0.669022 2.87531e− 03 −

K1 = 2× 104 j = 1 1.52640 8.72148e− 04 2.09025
j = 2 0.67048 1.41528e− 03 2.03162

K2 = 4× 104 j = 1 1.52826 9.86689e− 04 0.88391
j = 2 0.67354 1.63892e− 03 0.86355

K3 = 8× 104 j = 1 1.52568 1.59686e− 03 0.61789
j = 2 0.66951 2.38523e− 03 0.68711

K4 = 1.6× 105 j = 1 1.52708 2.00882e− 04 7.94925
j = 2 0.67160 2.96101e− 04 8.05546

Table 2. Approximate values of the standard deviations,
√

VarKi
MC[x̄j(1)], their absolute

errors, ErrAbs√
Var

Ki
MC(1)

(Equation (22)), and the numerical convergence ratios, ratio√
Var

Ki−1Ki
MC (1)

(Equation (25)), at s = 1 for each component j = 1, 2 of the approximate vector solution of Equations
(17) and (18) obtained by Monte Carlo method, X̄(1) = [x̄1(1), x̄2(1)], considering consecutive
simulations Ki, i = 0, · · · , 4. √

VarKi
MC[x̄j(1)] ErrAbs√

VarKi
MC(1)

ratio√
Var

Ki−1Ki
MC (1)

K0 = 104 j = 1 0.28309 1.44459e− 03 −
j = 2 0.42914 1.54728e− 03 −

K1 = 2× 104 j = 1 0.28352 1.00834e− 03 1.43264
j = 2 0.42916 1.52672e− 03 1.01346

K2 = 4× 104 j = 1 0.28609 1.55768e− 03 0.64733
j = 2 0.43368 2.98663e− 03 0.51119

K3 = 8× 104 j = 1 0.28377 7.61522e− 04 2.04548
j = 2 0.42931 1.38278e− 03 2.15987

K4 = 1.6× 105 j = 1 0.28453 2.50041e− 06 304.559
j = 2 0.43082 1.32738e− 04 10.4173
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Table 3. Exact values of the expectation, E[xj(s)], and the standard deviation,
√

Var[xj(s)], for each
component j = 1, 2, of the random vector solution in Equation (19). The approximate values of both

the expectations and the standard deviations, EK
MC[x̄j(s)] and

√
VarK

MC[x̄j(s)], respectively, and their
absolute errors, ErrAbsEK

MC(s)
(Equation (22)) and ErrAbs√

VarK
MC(s)

(Equation (23)) were computed

by Monte Carlo method considering K = 1.6× 105 simulations at different values of the parameter
s = {0.5, 1, 1.5, 2}.

E[xj(s)] EK
MC[x̄j(s)] ErrAbsEK

MC(s)

√
Var[xj(s)]

√
VarK

MC[x̄j(s)] ErrAbs√
VarK

MC(s)

j = 1 1.23086 1.23078 7.83976e− 05 0.11073 0.11070 3.23642e− 05
s = 0.5

j = 2 0.52105 0.52085 1.97325e− 04 0.27619 0.27618 1.52591e− 05

j = 1 1.52728 1.52708 2.00882e− 04 0.28453 0.28453 2.50041e− 06
s = 1

j = 2 0.67190 0.671601 2.96101e− 04 0.43069 0.43082 1.32738e− 04

j = 1 1.91133 1.91095 3.78171e− 04 0.55336 0.55348 1.2166e− 04
s = 1.5

j = 2 0.874369 0.873953 4.16073e− 04 0.66385 0.66419 3.3551e− 04

j = 1 2.41353 2.41291 6.20018e− 04 0.96546 0.96583 3.70421e− 04
s = 2

j = 2 1.14844 1.14788 5.55237e− 04 1.01592 1.01649 5.69849e− 04

3. Gauss–Hermite Solution of Random Telegraph Model

In this section, we construct numerical solution of the random telegraph model in Equations (1)–(3)
in two-stages. Firstly, using the Fourier exponential transform, an infinite integral form solution of the
theoretical solution is obtained. Then, using random Gauss–Hermite quadrature formulae a random
numerical solution is represented that is further computer by means of Monte Carlo simulations.

Let u(x, t) be the theoretical solution s.p. of the random problem in Equations (1)–(3), and let

U(t)(ξ) = F[u(·, t)](ξ) =
1√
2π

∫ +∞

−∞
u(x, t) e−i x ξ dx , (26)

be the Fourier exponential transform of the one-variable s.p. u(·, t), for a fixed time t. Using the
properties of the random Fourier exponential (see [1]), we have

F[uxx(·, t)](ξ) = −ξ2F[u(·, t)](ξ) = −ξ2 U(t)(ξ) , (27)

F[ut(·, t)](ξ) =
d
dt

(F[u(·, t)]) (ξ) =
d
dt
(U(t))(ξ) , (28)

F[utt(·, t)](ξ) =
d2

dt2 (U(t))(ξ) . (29)

We assume that the r.v.’s a, b and c of Equation (1) are mutually independent lying in L4(Ω) and
the s.p.’s φ(·, t), f1(x) and f2(x) are m.f. continuous but φ(·, t) having at most a finite number of jump
discontinuities in the variable x. Let f1(x), f2(x) and φ(·, t) be m.f. absolutely integrables in x ∈ R,
that is,∫ +∞

−∞
‖φ(x, t)‖4 dx < +∞ (t > 0 fixed) ,

∫ +∞

−∞
‖ f1(x)‖4 dx < +∞ ,

∫ +∞

−∞
‖ f2(x)‖4 dx < +∞ ,

then, by formal application of the random Fourier exponential transform to problem in
Equations (1)–(3) one achieves the random initial value transformed problem
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d2

dt2 (U(t))(ξ) + 2b
d
dt
(U(t))(ξ) + (a + ξ2 c)U(t)(ξ) = Φ(t)(ξ) , t > 0 , (30)

U(0)(ξ) = F[ f1(x)](ξ) = F1(ξ) , (31)
d
dt
(U(0))(ξ) = F[ f2(x)](ξ) = F2(ξ) , (32)

where
Φ(t)(ξ) = F[φ(·, t)](ξ) , (33)

is the Fourier transform of the source term φ(·, t). Note that random linear inhomogeneous
problem in Equations (30)–(33) can be written in the extended random linear system

X′(t)(ξ) = L(ξ) X(t)(ξ) + B(t)(ξ), X(0)(ξ) = Y0(ξ) , t > 0 , (34)

where

L(ξ) =

[
0 1
−α −2b

]
, α = a + ξ2 c , (35)

B(t)(ξ) =

[
0

Φ(t)(ξ)

]
, Y0 = Y0(ξ) =

[
F1(ξ) ,
F2(ξ) ,

]
. (36)

According to the theory shown in Section 2, the entries of the random matrix L(ξ) = (`i,j)2×2 ∈
L2×2

4 (Ω), for ξ ∈ R fixed, must be absolute moments with respect to the origin that increases at the
most exponentially, that is,

E
[∣∣`i,j

∣∣r] ≤ mi,j
(
hi,j
)r

< +∞ , ∀ r ≥ 0 , ∀ i, j : 1 ≤ i, j ≤ m , (37)

then we assume that the r.v.’s a, b and c satisfy the condition in Equation (37). Furthermore, the
condition in Equation (37) guarantees that L(ξ) is 4-locally absolutely integrable. Because the random
matrix L(ξ) in Equation (34) is constant in time, we may use Equation (15) to capture explicitly X(t)(ξ)
from Equations (35) and (36), where the exponential matrix in Equation (15) takes a particular form
depending on the following cases

• Case 1. b2 > α

eL(ξ) t = e−b t


cosh

(
t
√

b2 − α
)
+

b sinh
(

t
√

b2 − α
)

√
b2 − α

sinh
(

t
√

b2 − α
)

√
b2 − α

−
α sinh

(
t
√

b2 − α
)

√
b2 − α

cosh
(

t
√

b2 − α
)
−

b sinh
(

t
√

b2 − α
)

√
b2 − α

 , (38)

• Case 2. b2 < α

eL(ξ) t = e−b t


cos

(
t
√

α− b2
)
+

b sin
(

t
√

α− b2
)

√
α− b2

sin
(

t
√

α− b2
)

√
α− b2

−
α sin

(
t
√

α− b2
)

√
α− b2

cos
(

t
√

α− b2
)
−

b sin
(

t
√

α− b2
)

√
α− b2

 , (39)

• Case 3. b2 = α

eL(ξ) t = e−b t

[
1 + b t t
−b2 t 1− b t

]
. (40)
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The solution s.p. of the random initial value transformed problem in Equations (30)–(33) takes
the form

U(t)(ξ) = [1, 0] X(t)(ξ) = [1, 0] eL(ξ) t
{

Y0 +
∫ t

0
e−L(ξ) v B(v)(ξ)dv

}
, t > 0 , (41)

with L(ξ) ∈ L2×2
4 (Ω) locally absolutely integrable whose entries satisfy the condition in Equation (37),

Y0 ∈ L2×1
4 (Ω) and B(v) ∈ L2×1

4 (Ω) absolutely integrables in x ∈ R and eL(ξ) s defined in Equations (35),
(36) and (38)–(40), respectively. By using the inverse Fourier exponential transform, one gets

u(x, t) =
1√
2π

∫ +∞

−∞
[1, 0] X(t)(ξ) ei ξ x dξ , −∞ < x < +∞ , t > 0 . (42)

Apart from the fact that, in this case, X(t)(ξ) can be written as Equation (15), we are interested
in the approximation of the random infinite integral using random Gauss–Hermite quadratures (see
Section 2.1 of [15]). Note that the random integral in Equation (42) can be written in the form

u(x, t) = [1, 0]
1√
2π

∫ +∞

−∞
e−ξ2 J (t, ξ)d(ξ) , −∞ < x < +∞ , t > 0 , (43)

J (t, ξ) = X(t)(ξ) eξ(i x+ξ) , t > 0 . (44)

Let ρj be the weights of the Gauss–Hermite quadrature formula,

ρj =
2N−1 N!

√
π(

N HN−1(θj)
)2 , 1 ≤ j ≤ N , (45)

where θj are the roots of the deterministic Hermite polynomial, HN , of degree N, see page 890
of [19]. Then, the random Gauss–Hermite quadrature formula of degree N approximating the integral
of Equations (43) and (44) takes the form

IG-H
N [J ] =

N

∑
j=1

ρj J (t, θj) . (46)

From Equations (43)–(46), the resulting approximation uG-H
N (x, t) of u(x, t) becomes the s.p.

uG-H
N (x, t) =

1√
2 π

N

∑
j=1

ρj eθj(i x+θj) X1(t)(θj) , (47)

where X1(t)(θj) = [1, 0] X(t)(θj). We can obtain the following explicit expression for the expectation
of the approximated solution s.p. in Equation (47) of the random telegraph in Equations (1)–(3)

E[uG-H
N (x, y)] =

1√
2 π

N

∑
j=1

ρj eθj(i x+θj) E[X1(t)(θj)] t > 0 . (48)

With respect to the computation of the variance of the approximate solution s.p. uG-H
N (x, t),

given by Equation (47), one gets

Var
[
uG-H

N (x, t)
]
= E

[(
uG-H

N (x, t)
)2
]
−
(
E
[
uG-H

N (x, t)
])2

, (49)

or the equivalent explicit expression by using Equations (47) and (48)



Mathematics 2019, 7, 853 9 of 21

Var
[
uG-H

N (x, t)
]

=
1

2π

N

∑
j,`=1

ρjρ` eθj(ix+θj)+θ`(ix+θ`)
(
E[X1(t)(θj) X1(t)(θ`)]− (50)

E[X1(t)(θj)]E[X1(t)(θ`)]
)

=
1

2π

N

∑
j=1

N

∑
`=1

ρj ρ` eθj(i x+θj)+θ`(i x+θ`)Cov
[
X1(t)(θj) , X1(t)(θ`)

]
. (51)

A Numerical Example

In this example, we illustrate the theoretical results developed in Section 3. We consider the
following random telegraph equation

utt(x, t) + 2 b ut(x, t) + a u(x, t) = uxx(x, t) + φ(x, t) , x ∈ R, t > 0 , (52)

u(x, 0) = f1(x) = 0 , (53)

ut(x, 0) = f2(x) = e−x2/2 , (54)

where the source term φ(x, t) is the rectangular pulse function

φ(x, t) =

{
0, if |x| > 1 ,
1, if |x| ≤ 1 ,

(55)

the r.v. a > 0 has a Gaussian distribution of parameters (1; 0.05) truncated on the interval [0.9, 1.1],
that is, a ∼ N[0.9,1.1](1; 0.05), and the r.v. b has a beta distribution of parameters (2; 2) truncated on the
interval [0.4, 0.6], that is, b ∼ Beta[0.4,0.6](2; 2). Both a and b are considered independent r.v.’s.

It is known that the exact solution of the problem in Equations (52)–(55), when both a and b are
deterministic and γ = a− b2 > 0, is given by (see Section 4.4.1 of [20])

u(x, t) =
e−b t

2

∫ x+t

x−t
J0

(√
γ
√

t2 − (x− s)2
)

f2(s)ds

+
1
2

∫ t

0

[∫ x+(t−τ)

x−(t−τ)
e−b(t−τ) J0

(√
γ
√
(t− τ)2 − (x− s)2

)
φ(s)ds

]
dt ,

(56)

where we have denoted J0(r) the Bessel function of the first kind, that is

J0(r) =
1
π

∫ π

0
cos(r sin(s))ds . (57)

The exact computation of the expectation and the standard deviation of the solution s.p. in
Equations (56) and (57), considering both a and b r.v.’s, is not available as an exact point of view.
The use of numerical techniques to compute the expectation and the standard deviation of the integrals
appearing in Equation (56) is required. Therefore, it is necessary to transform these random integrals
into deterministic ones before applying numerical techniques. To carry out this task, firstly, for a fixed
point (x, t), we took K = 2× 105 realizations of the independent r.v.’s a and b, then we computed
numerically these K deterministic integrals and finally we obtained the mean and the standard
deviation of these K values. Figure 1a,b shows the numerical values for the expectation and the
standard deviation of the exact solution s.p. in Equations (56) and (57).
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Figure 1. (a) Surface of the expectation E[u(x, t)]; and (b) surface of the standard deviation√
Var[u(x, t)]. Both statistical moment functions correspond to the exact solution s.p. in Equations (56)

and (57) of the random IVP in Equations (52)–(55) on the domain (x, t) ∈ [0, 2.5]× [0, 2] considering
a ∼ N[0.9,1.1](1; 0.05) and b ∼ Beta[0.4,0.6](2; 2).

Now, we obtain our approximation solution s.p. for the problem in Equations (52)–(55) as
well as its expectation and standard deviation. Finally, we establish the corresponding comparisons
between both statistical moment functions the approximate ones and the exact ones. By applying the
random Fourier exponential transform to the problem in Equations (52)–(55) the random initial value
transformed problem in Equations (30)–(33) is obtained with c = 1, which can be expressed as the
random linear system in Equation (34) with fixed ξ ∈ R and

L(ξ)=

[
0 1

−(a + ξ2) −2b

]
, B(t)(ξ)=B(ξ)=

[
0

Φ(ξ)

]
=

[
0√

2
π

sin(ξ)
ξ

]
, Y0=Y0(ξ)=

[
0

e−
ξ2
2

]
. (58)

Random matrix L(ξ) ∈ L2×2
4 (Ω) because r.v.’s a and b are truncated r.v.’s. The condition in

Equation (37) on the matrix L(ξ), defined in Equation (58), is satisfied because the r.v.’s a and b are
truncated ones, and furthermore B(ξ) and Y0(ξ) are 4-absolutely integrables in R. Note that L(ξ) is a
constant matrix with respect to t, then we can use Equation (15). Furthermore ,as B(ξ) is also constant
an explicit solution s.p. for the random linear system in Equation (34), Equation (58) is given by

X(t)(ξ) = eL(ξ) t
{

Y0 +
∫ t

0
e−L(ξ) v B(ξ)dv

}
= eL(ξ) t

{
Y0 +

[
−L(ξ)−1 e−L(ξ) s

]s=t

s=0
B(ξ)

}
= eL(ξ) t

{
Y0 +

[
−L(ξ)−1

(
e−L(ξ) t − I

)]
B(ξ)

}
= eL(ξ) t

(
Y0 + L(ξ)−1 B(ξ)

)
− L(ξ)−1 B(ξ) , (59)

being

L(ξ)−1 =


−2b

α
− 1

α

1 0

 , L(ξ)−1 B(ξ) =

 −
1
α

√
2
π

sin(ξ)
ξ

0

 , α = a + ξ2 . (60)

and
eL(ξ) t the exponential matrix defined in Case 2, Equation (39), with c = 1 , (61)

because the parameter γ = a− b2 > 0 and hence b2 < a + ξ2, that is, b2 < α.
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Using Equations (59) and (60) and the introduced notation [1, 0] X(t)(ξ) = U(t)(ξ), the solution
s.p. U(t)(ξ) of the random initial value transformed problem in Equations (30)–(33) with c = 1 is
given by Equation (41) and takes the form

U(t)(ξ) =

e−b t sin
(

t
√

α− b2
)

√
α− b2

e−
ξ2
2 +

1
α

√
2
π

sin(ξ)
ξ

1− e−b t

cos
(

t
√

α− b2
)
+

b sin
(

t
√

α− b2
)

√
α− b2

 , (62)

for t > 0 and fixed ξ ∈ R. Now, taking into account that U(t)(ξ) = U(t)(−ξ) and lies in R for
each ξ ∈ R, the recovered solution s.p. u(x, t) of the original random partial differential problem in
Equations (52)–(55) given by Equation (42) takes the form

u(x, t) =
1√
2π

∫ +∞

−∞
U(t)(ξ) cos(ξ x) dξ , −∞ < x < +∞ , t > 0 . (63)

Using that U(t)(ξ) is an even function in ξ ∈ R and denoting U(t)(ξ) = X1(t)(ξ), the numerical
values of the expectation in Equation (48) of the approximate solution s.p. of the problem in
Equations (52)–(55) can be written as follows

E[uG-H
N (x, t)] =

1√
2 π

N

∑
j=1

ρj cos(ξ j x) eξ2
j E[X1(t)(ξ)] , t > 0 , (64)

where ρj, j = 1, . . . , N are the weights of the Gauss–Hermite quadrature formula (see Equation (45))
and ξ j are the roots of the deterministic Hermite polynomial, HN , of degree N. The approximate values
of the standard deviation can be computed by

√
Var

[
uG-H

N (x, t)
]
=

√
E
[(

uG-H
N (x, t)

)2
]
−
(
E
[
uG-H

N (x, t)
])2 , (65)

where

E
[(

uG-H
N (x, t)

)2
]
=

1
2 π

N

∑
j=1

N

∑
`=1

ρj ρ` cos(ξ j x) cos(ξ` x) eξ2
j +ξ2

` E[X1(t)(ξ j) X1(t)(ξ`)] , t > 0 . (66)
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Figure 2. (a) Expectation, E[u(xi, 1)], of the exact solution s.p. in Equations (56) and (57) vs. their
corresponding numerical approximations, E

[
uG-H

N (xi, 1)
]

(Equation (64)), by random Gauss–Hermite
quadrature using Hermite’s polynomials of degree N ∈ {2, 4, 10}, at the time instant t = 1 and
on the spatial domain 0 ≤ x ≤ 2.5. (b) Relative errors of the expectation, RelErr

[
EG-H

N (xi, 1)
]

(Equation (67)) when it is considered Hermite’s polynomials of degree N ∈ {2, 4, 10} and the spatial
domain 0 ≤ x ≤ 2.5.
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Figure 3. (a) Standard deviation,
√

Var[u(xi, 1)], of the exact solution s.p. in Equations (56) and

(57) vs. their corresponding numerical approximations,
√

Var[uG-H
N (xi, 1)] (Equations (64)–(66)),

by random Gauss–Hermite quadrature using Hermite’s polynomials of degree N ∈ {2, 4, 10}, at the
time instant t = 1 and on the spatial domain 0 ≤ x ≤ 2.5. (b) Relative errors of the standard

deviation, RelErr
[√

VarG-H
N (xi, 1)

]
(Equation (68)) when it is considered Hermite’s polynomials of

degree N ∈ {2, 4, 10} and the spatial domain 0 ≤ x ≤ 2.5.

Figures 2 and 3 show a comparative study of both the expectation and the standard deviation
at t = 1 on the spatial domain xi ∈ [0, 2.5], xi = ih, 0 ≤ i ≤ 10, h = 0.25, for both the theoretical
and the approximate solution s.p. of the random problem in Equations (52)–(55). Computation
time of our method is competitive for the degrees N of the Hermite’s polynomial considered.
For example, 2.34625 s (CPU time spent in the Wolfram Language kernel) in total for computing
both approximations the expectation E

[
uG-H

N (xi, 1)
]

(Equation (64)), and the standard deviation√
Var[uG-H

N (xi, 1)] (Equations (64)–(66)) versus 20.2656 s in total used in the calculation of the theoretical
ones. The computation times are reduced for our method when the degree N of the Hermite’s
polynomial decreases, for example, taking N = 6 the time spent is 1.6567 s.

In Figures 2a and 3a, we plot at t = 1 the expectation, E[u(xi, 1)], and the standard deviation,√
Var[u(xi, 1)], respectively, of the exact solution s.p. in Equations (56) and (57) vs. the respective

approximate ones, E[uG-H
N (xi, 1)] (Equation (64)), and

√
Var[uG-H

N (xi, 1)] (Equations (64)–(66)),
for different degrees N of the Hermite polynomials: N = {2, 4, 10}. In Figures 2b and 3b, it is
observed that the approximations improve as the degree N increases because the relative errors
computed using the following expressions decrease

RelErr
(
E[uG-H

N (x, t)]
)

=

∣∣∣∣∣E[u(x, t)]−E
[
uG-H

N (x, t)
]

E[u(x, t)]

∣∣∣∣∣ , (67)

RelErr
(√

Var[uG-H
N (x, t)]

)
=

∣∣∣∣∣∣
√

Var[u(x, t)]−
√

Var[uG-H
N (x, t)]√

Var[u(x, t)]

∣∣∣∣∣∣ . (68)

An interesting quantitative study of global errors, in the spatial domain [0, 2.5] for a fixed time t
and a number n of spatial points xi, 0 ≤ i ≤ n, was also carried out considering the root mean squared
errors (RMSEs):

RMSE [E(xi, t)] =

√
1

(n + 1)

n

∑
i=0

(
E[u(xi, t)]−E[uG-H

N (xi, t)]
)2 , (69)

RMSE
[√

Var(xi, t)
]

=

√√√√ 1
(n + 1)

n

∑
i=0

(√
Var[u(xi, t)]−

√
Var[uG-H

N (xi, t)]
)2

, (70)
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Table 4 collects the results obtained and shows that the proposed method provides good
approximations to the numerical values of the expectation and the standard deviation of the exact
solution s.p. in Equations (56) and (57). We observe that it is sufficient to consider a Hermite’s
polynomial of degree N = 6, in order to obtain reasonable approximations to the exact ones.

Table 4. Values of the RMSEs for the expectation, RMSE [E(xi, t)] (Equation (69)) and the standard

deviation RMSE
[√

Var(xi, t)
]

(Equation (70)), at the time instant t = 1 along the spatial domain [0, 2.5]
considering the set of points xi = i h, 0 ≤ i ≤ n = 10, with the stepsize h = 0.25.

N RMSE [E(xi, 1)] RMSE
[√

Var(xi, 1)
]

2 8.8178e− 02 2.2916e− 03
4 1.1892e− 02 1.7732e− 04
6 9.0351e− 03 1.4160e− 04
8 8.9287e− 03 1.1546e− 04

10 6.0334e− 03 6.4509e− 05

Note that in this example the errors due to the calculus of an approximate solution s.p. of the
auxiliary system in Equations (34) and (58) do not appear in the errors computed because this solution,
U(t)(ξ), was calculated in an exact way (see Equation (62)). Then, the relative errors plotted in
Figures 2b and 3b and the RMSEs collect in Table 4 include mainly the errors due to the random
Gauss–Hermite quadrature formula of degree N.

Algorithm 1 summarizes the steps to compute the approximations of the expectation and the
standard deviation of the solution s.p. in Equation (47).

Algorithm 1 Calculation procedure for the expectation and the standard deviation of the approximated
solution s.p. uG-H

N (x, t) (Equation (47)) of the problem in Equations (1)–(3).

Require: Guarantee that the random input data of problem in Equations (1)–(3): a, b and c are r.v.’s in
L4(Ω) and φ(x, t), f1(x) and f2(x) are m.f. continuous s.p.’s with a finite degree of randomness
and m.f. absolutely integrable with respect to the spatial variable in the real line. Additionally, the
s.p. φ(x, t) can be chosen with at most a finite number of jump discontinuities in the variable x.

1: Fix a point (x, t), x ∈ R, t > 0.
2: Choose the degree N of the Hermite polynomial, HN(·), and compute HN−1(·) and HN(·).
3: for j = 1 to N do
4: Compute the j roots, θj, of HN(·);
5: end for
6: for j = 1 to N do
7: Compute the weights, ρj, of HN(·) using Equation (45).
8: end for
9: Construct the random matrix L(θj) using Equation (35) where ξ represent a particular θj.

10: if the entries of random matrix L(θj) verifies the condition in Equation (37) then
11: continue to the following step
12: else
13: change the election of the r.v.’s a, b and c and check again the condition in Equation (37).
14: end if
15: Compute the random Fourier exponential transforms of the input data φ(x, t), f1(x) and f2(x).
16: Construct the random vector s.p. B(x)(θj) and the random vector Y0(θj) using Equation (36).
17: for j = 1 to N do
18: Compute numerically the expectation of the j-solutions s.p.’s, X1(t)(θj) = [1, 0]X(t)(θj), of the

random linear system in Equations (34)–(36) using Equation (41) and the adequate case in
Equations (38)–(40) for the exponential matrix of L(θj) t. These j expectations are denoted by
E[X1(t)(θj)].

19: end for
20: Compute the expectation, E[uG-H

N (x, t)], and the standard deviation,
√

Var[uG-H
N (x, t)], of the

approximated solution s.p. uG-H
N (x, t) (Equation (47)) using the explicit expressions in Equations

(48), (49) and (50).
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4. Gauss–Laguerre Solution of a Random Heterogeneous Telegraph Model

This section is addressed to construct random Gauss–Laguerre quadrature formulae for the
numerical solution of the model in Equations (4)–(7). Although the approach is similar to the one
developed in Section 3, here we use the random Fourier sine transform acting on the temporal variable.
The random variable coefficient transformed problem requires a numerical approach that is constructed
in two stages. Firstly, the Gauss–Laguerre quadrature of the random inverse Fourier sine transform
and further Monte Carlo simulations at appropriated root points of the Laguerre polynomials.

Let V(x)(ξ) = Fs[u(x, ·)](ξ) be the Fourier sine transform of the unknown u(x, ·):

V(x)(ξ) = Fs[u(x, ·)](ξ) =
∫ +∞

0
u(x, t) sin(ξ t)dt , ξ > 0 , x > 0 . (71)

From Theorem 1 of [16], we have

Fs[h′′(t)](ξ) = ξ h(0)− ξ2Fs[h(t)](ξ) , ξ > 0 . (72)

Let us denote

G1(ξ) = Fs[u(0, ·)](ξ) = Fs[g1(t)](ξ) , ξ > 0 , (73)

G2(ξ) = Fs[ux(0, ·)](ξ) = Fs[g2(t)](ξ) , ξ > 0 , (74)

Ψ(x)(ξ) = Fs[ψ(x, ·)](ξ) , x > 0, ξ > 0 . (75)

Let us assume that the s.p.’s k(x), a(x), ψ(x, t), g1(t), g2(t) and g(x) of the problem in
Equations (4)–(7) are m.f. continuous with a finite degree of randomness. Let k(x) be a positive
s.p. 4-differentiable and let ψ(x, t), g1(t), g2(t) be m.f. absolutely integrable s.p.’s in t > 0, that is,

∫ +∞

0
‖ψ(x, t)‖4 dt < +∞ (x > 0 fixed) ,

∫ +∞

0
‖g1(t)‖4 dt < +∞ ,

∫ +∞

0
‖g2(t)‖4 dt < +∞ .

By applying random Fourier sine transform to the problem in Equations (4)–(7) and using
Equations (72)–(74), one gets

ξ g(x)− ξ2 V(x)(ξ) =
d

dx

(
k(x)

d
dx

(V(x))(ξ)
)
+ a(x)V(x)(ξ) + Ψ(x) , (76)

or
d2

dx2 (V(x))(ξ) + k′(x)
k(x)

d
dx (V(x))(ξ) + a(x)+ξ2

k(x) V(x)(ξ) = Ψ(x)(ξ)−ξ g(x)
k(x) , ξ > 0 fixed , (77)

together with

V(0)(ξ) = G1(ξ) ,
d

dx
(V(0))(ξ) = G2(ξ) .

(78)

The solution to the problem in Equations (77) and (78) is the first component of the solution of
extended random linear differential system, V(x)(ξ) = [1, 0] X(x)(ξ),

X′(x)(ξ) = L(x)(ξ) X(x)(ξ) + B(x)(ξ) , x > 0 ,
X(0)(ξ) = Y0(ξ) ,

}
(79)

where

L(x)(ξ)=

 0 1

− ξ2 + a(x)
k(x)

− k′(x)
k(x)

 , B(x)(ξ)=

 0
Ψ(x)(ξ)− ξ g(x)

k(x)

 , Y0(ξ)=

[
G1(ξ)

G2(ξ)

]
. (80)
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By Section 2, assuming that 4-s.p.’s a(x), k(x) and k′(x) satisfy the moment condition in
Equation (12) for every x > 0, it is guaranteed that the entries of the matrix s.p. L(x)(ξ) = (`i,j(x))2×2 ∈
L2×2

4 (Ω), for ξ > 0 fixed, and satisfy the condition in Equation (12). Furthermore, the condition in
Equation (12) guarantees that L(x)(ξ) is 4-locally absolutely integrable in x ∈ [0, x1]:∫ x1

0
‖`i,j(x)‖4 dx =

∫ x1

0

(
E[|`i,j(x)|4]

)1/4
dx ≤

∫ x1

0

(
mi,j(hi,j)

4
)1/4

dx = (mi,j)
1/4hi,j x1 < +∞ .

Furthermore, it is verified that vector s.p.’s both B(x)(ξ) and Y0(x)(ξ) lie in L2×1
4 (Ω) and they

are absolutely integrables in x ∈ [0,+∞).
Note that, unlike the case of Section 3, here the system in Equations (79) and (80) does not have an

explicit solution s.p. because, in Equation (14), the random fundamental matrix ΦL(x; 0) is unknown
and thus one needs a numerical approach. By using random inverse Fourier sine transform to V(x)(ξ),
one gets

u(x, t) = 2
π

∫ ∞
0 V(x)(ξ) sin(ξ t)dξ = 2

π

∫ ∞
0 [1, 0] X(x)(ξ) sin(ξ t)dξ = 2

π

∫ ∞
0 X1(x)(ξ) sin(ξ t)dξ , (81)

where X1(x)(ξ) = [1, 0] X(x)(ξ) . Now, we apply random Gauss–Laguerre quadrature to approximate
the integral of Equation (81). For s.p. J (ξ) ∈ L2(Ω) being m.f.-absolutely integrable with respect to
ξ > 0, let us consider the following integral

I = I[J ] =
∫ ∞

0
J (ξ) e−ξ dξ , ξ > 0 , (82)

which is a r.v. Since 0 < e−ξ ≤ 1 for all ξ > 0 and s.p. J (ξ) ∈ L2(Ω) being m.f.-absolutely integrable
respect to ξ > 0 one gets

‖I‖2 =

∥∥∥∥∫ +∞

0
J (ξ) e−ξ dξ

∥∥∥∥
2
≤
∫ +∞

0

∥∥∥J (ξ) e−ξ
∥∥∥

2
dξ ≤

∫ +∞

0
‖J (ξ)‖2 dξ < +∞ .

Then, I = I[J ] is well-defined. Assuming that J (ξ) ∈ L2(Ω) has continuous sample trajectories,
i.e., J (ξ)(ω) is continuous with respect to ξ > 0 for all ω ∈ Ω, then r.v. in Equation (82) coincides,
with probability 1, with the (deterministic) sample integrals

I(ω) = I[J ](ω) =
∫ +∞

0
J (ξ; ω) e−ξ dξ , ω ∈ Ω ,

which are well-defined and thus they are convergent for all ω ∈ Ω (see Appendix I of [13]). Then,
taking advantage of the Gauss–Laguerre quadrature formula of degree N, see page 890 of [19], we can
consider the following numerical approximation for each event ω ∈ Ω

IG-L
N [J ](ω) =

N

∑
j=1

νj J (ϑj; ω) , νj =
ϑj[

(N + 1) LN+1(ϑj)
]2 , (83)

where ϑj is the jth root of the deterministic Laguerre polynomial, LN(ϑ), of degree N and νj is the
weight. This quadrature formula to approximate a random integral of the type in Equation (82) is
applied to the r.v. u(x, t) given by Equation (81) taking

J (ξ) = J (x, t, ξ) =
2
π

X1(x)(ξ) sin(ξ t) eξ .

Given the degree N, let us denote by uG-L
N (x, t) the Gauss–Laguerre s.p. approximation of degree

N of the exact solution s.p. u(x, t) of the random problem in Equations (4)–(7), evaluated at (x, t) and
expressed as the r.v.
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uG-L
N (x, t) =

2
π

N

∑
j=1

νj sin(ϑj t) eϑj X1(x)(ϑj) . (84)

Note that, unlike to the problem of Section 3, the exact solution X1(x)(ϑj) is obtained using
Monte Carlo simulation because it is not available. That is, the evaluation of the solution s.p. of the
random linear system in Equation (79) at ϑj is not available in an explicit form, thus the expectation is
approximated using Monte Carlo approach, as treated in Section 2, and denoted by EK

MC[X̄1(x)(ϑj)]

where K represents the number of realizations used in the Monte Carlo simulation and X̄1(x)(ϑj) the
deterministic numerical solution obtained after taking K realizations. Thus, the final expression for the
approximation of the E[u(x, t)] takes the form

E[uG-L
N (x, t)] ≈ E[uG-L

N,K(x, t)] =
2
π

N

∑
j=1

νj sin(ϑj t) eϑj EK
MC[X̄1(x)(ϑj)] , x > 0 , t > 0. (85)

The standard deviation of the approximate solution s.p. uG-L
N (x, t) (Equation (84)), can be

computed taking the square root of the following expression

Var
[
uG-L

N (x, t)
]
≈ Var

[
uG-L

N,K(x, t)
]
=(

2
π

)2 N

∑
j=1

N

∑
`=1

νjν` sin(ϑj t) sin(ϑ` t) eϑj+ϑ`
(
EK

MC[X̄1(x)(ϑj) X̄1(x)(ϑ`)]

−EK
MC[X̄1(t)(ϑj)]EK

MC[X̄1(t)(ϑ`)]
)

=

(
2
π

)2 N

∑
j=1

N

∑
`=1

νj ν` sin(ϑj t) sin(ϑ` t) eϑj+ϑ` CovK
MC
[
X̄1(x)(ϑj) , X̄1(x)(ϑ`)

]
. (86)

A Numerical Example

Consider the random heterogeneous telegraph type problem in Equation (4)–(7) with the following
input data

k(x) = 1 + b cos(π x) , a(x) = e−ax , ψ(x, t) = e−(x+t)

g1(t) = 0 , g2(t) = 0 , g(x) = 0

}
, x > 0, t > 0 , (87)

where parameters a and b are assumed to be independent r.v.’s; specifically, a has a uniform distribution
giving values in [0, 1], that is, a ∼ Un(0, 1), and b > 0 has an exponential distribution of parameter 2
truncated on the interval [0.1, 0.2], that is, b ∼ Exp[0.1,0.2](2). Then, it is verified that s.p.’s k(x) and a(x)
and functions ψ(x, t), g1(t), g2(t) and g(x) are 4-continuous and 4-absolutely integrable with respect
to the time variable those depending on t. Furthermore, k(x) is positive and 4-differentiable. Note that
s.p.’s k(x) and a(x) depend on a single r.v., that is, they have a finite degree of randomness.

In this example, the elements of the auxiliary random linear differential system in Equations (79)
and (80) take the form

L(x)(ξ) =

 0 1

− ξ2 + e−ax

1 + b cos(π x)
b π sin(π x)

1 + b cos(π x)

 ,

B(x)(ξ) =

 0
e−x ξ

(1 + ξ2)(1 + b cos(π x))

 , Y0(ξ) =

[
0
0

]
,

(88)
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where in B(x)(ξ) it is obtained that Ψ(x)(ξ) = Fs[ψ(x, t)](ξ) = e−x ξ

1 + ξ2 , x > 0 for a fixed ξ > 0.

Observe that the entries of the matrix s.p. L(x)(ξ) given in Equation (88) satisfies the moment condition
in Equation (12) for every x because r.v.’s a and b are bounded. The random linear differential system in
Equations (79) and (88) does not have an explicit solution s.p., thus we proceed as shown in Example 1
searching alternative approximations of Equations (79) and (88) via Monte Carlo simulations. Taking
a particular number of realizations, K, over the r.v.’s a and b, we solve the K deterministic systems
corresponding to Equations (79) and (88) for each ξ j, j = 1, · · · , N. The integer N represents the
roots of the Laguerre polynomial of degree N and it must be fixed befor the computation of the
K deterministic systems. We computed, for each ξ j, the mean of the K solutions obtained, that is,
EK

MC[X̄1(x)(ξ j)], j = 1, · · · , N. Finally, we can provide an approximation of the first and the second
moments of the solution s.p. of the original problem in Equations (4)–(7) and (87) using the explicit
expressions in Equations (85) and (86) where ϑj represents the jth root ξ j, j = 1, · · · , N. Algorithm
2 summarizes the procedure described above to compute the approximations of the expectation
and the standard deviation of the solution s.p. in Equation (84). Figure 4 shows simulations of the
expectation of the solution s.p. in Equation (84) at time instants t = {0.5, 1, 1.5, 2} on the spatial
domain 0 ≤ x ≤ 1 considering the set of points xi = i h, 0 ≤ i ≤ n = 10, with the stepsize h = 0.1.
To carry out these simulations, K = 1000 realizations for Monte Carlo method and N = 10 for the
Gauss–Laguerre quadrature were considered.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Figure 4. Simulations of the evolution along the time instants t = 0.5, t = 1, t = 1.5 and t = 2 of the
approximated expectation, E[uG-L

N,K(xi, t)] (Equation (85)), of the solution s.p. uG-L
N (x, t) (Equation (84))

on the spatial domain 0 ≤ x ≤ 1 for K = 1000 realizations via Monte Carlo and N = 10 the degree of
the Laguerre polynomial.

Now, to study the numerical convergence of the approximations of both the expectation and the
standard deviation, we studied the behavior of their root mean square deviations (RMSD) in two stages:
firstly, varying the number K of realizations in the Monte Carlo method but considering fixed the N in
the Gauss–Laguerre quadrature; and, secondly, varying N but considering the number of realizations
K fixed. For the first stage, Table 5 collects the RMSDs computed using the following notation

RMSD
[
E[uG-L

N,K`K`+1
(xi, t)]

]
=

√
1

(n + 1)

n

∑
`=0

(
E[uG-L

N,K`+1
(xi, t)]−E[uG-L

N,K`
(xi, t)]

)2
, (89)

RMSD
[√

Var[uG-L
N,K`K`+1

(xi, t)]
]

=

√
1

(n + 1)

n

∑
`=0

(√
Var[uG-L

N,K`+1
(xi, t)−

√
Var[uG-L

N,K`
(xi, t)

)2
, (90)
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at time instant t = 1 along the spatial domain [0, 1] considering the set of points xi = i h, 0 ≤ i ≤ n = 10,
with the stepsize h = 0.1. The integers K` and K`+1 denote the realizations taken using Monte
Carlo method to solve numerically the random linear differential system in Equations (79) and (88).
The simulations K`, ` = 0, . . . , 5, correspond to K0 = 2500, K1 = 5000, K2 = 104, K3 = 2× 104, K4 =

4× 104 and K5 = 5× 104 and N = 6 is the degree fixed for the Laguerre polynomials. The decreasing
trend of the RMSDs when compared to the previous realization is observed. A similar behavior can be
observed when other degrees N are considered.

Algorithm 2 Calculation procedure for the expectation and the standard deviation of the approximated
solution s.p. uG-L

N (x, t) (Equation (84)) of the problem in Equations (4)–(7).

Require: Guarantee that the random input data k(x), a(x), ψ(x, t), g1(t), g2(t) and g(x) of problem in
Equations (4)–(7) are m.f. continuous s.p.’s with a finite degree of randomness, and m.f. absolutely
integrable s.p.’s with respect to the time variable those depending on t. Furthermore, k(x) must be
positive and 4-differentiable.

1: Fix a point (x, t), x > 0, t > 0.

2: Choose the degree N of the Laguerre polynomial, LN(·), and compute LN(·) and LN+1(·).
3: for j = 1 to N do
4: Compute the j roots, ϑj, of LN(·);
5: end for
6: for j = 1 to N do
7: Compute the weights, νj, of LN(·) using Equation (83).

8: end for
9: Choose and carry out a number K of the realizations over the r.v.’s involve in the s.p.’s of the input

data: k(x), a(x), ψ(x, t), g1(t), g2(t) and g(x).
10: Construct the matrix s.p. L(x)(ϑj) given by Equation (80) where ξ represent a particular ϑj.
11: if the entries of matrix s.p. L(x)(ϑj) verifies the condition in Equation (12) then
12: continue to the following step
13: else
14: change the election of the s.p.’s a(x) and k(x) and check again the condition in Equation (12).
15: end if
16: Compute the random Fourier sine transforms of the input data: ψ(x, t), g1(t) and g2(t).
17: Construct the random vector s.p. B(x)(ϑj) and the random vector Y0(ϑj) using Equation (80).
18: for j = 1 to N do
19: Obtain numerically the K deterministic solutions, X̄1(x)(ϑj), of the K linear differential system

in Equations (79) and (80) for each root ϑj,
20: Compute the mean of the K solutions obtained and denote it by EK

MC[X̄1(x)(ϑj)].

21: end for
22: Compute an approximation of the expectation, E[uG-L

N (x, t)], and the standard deviation,√
Var[uG-L

N (x, t)], of the approximated solution s.p. uG-L
N (x, t) (Equation (84)) using the explicit

expressions in Equations (85) and (86).

Table 5. Values of the RMSDs for the approximations of the expectation, RMSD
[
EG-L

N,K`K`+1
(xi, t)

]
(Equation (89)), and the standard deviation, RMSD

[√
VarG-L

N,K`K`+1
(xi, t)

]
(Equation (90)), at t = 1 on

the spatial domain 0 ≤ x ≤ 1, N = 6 the degree of the Laguerre polynomial and the realizations
K0 = 2500, K1 = 5000, K2 = 104, K3 = 2× 104, K4 = 4× 104 and K5 = 5× 104.

K`K`+1 RMSD
[
E[uG-L

6,K`K`+1
(xi, 1)]

]
RMSD

[√
Var[uG-L

6,K`K`+1
(xi, 1)]

]
K0K1 2.81922e− 05 2.91484e− 05
K1K2 1.96565e− 05 1.18180e− 05
K2K3 1.11618e− 05 2.49163e− 06
K3K4 1.07918e− 05 4.96128e− 06
K4K5 3.59937e− 06 2.83452e− 06
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For the second stage, Table 6 collects the RMSDs computed fixing K using the following
expressions

RMSD
[
E[uG-L

N`N`+1,K(xi, t)]
]

=

√
1

(n + 1)

n

∑
`=0

(
E[uG-L

N`+1,K(xi, t)]−E[uG-L
N` ,K

(xi, t)]
)2

, (91)

RMSD
[√

Var[uG-L
N`N`+1,K(xi, t)]

]
=

√
1

(n + 1)

n

∑
`=0

(√
Var[uG-L

N`+1,K(xi, t)−
√

Var[uG-L
N` ,K

(xi, t)
)2

. (92)

Computations were carried out at time t = 1 along the spatial domain [0, 1] considering the
set of points xi = i h, 0 ≤ i ≤ n = 10, h = 0.1, fixing the number of realizations K = 1000 and
increasing the degree N of Laguerre polynomials from N = 4 to N = 12. The decrease of the RMSDs
in Equations (91) and (92) is in full agreement with the results shown in Figure 5, where it is illustrated
how the successive approximations of the absolute deviations for both the expectation and the standard
deviation, defined as follows

AbsDev
(
E[uG-L

N`N`+1,K(x, t)]
)

=
∣∣∣E[uG-L

N`+1,K(x, t)]−E[uG-L
N`,K(x, t)]

∣∣∣ ,

AbsDev
(√

Var[uG-L
N`N`+1,K(x, t)]

)
=

∣∣∣√Var[uG-L
N`+1,K(x, t)]−

√
Var[G-L

N`,K(x, t)]
∣∣∣ ,

(93)

have a decreasing trend as N increases.

Table 6. Values of the RMSDs for the approximations of the expectation, RMSD
[
EG-L

N`N`+1,K(xi, t)
]

(Equation (91)), and the standard deviation, RMSD
[√

VarG-L
N`N`+1,K(xi, t)

]
(Equation (92)), at the time

instant t = 1 on spatial domain 0 ≤ x ≤ 1 and several degrees of the Laguerre polynomial taking
values in the subset N = {4, 6, 8, 10, 12}.

N`N`+1 RMSD
[
E[uG-L

N`N`+1,K(xi, 1)]
]

RMSD
[√

Var[uG-L
N`N`+1,K(xi, 1)]

]
{4, 6} 8.68910e− 03 1.51443e− 04
{6, 8} 4.00353e− 03 7.17175e− 05
{8, 10} 2.69052e− 03 5.10703e− 05
{10, 12} 2.01171e− 03 3.80140e− 05
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Figure 5. (a) Comparative graphics of the absolute deviations for successive approximations
to the expectation E[uG-L

N`N`+1,K(xi, 1)] (Equation (93)). (b) Comparative graphics of the absolute

deviations for successive approximations to the standard deviation
√

Var[uG-L
N`N`+1,K(xi, 1)] (Equation

(93)). Both graphics correspond to the time t = 1 on the spatial interval 0 ≤ x ≤ 1, K = 1000 realizations
and the degrees N = {4, 6, 8, 10} for the Laguerre polynomials.
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5. Conclusions

This paper proposes an efficient numerical method to approximate the stochastic process solution
of random hyperbolic models of telegraph type by a low order finite sum. This expression makes
manageable the computational complexity of its statistical moments. The method combines the
random Fourier transform approach and random Gaussian quadrature technique together with Monte
Carlo method. The role of Gaussian quadrature is related to the approximation of the inverse Fourier
transform while the Monte Carlo method provides the approximation of random ordinary differential
transformed problem. Both cases, the random constant coefficient and the heterogeneous case,
with random coefficient are treated and illustrated with numerical examples. Numerical experiments
varying the degree of Gaussian quadrature and the amount of Monte Carlo simulations are discussed.
The fact that the solution of the intermediate ODE problem is solved using Monte Carlo, and that the
random inverse Fourier transform is approximated using quadratures allows an easy computation that
can be checked with real experiments and applicable to real problems, even outside of our telegraph
type hyperbolic models.
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