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Abstract: In this paper, we investigated the stability criteria like an exponential and weakly
exponential stable for random impulsive infinite delay differential systems (RIIDDS). Furthermore,
we proved some extended exponential and weakly exponential stability results for RIIDDS by using
the Lyapunov function and Razumikhin technique. Unlike other studies, we show that the stability
behavior of the random time impulses is faster than the fixed time impulses. Finally, two examples
were studied for comparative results of fixed and random time impulses it shows by simulation.
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1. Introduction

Impulses occur in a short duration of time which makes a sudden change in the nature or behavior
of the differential system; we call this system an impulsive differential system. Most of the impulsive
differential equation models deal with the fixed time of occurrence of impulse action. Many authors
contributed to analyzing the fixed time impulsive differential systems (IDS) with the finite or infinite
delay because this system arises in many fields like science, engineering, biotechnology, neural
networks, and control systems—see the monographs [1,2]. The study of qualitative behavior like the
stability of impulsive differential systems is also important. Generally, stability behavior for IDS with
delays can have two types of results: (i) impulsive perturbation and (ii) impulsive stabilization. For the
past several decades, many authors have studied the stability behavior of various types of impulsive
systems by using the Lyapunov functions and Razumikhin technique. Moreover, the Lyapunov
functional method plays an important role in the stability theory of functional differential systems
it used to obtain the minimal class of functional from the corresponding derivative of the Lyapunov
functions; for example, in [3,4], the authors proved the exponential stability by using the Lyapunov
and Razumikhin technique and the authors in [5–7] investigated the Razumikhin-type theorems for
weakly exponentially stable and exponentially stable. Recently, the authors in [8] established some new
Razumikhin-technique for studying the uniform stability behavior of the systems. However, impulses
used to control for the unstable differential systems can be stabilized to the equilibrium point; this
is shown in [9,10]. Furthermore, several interesting results have been established in [11–16] and the
references therein. However, the impulses happen not only in fixed time on the system states, but it is
also possible to happen randomly; we know that the real world system states often change randomly.
From this point of view, we develop random impulses in differential systems.
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Very few attempts are made in the study of the random time occurrence of impulses.
This changing nature from a deterministic system to a stochastic system differs from the stochastic
differential equation—for example, in [17], the authors investigated the existence, uniqueness and
stability results for random IDS. In [18], the author studied the pth moment exponential stability results
and the authors [19] discussed the distribution nature for random IDS and proved the exponential
stability. For further study, refer to [20–29] and references therein. Still, now there was no paper
reported on the exponential stability for RIIDDS based on the Lyapunov and Razumikhin approach.
Therefore, it is necessary to identify the exponential stability results for RIIDDS.

Inspired by the above discussions in this paper, we construct some new sufficient conditions for
exponential stability by employing the random impulses. Furthermore, we discuss the random time
impulses are faster than fixed time impulses. Finally, we show the stability behavior of random time
impulses and the fixed time impulses. The rest of this paper is as follows: there are some definitions
and lemmas in the preliminaries in Section 2. In Section 3, we prove the exponential stability and
weakly exponential stability results for RIIDDS by using the Lyapunov and Razumikhin technique.
Then, in Section 4, two numerical examples and their simulations are discussed and, finally, in Section 5,
conclusions are given.

Notations: Let < denote the set of all real numbers, <+ the set of all non-negative
real numbers and Z+ the set of all positive integers. Let <n be the Euclidean space
equipped with norm ‖·‖, and (Ω,F , P) be a probability space. We use Γ = PC ((−∞, 0] ,<n)

to denote the set of all piecewise right continuous real valued random variables ϕ :
(−∞, 0] → <n with the norm is defined by E‖ϕ‖p = sup

θ∈(−∞,0]
E‖ϕ(θ)‖p. The symbol PCB(t)

denotes a set of all bounded piecewise right continuous real valued random variables ϕ.
Then, E(·) stands for the expectation operator with respect to the given P. Moreover,
letting Ĉ = C(<+,<+), we define: K1 = {ν ∈ Ĉ| ν(0) = 0 and ν(s) > 0 for s > 0};
K2 = {ν ∈ Ĉ| ν(0) = 0 and ν(s) > 0 for s > 0 and ν is nondecreasing in s}; K3 = {ν ∈ Ĉ| ν(0) = 0
and ν(s) > 0 for s > 0 and ν is strictly increasing in s}.

2. Preliminaries

Let {τ′m}∞
m=1 be a sequence of independent exponentially distributed random variables with

parameter γ defined on sample space Ω and {ξ ′m}∞
m=0 be the increasing sequence of random variables.

Note that ξ
′
0 = t0, where t0 ≥ 0 is a fixed point and ξ

′
m = ξ

′
m−1 + τ

′
m for m = 1, 2, · · · , where τ

′
m defines

the waiting time between two consecutive impulses and provides
∞
∑

m=1
τ
′
m = ∞ with probability 1.

Let us consider the delay differential systems with random impulses of the form

y′(t) = g(t, yt), ξ
′
m < t < ξ

′
m+1, t ≥ t0 ,

y(ξ
′+
m ) = Im(ξ

′
m, y(ξ

′−
m )), m = 1, 2, · · · ,

y(θ) = φ(θ), θ ∈ (−∞, 0] , (1)

where φ ∈ Γ and g ∈ C([0, ∞)×D,<n), g(t, 0) = 0, where D is an open set in Γ. For any t ≥ t0, yt =

{y(t + θ), θ ∈ (−∞, 0]}. For any m = 1, 2, 3, · · · , Im(t, y) ∈ C([0, ∞)×<n,<n), Im(ξ
′
m, 0) = 0 and

for any ρ > 0, there exists ρ1 > 0 (ρ1 < ρ) such that y ∈ S(ρ1) implies that y + Im(ξ
′
m, y) ∈ S(ρ),

where S(ρ) = {y : ‖y‖ < ρ, y ∈ <n}. For any t0 ≥ 0, let PCBδ(t0) = {ϕ ∈ PCB(t0) : ‖ϕ‖ < δ}, and
let ϕ(θ) = y(t + θ), thus ϕ(0) = y(t). Furthermore, we define y(ξ

′+
m ) and y(ξ

′−
m ) are the right and left

limits at ξ
′
m.

We assume the existence and uniqueness solution for the initial value problem (1), and denoted
as y(t, t0, φ). Since g(t, 0) = 0, Im(ξ

′
m, 0) = 0, m = 1, 2, ..., then y(t) = 0 is the trivial solution of

system (1).
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Remark 1. Define {ξm}∞
m=0 be the increasing sequence of points, where ξm is a value of the corresponding

random variable ξ
′
m, ∀ m = 1, 2, · · · , and {τm}∞

m=1 is a sequence of points, where τm are arbitrary values of the
random variable τ

′
m, ∀m = 1, 2, · · · . For convenience, we define ξ0 = t0 and ξm = ξm−1 + τm, ∀m = 1, 2, · · · ,

where τm denotes the value of the waiting time. Then, system (1) becomes

y′(t) = g(t, yt), t 6= ξm, t ≥ t0 ,

y(ξ+m) = Im(ξm, y(ξ−m)), m = 1, 2, · · · ,

y(θ) = φ(θ), θ ∈ (−∞, 0]. (2)

The solution of system (2) depends not only on the initial condition; it also depends on the moments
of impulses ξm, m = 1, 2, · · · . That is, the solution depends on the chosen arbitrary values τm of the
random variable τ

′
m, ∀ m = 1, 2, · · · . We denote the solution of (2) by y(t; t0, φ, {τm}) and will assume

y(ξm) = lim
t→ξm−0

y(t).

Moreover, the collection of all solutions of system (2) is called a sample path solution of system (1). Thus,
the sample path solution generates a stochastic process. We will say that it is a solution of system (1), and it is
denoted by y(t; t0, φ,

{
τ
′
m

}
) .

Lemma 1. From [19,28], when there will be exactly m impulses until the time t, t ≥ t0, and the waiting time
between two consecutive impulses follow exponential distribution with parameter γ, then the probability

P(I
[ξ
′
m ,ξ ′m+1)

(t)) =
γm(t− t0)

m

m!
e−γ(t−t0),

where the events I
[ξ
′
m ,ξ ′m+1)

(t) = {ω ∈ Ω : ξ
′
m(ω) < t < ξ

′
m+1(ω)}, m = 1, 2, · · · .

Remark 2. From [19,28], if y(t) is the solution of the random impulsive differential equations, then

E[‖y(t)‖] =
∞

∑
m=0

E[‖y(t)‖|I
[ξ
′
m ,ξ ′m+1)

(t)]P(I
[ξ
′
m ,ξ ′m+1)

(t)),

where ξ
′
m is the impulse moments.

Definition 1. The function W : <× Γ −→ <+ belongs to class ω0 if

(i) W is continuous differentiable almost every where function.
(ii) W(t, y) is locally Lipschitzian with respect to y and W(t, 0) ≡ 0.

Definition 2. Letting W ∈ ω0, for any (t, ϕ) ∈ [0, ∞)× D, the upper right hand Dini derivative of W(t, y)
along the solution of system (1) is defined by

D+W(t, ϕ(0)) = lim sup
h→0+

{
[W(t + h, ϕ(0) + hg(t, ϕ))−W(t, ϕ(0))]

h

}
.

Definition 3. Let y(t) be a the solution of (1) through (t0, φ), and p > 0. Then, the trivial solution of (1) is
said to be

(i) pth moment weakly exponentially stable, assume α(s) ∈ K3, λ > 0 is a constant (convergence rate),
if for any ε > 0, there exists δ = δ(ε) > 0 such that φ ∈ PCBδ(t0) implies E

[
α1(‖y(t)‖p)

]
<

ε · e−λ(t−t0), t ≥ t0.
(ii) pth moment exponentially stable, assume λ > 0 is a constant (convergence rate), if for any ε > 0, there

exists δ = δ(ε) > 0 such that φ ∈ PCBδ(t0) implies E(‖y(t)‖p) < ε · e−λ(t−t0), t ≥ t0.
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3. Main Results

Theorem 1. Assume that there exist functions β1, β2 ∈ K1, h ∈ K2, c ∈ Ĉ and q ∈ PC(<+, <+), W(t, y) ∈
ω0, and constants M > 1, λ > 0, wm > 0, κ > 0, such that E [wm] ≤ κ, m ∈ Z+, and the following
conditions hold:

(i) β1(‖y‖p) ≤W(t, y) ≤ β2(‖y‖p), (t, y) ∈ <× S(ρ);
(ii) For any ϕ ∈ PC((−∞, 0], S(ρ)), if h(W(t, ϕ(0))eλ(t−t0)) ≥ M−1W(t + θ, ϕ(θ)), θ ∈ (−∞, 0],

ξ
′
m < t < ξ

′
m+1, then D+W(t, ϕ(0)) ≤ −q(t)c(W(t, ϕ(0))), where s < h(s) ≤Ms for any s > 0;

(iii) For all (ξ
′
m, ϕ) ∈ <+ × PC((−∞, 0], S(ρ1)), W(ξ

′
m, ϕ(0) + Im(ξ

′
m, ϕ)) ≤ wmW(ξ

′−
m , ϕ(0)), with{

∞
∏
i=1

E [wi]

}
≤M,

(iv) τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
< ∞, µ

′
= min

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
> 0,

inf
t≥0

∫ t+µ
′

t q(s)ds = M1 < ∞, sup
s>0

∫ sMeλτ
′

s
dt

c(t) = M2 < M1;

(v) The inequality inf
s>0

q(s) · inf
s>0

c(s)
s ≥ λ holds.

Then, (1) is pth moment weakly exponentially stable.

Proof. Condition (i) =⇒ β1(s) ≤ β2(s) for s ∈ [0, ρ].
Let α1 and α2 be strictly non-decreasing continuous functions satisfying

α1(s) ≤ β1(s) ≤ β2(s) ≤ α2(s), ∀ s ∈ [0, ρ]. Thus, we have

α1(‖y‖p) ≤W(t, y) ≤ α2(‖y‖p), ∀ (t, y) ∈ <× S(ρ).

For any ρ1 > 0 and ε > 0, we may choose δ = δ(ε) > 0, such that α2(δ) ≤M−2min {α1(ε), ε}.
Let y(t), t ≥ t0 be a solution of system (1) through (t0, φ), and it follows a stochastic process. For

any φ ∈ PCBδ(t0), we shall prove that

E
[
α1(‖y(t)‖p)

]
≤ ε · e−[λ+γ(1−κ)](t−t0), t ≥ t0. (3)

We will prove (3) with the aid of the sample path solution of (1). Thus, first, it is enough to prove that
there are m impulses moments until time t, t ≥ t0,

α1(‖y(t)‖p) ≤ ε ·
m

∏
i=1

wie−λ(t−t0), t ∈ [ξm, ξm+1), m = 0, 1, 2, · · ·.

For convenience, let W(t) = W(t, y(t)), and V(t0) = max

{
sup

θ∈(−∞,0]
W(t0 + θ, ϕ(θ)),MW(t0)

}
,

which implies

V(t0) ≤ α2(δ)M, in view of (ϕ ∈ PCBδ(t0)).

We shall prove that there are m = k impulses moments until time t, t ≥ t0,

W(t) ≤ V(t0)
k

∏
i=1

wie−λ(t−t0), t ∈ [ξk, ξk+1). (4)
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First, it is clear that, for t ∈ (−∞, t0),

α1(‖y(t)‖p) ≤ W(t) ≤ V(t0)

< Mα2(δ)

≤ M−1min {α1(ε), ε}
≤ α1(ε). (5)

Thus, ‖y(t)‖p < ε < ρ1, t ∈ (−∞, t0]. Assuming k = 0, i.e., no impulse moments, then we prove
that

W(t)eλ(t−t0) ≤ V(t0), t ∈ [t0, ξ1). (6)

Supposing not, then there exists t ∈ [t0, ξ1) such that W(t)eλ(t−t0) > V(t0). Let

t̂ = in f
{

t ∈ [t0, ξ1)|W(t)eλ(t−t0) ≥ V(t0)
}

.

Then, t̂ ∈ (t0, ξ1), W(t̂)eλ(t̂−t0) = V(t0). In addition, W(t)eλ(t−t0) < V(t0), t ∈ [t0, t̂). Since

W(t)eλ(t−t0) < V(t0), ∀ t ∈ (−∞, t̂). (7)

Note h(W(t̂)eλ(t̂−t0)) = h(V(t0)) > V(t0), and h(W(t0)) ≤ h(M−1V(t0)) ≤ V(t0), in view of
h(s) ≤Ms,
thus define

t∗ = sup
{

t ∈ [t0, t̂]| h(W(t)eλ(t−t0)) ≤ V(t0)
}

.

Thus, t∗ ∈ [t0, t̂), h(W(t∗)eλ(t∗−t0)) = V(t0), and h(W(t)eλ(t−t0)) > V(t0), t ∈ (t∗, t̂]. Hence, for
t ∈ [t∗, t̂], s ∈ (−∞, t], considering (7), we have

h(W(t)eλ(t−t0)) ≥ V(t0) ≥W(s) >M−1W(s).

By (ii), D+W(t) ≤ −q(t)c(W(t)) holds for all t ∈ [t∗, t̂]. Therefore, we obtain

D+(W(t)eλ(t−t0)) = D+W(t)eλ(t−t0) + λW(t)eλ(t−t0)

= eλ(t−t0)(D+W(t) + λW(t))

≤ eλ(t−t0)(−q(t)c(W(t)) + λW(t))

= W(t)eλ(t−t0)(−q(t)
c(W(t))

W(t)
+ λ), by condition (v)

≤ 0. (8)

Thus, W(t)eλ(t−t0) is non-increasing in t for t ∈ [t∗, t̂] which gives that W(t∗)eλ(t∗−t0) ≥
W(t̂)eλ(t̂−t0). However, this contradicts the fact that W(t̂)eλ(t̂−t0) = V(t0) = h(W(t∗)eλ(t∗−t0)) >

W(t∗)eλ(t∗−t0). Hence, we have proven W(t) ≤ V(t0)e−λ(t−t0), t ∈ [t0, ξ1). Hence, for t ∈ [t0, ξ1),

α1(‖y(t)‖p) ≤W(t)eλ(t−t0) ≤ V(t0) <Mα2(δ) ≤M−1min {α1(ε), ε} ≤ α1(ε).

Thus, ‖y(t)‖p < ε < ρ1, t ∈ [t0, ξ1), which gives that y(ξ−1 ) ∈ S(ρ1), y(ξ1) ∈ S(ρ).
Considering the condition (iii), we get

W(ξ1) ≤ w1W(ξ−1 ) ≤ w1V(t0)e−λ(ξ1−t0).
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Furthermore, we claim that there are m = k impulses moments until time t, t ≥ t0

W(t) < V(t0)
k

∏
i=1

wie−λ(t−t0), t ∈ [ξk, ξk+1). (9)

First, we prove that

W(ξ−k )eλ(ξk−t0) ≤M−1V(t0). (10)

Supposing not, then

W(ξ−k )eλ(ξk−t0) >M−1V(t0).

Thus, either there are m = k− 1 impulses moments until time t, t ≥ t0

W(t) >M−1V(t0)e−λ(t−t0), ∀ t ∈ [ξk−1, ξk),

or there exist some t ∈ [ξk−1, ξk), for which

W(t)eλ(t−t0) ≤M−1V(t0).

Case(i); considering (6), we have

h(W(t)eλ(t−t0)) ≥W(t)eλ(t−t0) ≥M−1V(t0) ≥M−1W(s)eλ(s−t0), s ∈ (−∞, t], t ∈ [ξk−1, ξk),

which gives that

W(ξ−k )eλ(ξk−t0) ≥M−1W(ξk−1)eλ(ξk−1−t0).

Thus, we obtain

MW(ξ−k )eλτ ≥W(ξk−1),

where τ is the value of the random variable τ
′
. By (ii), we have

D+W(t) ≤ −q(t)c(W(t)), ∀ t ∈ [ξk−1, ξk).

Then, we get

∫ W(ξk−1)

W(ξ−k )

ds
c(s)

≤
∫ MW(ξ−k )eλτ

W(ξ−k )

ds
c(s)

≤ M2 < M1,

however noting that

∫ W(ξk−1)

W(ξ−k )

ds
c(s)

≥
∫ ξk

ξk−1

q(s)ds ≥
∫ ξk−1+µ

ξk−1

q(s)ds ≥ M1,

where µ is the value of the random variable µ
′
. This is a contradiction.

case (ii), let t∗ = sup
{

t ∈ [t0, ξk]|W(t)eλ(t−t0) ≤M−1V(t0)
}

. Then,

t∗ ∈ [t0, ξk), W(t∗)eλ(t∗−t0) =M−1V(t0), and

W(t)eλ(t−t0) >M−1V(t0), t ∈ (t∗, ξk),
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which gives that

h(W(t)eλ(t−t0)) = h(W(t)eλ(t−t0)) ≥W(t)eλ(t−t0) ≥M−1V(t0) >M−1W(s)e−λ(s−t0), s ∈ (−∞, t], t ∈ [t∗, ξk).

By (ii), we have

D+W(t) ≤ −q(t)c(W(t)) ≤ 0, holds ∀ t ∈ [t∗, ξk).

Apply a similar process as in (8), which yields D+W(t)eλ(t−t0) ≤ 0. Therefore, W(t)eλ(t−t0) is
non increasing in t for t ∈ [t∗, ξk). In particular, W(t∗)eλ(t∗−t0) ≥W(ξ−k )eλ(ξk−t0). However, this is in
contradiction to the fact that

W(ξ−k )eλ(ξk−t0) >M−1V(t0) = W(t∗)eλ(t∗−t0).

Thus, we have proven (10). Next, we need to show that there are m = k impulses moments until
time t, t ≥ t0

W(t) ≤ V(t0)
k

∏
i=1

wie−λ(t−t0), t ∈ [ξk, ξk+1).

Supposing not, then there exists some t ∈ [ξk, ξk+1) such that

W(t)eλ(t−t0) > V(t0)
k

∏
i=1

wi.

Letting

t̂ = in f

{
t ∈ [ξk, ξk+1)|W(t)eλ(t−t0) ≥ V(t0)

k

∏
i=1

wi

}
,

then t̂ ∈ (ξk, ξk+1), W(t̂)e−λ(t̂−t0) = V(t0)
k

∏
i=1

wi, and W(t)e−λ(t−t0) < V(t0)
k

∏
i=1

wi, t ∈ [ξk, t̂).

Meanwhile, we obtain

W(t)eλ(t−t0) < V(t0)
k

∏
i=1

wi, ∀t ∈ (−∞, t̂), (11)

in view of the fact that

W(t)eλ(t−t0) < V(t0), for t ∈ (−∞, ξk).

On the other hand, we note

h(W(t̂)eλ(t̂−t0)) = h(
k

∏
i=1

wiV(t0)) >
k

∏
i=1

wiV(t0)
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and

h(W(ξk)eλ(ξk−t0)) ≤ h(W(ξ−k )
k

∏
i=1

wieλ(ξk−t0))

≤ h(
k

∏
i=1

wiM−1V(t0))

≤
k

∏
i=1

wiV(t0).

Therefore, we can define

t∗ = sup

{
t ∈

[
ξk, t̂

]
| h(W(t)eλ(t−t0)) ≤

k

∏
i=1

wiV(t0)

}
.

Then, t∗ ∈ [ξk, t̂), h(W(t∗)eλ(t∗−t0)) =
k

∏
i=1

wiV(t0), and h(W(t)eλ(t−t0)) >
k

∏
i=1

wiV(t0), t ∈ (t∗, t̂].

Thus, considering (11), we have

h(W(t)eλ(t−t0)) ≥
k

∏
i=1

wiV(t0)

> W(s)eλ(s−t0)

> M−1W(s), s ∈ (−∞, t], t ∈ [t∗, t̂].

Hence, by (ii) and (v), a similar process as in (8), we can obtain D+W(t)eλ(t−t0) < 0, which
gives that W(t)eλ(t−t0) is non-increasing in t for t ∈ [t∗, t̂]. In particular, W(t∗)eλ(t∗−t0) ≥W(t̂)eλ(t̂−t0).
This contradicts the fact that

W(t̂)eλ(t̂−t0) = V(t0)
k

∏
i=1

wi = h(W(t∗)eλ(t∗−t0)) > W(t∗)eλ(t∗−t0),

so (9) holds. Thus, we have, for t ∈ [ξk, ξk+1),

α1
(
‖y(t)‖p) ≤W(t)eλ(t−t0) ≤

k

∏
i=1

wiV(t0)

< M2α2(δ)

≤ min {α1(ε), ε}
≤ α1(ε).

Thus, ‖y(t)‖p < ε < ρ1, t ∈ [ξk, ξk+1), which implies y(ξ−k+1) ∈ S(ρ1), y(ξk+1) ∈ S(ρ).
Thus, by induction principle, there are m impulses moments until time t, t ≥ t0

W(t) ≤ V(t0)
m

∏
i=1

wie−λ(t−t0), t ∈ [ξm, ξm+1).
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Thus, (4) holds. Using assumption (i), we derive at

α1(‖y(t)‖p) ≤W(t) ≤ V(t0)
m

∏
i=1

wie−λ(t−t0)

≤ α2(δ)M
m

∏
i=1

wie−λ(t−t0),

≤ min {α1(ε), ε}
m

∏
i=1

wie−λ(t−t0),

α1(‖y(t)‖p) ≤ ε ·
m

∏
i=1

wie−λ(t−t0), t ∈ [ξm, ξm+1).

Thus, solutions generate a stochastic process that is defined by

α1(‖y(t)‖p) ≤ ε ·
m

∏
i=1

wie−λ(t−t0), t ∈ [ξ
′
m, ξ

′
m+1).

Taking expectations on both sides, by using Lemma 1 and Remark 2, then we get

E
[
α1(‖y(t)‖p)

]
=

∞

∑
m=0

E[α1(‖y(t)‖p)|I
[ξ
′
m ,ξ ′m+1)

(t)]P(I
[ξ
′
m ,ξ ′m+1)

(t)),

≤ ε ·
∞

∑
m=0

m

∏
i=1

E [wi] e−λ(t−t0)P(I
[ξ
′
m ,ξ ′m+1)

(t))

≤ ε ·
∞

∑
m=0

m

∏
i=1

E [wi] e−λ(t−t0)
γm(t− t0)

m

m!
e−γ(t−t0)

E
[
α1(‖y(t)‖p)

]
≤ ε · e−[λ+γ(1−κ)](t−t0).

Remark 3. From Theorem 1, we observed that

1. If 0 < κ < 1 and the impulses arrival rate γ does not have any restrictions, then system (1) is the pth

moment weakly exponentially stable.
2. If κ = 1 and the impulses arrival rate γ = 0 (no impulse arrival), then system (1) is pth moment weakly

exponentially stable.
3. If κ > 1 and the impulses arrival rate γ < λ

κ−1 , then system (1) is pth moment weakly exponentially stable.

Now, particularly, letting h(s) = l · s, l ∈ (1,M], c(s) = s, q(t) ≥ q, βi(s) = aisp (q, p, ai >

0, i = 1,2, are constants) in Theorem 1, then we have the next results.

Corollary 1. Assume that there exist a function W(t, y) ∈ ω0 and constants wm > 0, κ > 0, such that
E [wm] ≤ κ, m ∈ Z+ and the following conditions hold:

(i) a1 ‖y‖p ≤W(t, y) ≤ a2 ‖y‖p , (t, y) ∈ <× S(ρ),
(ii) For any ϕ ∈ PC((−∞, 0], S(ρ)), ifMlW(t, ϕ(0))eλ(t−t0) ≥ W(t + θ, ϕ(θ)), θ ∈ (−∞, 0], ξ

′
m <

t < ξ
′
m+1, then D+W(t, ϕ(0)) ≤ −qW(t, ϕ(0));

(iii) For all (ξ
′
m, ϕ) ∈ <+ × PC((−∞, 0], S(ρ1)), W(ξ

′
m, ϕ(0) + Im(ξ

′
m, ϕ)) ≤ wmW(ξ

′−
m , ϕ(0)), with{

∞
∏
i=1

E [wi]

}
≤M,

(iv) τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
< ∞, µ

′
= min

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
> 0, µ

′
q > InM+ λτ

′
.
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Then, (1) is pth moment exponentially stable.

Proof. Notice that µ
′
q > InM+ λτ

′
gives that conditions (iv) and (v) in Theorem 1 hold. Finally,

there are m impulses moments until time t, t ≥ t0, then we get

a1 ‖y(t)‖p ≤ Ma2 ‖y(t)‖p
m

∏
i=1

wie−λ(t−t0),

‖y(t)‖p ≤
(
Ma2

a1

)
‖φ‖p

m

∏
i=1

wie−λ(t−t0).

Letting φ ∈ PCBδ(t0), δp = ε
(

a1
Ma2

)
, then

‖y(t)‖p ≤ ε ·
m

∏
i=1

wie−λ(t−t0), t ≥ t0 t ∈ [ξm, ξm+1).

Thus, solutions generate a stochastic process that is defined by

‖y(t)‖p ≤ ε ·
m

∏
i=1

wie−λ(t−t0), t ∈ [ξ
′
m, ξ

′
m+1).

Taking expectations on both sides, by using Lemma 1 and Remark 2, then we get

E ‖y(t)‖p ≤ ε · e−[λ+γ(1−κ)](t−t0).

Remark 4. If the condition h < s holds, the derivative of V is non-negative; then, we get the next exponential
stability result.

Theorem 2. Assume that there exist functions β1, β2 ∈ K1, h ∈ K2, c ∈ Ĉ and q ∈ PC(<+,<+), W(t, y) ∈ ω0,
and constants M > 1, λ > 0, wm > 0, κ > 0, such that E [wm] ≤ κ, m ∈ Z+, and the following
conditions hold:

(i) β1(‖y‖p) ≤W(t, y) ≤ β2(‖y‖p), (t, y) ∈ <× S(ρ).
(ii) For any ϕ ∈ PC((−∞, 0], S(ρ)), if W(t, ϕ(0))eλ(t−t0) ≥ h(W(t + θ, ϕ(θ))), θ ∈ (−∞, 0],

ξ
′
m < t < ξ

′
m+1, then D+W(t, ϕ(0)) ≤ q(t)c(W(t, ϕ(0))), where s > h(s) ≥ M−1s, h(χs) = χh(s)

for any χ > 0, s > 0.
(iii) For all (ξ

′
m, ϕ) ∈ <+ × PC((−∞, 0], S(ρ1)), W(ξ

′
m, ϕ(0) + Im(ξ

′
m, ϕ)) ≤ M−1wmW(ξ

′−
m , ϕ(0)),

with
{

∞
∏
i=1

E [wi]

}
≤M,

(iv) τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
< ∞, µ

′
= min

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
> 0,

sup
t≥0

∫ t+τ
′

t q(s)ds = M1 < ∞, inf
s>0

ln s
h(s) = M2.

(v) The inequality M2 −M1. sup
s>0

c(s)
s > λτ

′
holds.

Then, (1) is pth moment weakly exponentially stable.
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Proof. Let y(t), t ≥ t0 be the solution of system (1) through (t0, φ), and it follows a stochastic
process. As in Theorem 1, let α1, and α2 be the strictly increasing continuous functions satisfying
α1(s) ≤ β1(s) ≤ β2(s) ≤ α2(s), ∀ s ∈ [0, ρ]. Thus,

α1(‖y‖p) ≤W(t, y) ≤ α2(‖y‖p), (t, y) ∈ <× S(ρ).

Applying a similar process as in Theorem 1, we assume that (5) holds.
Next, we show that (4) holds ∀t ∈ [ξk, ξk+1). Assuming k = 0, i.e., no impulse moments, then we

show that

W(t)eλ(t−t0) ≤ V(t0), t ∈ [t0, ξ1).

Supposing not, then there exists t ∈ [t0, ξ1) such that W(t)eλ(t−t0) > V(t0). Letting

t̂ = in f
{

t ∈ [t0, ξ1)|W(t)eλ(t−t0) ≥ V(t0)
}

,

then t̂ ∈ (t0, ξ1), W(t̂)eλ(t̂−t0) = V(t0). Furthermore,

W(t)eλ(t−t0) < V(t0), t ∈ [t0, t̂).

In addition, we obtain W(t) ≤ W(t)eλ(t−t0) < V(t0), ∀ t ∈ (−∞, t̂), due to (5). Note that
W(t̂)eλ(t̂−t0) = V(t0) > h(V(t0)), and W(t0) <M−1V(t0) ≤ h(V(t0)), in the view of h(s) ≥ M−1s.
Thus, we define

t∗ = sup
{

t ∈ [t0, t̂]|W(t)eλ(t−t0) ≤ h(V(t0))
}

.

Thus, t∗ ∈ [t0, t̂), W(t∗)eλ(t∗−t0) = h(V(t0)), and W(t)eλ(t−t0) > h(V(t0)), t ∈ (t∗, t̂].
Consequently, we obtain

W(t)eλ(t−t0) ≥ h(V(t0)) ≥ h(W(s)), s ∈ (−∞, t] t ∈ [t∗, t̂].

From (ii), D+W(t) ≤ q(t)c(W(t)) holds ∀t ∈ [t∗, t̂]. Hence, we have

D+(W(t)eλ(t−t0)) = D+W(t)eλ(t−t0) + λW(t)eλ(t−t0)

= eλ(t−t0)(D+W(t) + λW(t))

≤ eλ(t−t0)(q(t)c(W(t)) + λW(t))

= W(t)eλ(t−t0)(q(t)
c(W(t))

W(t)
+ λ)

≤ l(t)W(t)eλ(t−t0), t ∈ [t∗, t̂], (12)

where l(t) = q(t) · sup
s>0

c(s)
s + λ. Consequently, we have

∫ W(t̂)eλ(t̂−t0)

W(t∗)eλ(t∗−t0)

ds
s

=
∫ V(t0)

h(V(t0))

ds
s
≥ inf

s>0
In

s
h(s)

≥ M2 > M1 sup
s>0

c(s)
s

+ λτ.

However,

∫ W(t̂)eλ(t̂−t0)

W(t∗)eλ(t∗−t0)

ds
s
≤
∫ t̂

t∗
l(s)ds ≤

∫ t∗+τ

t∗
l(s)ds =

∫ t∗+τ

t∗
q(u) sup

s>0

c(s)
s

du + λτ ≤ M1 sup
s>0

c(s)
s

+ λτ,



Mathematics 2019, 7, 843 12 of 22

which is contradiction. Hence, we obtain W(t)eλ(t−t0) ≤ V(t0), t ∈ [t0, ξ1), which gives that (6) holds
∀t ∈ [t0, ξ1). Meanwhile we take for t ∈ [t0, ξ1),

α1(‖y(t)‖p) ≤W(t) ≤ V(t0)e−λ(t−t0) ≤ V(t0) <Mα2(δ) ≤M−1min {α1(ε), ε} ≤ α1(ε),

which gives y(ξ−1 ) ∈ S(ρ1), y(ξ1) ∈ S(ρ). On the other hand,

W(ξ1) ≤M−1w1W(ξ−1 ) ≤M−1w1V(t0)e−λ(ξ1−t0), (13)

we show that (9) holds. Thus, we prove that

W(t)eλ(t−t0) ≤ V(t0)
k

∏
i=1

wi, ∀ t ∈ [ξk, ξk+1).

Supposing not, then there exists t ∈ [ξk, ξk+1) such that

W(t)eλ(t−t0) > V(t0)
k

∏
i=1

wi.

Let

t̂ = in f

{
t ∈ [ξk, ξk+1)|W(t)eλ(t−t0) ≥ V(t0)

k

∏
i=1

wi

}

in view of (13). Thus, t̂ ∈ (ξk, ξk+1), W(t̂)eλ(t̂−t0) =
k

∏
i=1

wiV(t0), and W(t)eλ(t−t0) < V(t0)
k

∏
i=1

wi,

t ∈ [ξk, t̂). In addition, we obtain

W(t)eλ(t−t0) < V(t0)
k

∏
i=1

wi, ∀ t ∈ (−∞, ξk),

by the fact that

W(t)eλ(t−t0) < V(t0), for t ∈ (−∞, ξk).

Since

W(t̂)eλ(t̂−t0) =
k

∏
i=1

wiV(t0) >
k

∏
i=1

wih(V(t0)),

and

W(ξk)eλ(ξk−t0) ≤M−1
k

∏
i=1

wiV(t0) ≤
k

∏
i=1

wih(V(t0)),

we therefore define

t∗ = sup

{
t ∈ [ξk, t̂]|W(t)eλ(t−t0) ≤

k

∏
i=1

wih(V(t0))

}
.
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Then, t∗ ∈ [ξk, t̂), W(t∗)eλ(t∗−t0) =
k

∏
i=1

wih(V(t0)), and W(t)eλ(t−t0) >
k

∏
i=1

wih(V(t0)), t ∈ (t∗, t̂].

Thus, we have

W(t)eλ(t−t0) ≥ h(
k

∏
i=1

wiV(t0))

> h(W(s)eλ(s−t0))

≥ h(W(s)), s ∈ (−∞, t], t ∈ [t∗, t̂].

Therefore, by the conditions (ii) and (iv), a similar process of (12), we can obtain

D+(W(t)eλ(t−t0)) ≤ l(t)W(t)eλ(t−t0), t ∈ [t∗, t̂],

where l(t) = q(t) · sup
s>0

c(s)
s + λ. Consequently, in view of h(λs) = λh(s), we have

∫ W(t̂)eλ(t̂−t0)

W(t∗)eλ(t∗−t0)

ds
s

=
∫ k

∏
i=1

wiV(t0)

k
∏

i=1
wih(V(t0))

ds
s
≥ inf

s>0
In

s
h(s)

≥ M2 > M1 sup
s>0

c(s)
s

+ λτ.

However, we note that

∫ W(t̂)eλ(t̂−t0)

W(t∗)eλ(t∗−t0)

ds
s
≤
∫ t̂

t∗
l(s)ds ≤

∫ t∗+τ

t∗
l(s)ds ≤ M1 sup

s>0

c(s)
s

+ λτ.

This is a contradiction. Then, Equation (9) holds. Using an induction hypothesis, there are m
impulse moments until time t, t ≥ t0, and we can write

W(t) ≤ V(t0)
m

∏
i=1

wie−λ(t−t0), t ∈ [ξm, ξm+1), t ≥ t0.

Hence, Equation (4) holds. Using assumption (i), a similar process in Theorem 1, we finally arrive at

E
[
α1(‖y(t)‖p)

]
≤ ε · e−[λ+γ(1−κ)](t−t0).

In particular, letting h(s) = M−1s, c(s) = s, q(t) ≤ q, βi(s) = aisp(q, p, ai > 0, i =

1, 2, be constants) in Theorem 2, we then get the next results.

Corollary 2. Assume that there exists a function W(t, y) ∈ ω0 and constants wm > 0, κ > 0, such that
E [wm] ≤ κ, m ∈ Z+, and the following conditions hold:

(i) a1 ‖y‖p ≤W(t, y) ≤ a2 ‖y‖p , (t, y) ∈ <× S(ρ).
(ii) For any ϕ ∈ PC((−∞, 0], S(ρ)), if MW(t, ϕ(0))eλ(t−t0) ≥ W(t + θ, ϕ(θ)), θ ∈ (−∞, 0],

ξ
′
m < t < ξ

′
m+1, then D+W(t, ϕ(0)) ≤ qW(t, ϕ(0)).

(iii) For all (ξ
′
m, ϕ) ∈ <+ × PC((−∞, 0], S(ρ1)), W(ξ

′
m, ϕ(0) + Im(ξ

′
m, ϕ)) ≤ M−1wmW(ξ

′−
m , ϕ(0)),

with
{

∞
∏
i=1

E [wi]

}
≤M.

(iv) τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
< ∞, lnM

τ
′ − q > λ.

Then, (1) is pth moment exponentially stable.
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Theorem 3. Assume that there exist functions β1, β2 ∈ K3, c ∈ Ĉ and q ∈ PC(<+,<+), W(t, y) ∈ ω0, and
constantsM > 1, λ > 0, wm > 0, κ > 0, such that E [wm] ≤ κ, m ∈ Z+, and the following conditions hold:

(i) β1(‖y‖p) ≤W(t, y) ≤ β2(‖y‖p), (t, x) ∈ <× S(ρ).
(ii) For any ϕ ∈ PC((−∞, 0], S(ρ)), ifMW(t, ϕ(0)) ≥ W(t + θ, ϕ(θ))eλθ , θ ∈ (−∞, 0], ξ

′
m < t <

ξ
′
m+1, then D+W(t, ϕ(0)) ≤ q(t)c(W(t, ϕ(0))).

(iii) For all (ξ
′
m, ϕ) ∈ <+ × PC((−∞, 0], S(ρ1)), W(ξ

′
m, ϕ(0) + Im(ξ

′
m, ϕ)) ≤ M−1wmW(ξ

′−
m , ϕ(0)),

with
{

∞
∏
i=1

E [wi]

}
≤M.

(iv) lnM > M1. sup
s>0

c(s)
s where M1 = sup

t≥0

∫ t+τ
′

t q(s)ds, τ
′
= max

m∈Z+

{
ξ
′
m − ξ

′
m−1

}
.

Then, (1) pth moment is weakly exponentially stable.

Proof. For any ε > 0, we may choose δ = δ(ε) > 0, such that β2(δ) ≤ M−2min {β1(ε), ε}.
Let‘y(t), t ≥ t0 be a solution of system (1) and it follows a stochastic nature. Then, we shall prove that

E
[
β1(‖y(t)‖p)

]
≤ ε · e−[η+γ(1−κ)](t−t0), t ≥ t0, (14)

where η = min {1, 0.5τ∗}. From (iv), define the positive constant τ∗ =
lnM−M1·sup

s>0

c(s)
s

τ > 0, where τ

is the value of the random variable τ
′
. We will prove (14) with the aid of a sample path solution of

system (1). Thus, first, we have enough to prove that there are m impulses moments until t, t ≥ t0,

β1(‖y(t)‖p) ≤ ε ·
m

∏
i=1

wie−η(t−t0), t ∈ [ξm, ξm+1).

For convenience, we take W(t) = W(t, y(t)), and V(t0) =MW(t0). Then, we shall prove that
there are m = k impulses moments until time t, t ≥ t0,

W(t) ≤ V(t0)
k

∏
i=1

wie−η(t−t0), t ∈ [ξk, ξk+1).

It is obvious that then t ∈ (−∞, t0)

β1(‖y(t)‖p) ≤ V(t0) <Mβ2(δ) (15)

≤ M−1min {β1(ε), ε} ≤ β1(ε).

Thus, ‖y(t)‖p < ε < ρ1. Assuming that k = 0 i.e., no impulse moments. First, we prove for
t ∈ [ξ0, ξ1) that

W(t) ≤ V(t0)e−η(t−t0).

Supposing not, then there exists t ∈ [t0, ξ1) such that W(t)eη(t−t0) > V(t0) > W(t0). Note that
W(t0) < V(t0). We define

t̂ = in f
{

t ∈ [t0, ξ1)|W(t) ≥ V(t0)e−η(t−t0)
}

.

Then, t̂ > t0, W(t̂)eη(t̂−t0) = V(t0) and W(t)eη(t−t0) ≤ V(t0), t ∈ [t0, t̂) since

W(t) ≤ V(t0)eη(t−t0), t ∈ (−∞, t̂). (16)
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Furthermore, we note that

W(t̂)eη(t̂−t0) ≥ V(t0) > W(t0),

so we define

t∗ = sup
{

t ∈ [t0, t̂)|W(t)eη(t−t0) ≤W(t0)
}

.

Then, t∗ < t̂, W(t∗)eη(t∗−t0) = W(t0) and W(t0) < W(t)eη(t−t0), t ∈ (t∗, t̂]. From (16), we have

eλθW(t + θ) ≤ W(t + θ)eηθ (17)

≤ MV(t0)e−η(t−t0)

= MW(t), θ ∈ (−∞, 0], t ∈ (t∗, t̂].

From (ii), D+W(t) ≤ q(t)c(W(t)) holds for t ∈ [t∗, t̂]. Hence, we have

D+W(t)eη(t−t0) = D+W(t)eη(t−t0) + ηW(t)eη(t−t0)

= eη(t−t0)(D+W(t) + ηW(t))

≤ eη(t−t0)(q(t)c(W(t)) + ηW(t))

= W(t)eη(t−t0)(q(t)
c(W(t))

W(t)
+ η)

≤ l(t)W(t)eη(t−t0), t ∈ [t∗, t̂], (18)

where l(t) = q(t) · sup
s>0

c(s)
s + η. Consequently, we have

∫ W(t̂)eη(t̂−t0)

W(t∗)eη(t∗−t0)

ds
s
≤
∫ t̂

t∗
l(s)ds ≤

∫ t∗+τ

t∗
l(s)ds =

∫ t∗+τ

t∗
q(u) sup

s>0

c(s)
s

du + ητ ≤ M1 sup
s>0

c(s)
s

+ ητ.

However, note that

∫ W(t̂)eη(t̂−t0)

W(t∗)eη(t∗−t0)

ds
s

=
∫ MW(t0)

W(t0)

ds
s

= lnM = ττ∗ + M1 · sup
s>0

c(s)
s

> M1 sup
s>0

c(s)
s

+ ητ.

This is a contradiction. Hence, W(t)eη(t−t0) ≤ V(t0), t ∈ [t0, ξ1). Meanwhile, we take for t ∈
[t0, ξ1)

β1(‖y(t)‖p) ≤W(t)eη(t−t0) ≤ V(t0) <Mβ2(δ) ≤M−1min {β1(ε), ε} ≤ β1(ε),

which gives ‖y(t)‖p < ε < ρ1 and y(ξ−1 ) ∈ S(ρ1), y(ξ1) ∈ S(ρ). We assume that it is true for m = k− 1
impulses moments until time t, t ≥ t0,

W(t) ≤ V(t0)
k−1

∏
i=1

wie−η(t−t0), t ∈ [ξk−1, ξk), (19)

which implies

W(t) ≤ V(t0)
k−1

∏
i=1

wie−η(t−t0), t ∈ (−∞, ξk).
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Next, we shall prove that m = k impulses moments until time t, t ≥ t0,

W(t) ≤ V(t0)
k

∏
i=1

wie−η(t−t0), t ∈ [ξk, ξk+1). (20)

Supposing not, then there exists some t ∈ [ξk, ξk+1) such that

W(t)eη(t−t0) > V(t0)
k

∏
i=1

wi.

It follows from (19) that W(ξk)eη(ξk−t0) < V(t0)
k

∏
i=1

wi. Thus, we define

t̂ = in f

{
t ∈ [ξk, ξk+1)|W(t)eη(t−t0) ≥ V(t0)

k

∏
i=1

wi

}
.

Then, t̂ > ξk, W(t̂)e−η(t̂−t0) = V(t0)
k

∏
i=1

wi, and W(t)eη(t−t0) ≤ V(t0)
k

∏
i=1

wi, t ∈ [ξk, t̂). In

addition, from (19), we know that

W(t)eη(t−t0) ≤ V(t0)
k

∏
i=1

wi, ∀ t ∈ (−∞, t̂), (21)

noting that

W(ξk)eη(ξk−t0) ≤W(t0)
k

∏
i=1

wi

and

W(t̂)e−η(t̂−t0) = V(t0)
k

∏
i=1

wi > W(t0)
k

∏
i=1

wi.

Furthermore, we define

t∗ = sup

{
t ∈ [ξk, t̂)|W(t)eη(t−t0) ≤W(t0)

k

∏
i=1

wi

}
.

Then, t∗ < t̂, W(t∗)e−η(t∗−t0) = W(t0)
k

∏
i=1

wi and W(t)eη(t−t0) > W(t0)
k

∏
i=1

wi, t ∈ [t∗, t̂]. We can

deduce that

eλθW(t + θ) ≤ V(t0)
k

∏
i=1

wie−η(t−t0)

= MW(t), θ ∈ (−∞, 0], t ∈ [t∗, t̂],

which gives that

D+(W(t)) ≤ q(t)c(W(t)), t ∈ [t∗, t̂].
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Hence, we can deduce that

D+(W(t)eη(t−t0)) ≤ l(t)W(t)eη(t−t0), t ∈ [t∗, t̂],

where l(t) = q(t) · sup
s>0

c(s)
s + η. We have

∫ W(t̂)eη(t̂−t0)

W(t∗)eη(t∗−t0)

ds
s
≤
∫ t̂

t∗
l(s)ds ≤

∫ t∗+τ

t∗
l(s)ds ≤ M1 sup

s>0

c(s)
s

+ ητ.

However, we note that

∫ W(t̂)eη(t̂−t0)

W(t∗)eη(t∗−t0)

ds
s

=
∫ MW(t0)

k
∏

i=1
wi

W(t0)
k

∏
i=1

wi

ds
s

= InM = ττ∗ + M1 sup
s>0

c(s)
s

> M1 sup
s>0

c(s)
s

+ ητ,

which is contradiction. Thus, Equation (20) holds. Using the induction method, there are m impulses
moments until time t, t ≥ t0,

W(t) ≤ V(t0)
m

∏
i=1

wie−η(t−t0), t ∈ [ξm, ξm+1). (22)

Using assumption (i), we derive at

β1(‖y(t)‖p) ≤W(t) = V(t0)
m

∏
i=1

wie−η(t−t0)

≤ M−1min {β1(ε), ε}
m

∏
i=1

wie−η(t−t0)

≤ min {β1(ε), ε}
m

∏
i=1

wie−η(t−t0)

β1(‖y(t)‖p) ≤ ε ·
m

∏
i=1

wie−η(t−t0), t ≥ t0.

Thus, solutions generate a stochastic process that is defined by

β1(‖y(t)‖p) ≤ ε ·
m

∏
i=1

wie−η(t−t0), t ∈ [ξ
′
m, ξ

′
m+1),

taking expectations on both side, by using Lemma 1 and Remark 2, then we get

E
[
β1(‖y(t)‖p)

]
=

∞

∑
m=0

E[β1(‖y(t)‖p)|I
[ξ
′
m ,ξ ′m+1)

(t)]P(I
[ξ
′
m ,ξ ′m+1)

(t)),

≤ ε ·
∞

∑
m=0

m

∏
i=1

E [wi] e−η(t−t0)P(I
[ξ
′
m ,ξ ′m+1)

(t))

≤ ε ·
∞

∑
m=0

m

∏
i=1

E [wi] e−η(t−t0)
γm(t− t0)

m

m!
e−γ(t−t0)

E
[
β1(‖y(t)‖p)

]
≤ ε · e−[η+γ(1−κ)](t−t0).

Remark 5. The above all theorems and corollaries work in fixed time impulses.
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4. Example

In this part, we shall verify examples to analyze our theorems by using random impulses.

Example 1. Consider the RIIDDE

ẏ(t) =

(
1
4

e−0.2t + 1
)

y(t)− 2
∫ 0

−∞
e2θ−0.1ty(t + θ)dθ, ξ

′
m < t < ξ

′
m+1, t ≥ t0,

y(ξ
′
m) =

√
wmy(ξ

′−
m ), m = 1, 2, .., (23)

y(θ) = φ(θ), θ ≤ t0,

where

φ(θ) =

{
0, θ ∈ (−∞, 0),

4, θ = 0.

Let M = 4, h(s) = 9
4 , µ = 1,κ = 0.9, λ = 0.2, wm = e−

1
5 t and impulse arrival rate γ = 0.2.

Then, we choose the Lyapunov function W(t) = y2(t), suppose t0 = 0, from the Corollary 1, we get
3e0.1t |y(t)| > |y(t + θ)|. Hence,

D+W(t) = 2y(t)
[(

1
4

e−0.2t + 1
)

y(t)− 2
∫ 0

−∞
e2θ−0.1ty(t + θ)dθ

]
≤ −2y2(t)

[
−
(

1
4

e−0.2t + 1
)
+ 2

∫ 0

−∞
e2θ−0.1tdθ3e0.1t

]
≤ −2y2(t) [1.75]

≤ −qy2(t) = −qW(t),

where q = 3.5. By condition, we get µ
′
q− lnM > λτ

′
; then, we can write τ

′
< 10.5685. In addition, we have

W(ξ
′
m) = y2(ξ

′
m) = wmy2(ξ

′−
m ) = wmW(ξ

′−
m ).

Therefore, system (23) is mean square exponentially stable at the origin by Corollary 1; see the comparative
results Figures 1 and 2.

Example 2. Consider the RIIDDE

ẏ(t) =

(
1

12
e−0.2t +

1
4

)
y(t)− 1

9

∫ 0

−∞
, eθ−0.2ty(t + θ)dθ, ξ

′
m < t < ξ

′
m+1, t ≥ t0,

y(ξ
′
m) =

√
wmy(ξ

′−
m ), m = 1, 2, .., (24)

y(θ) = φ(θ), θ ≤ t0,
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where φ(θ) = 0.2e0.2θ . Consider wm = 1
e , κ = 0.5, λ = 0.4, and impulse arrival rate γ = 0.4.

We choose the Lyapunov function W(t) = y2(t), suppose t0 = 0, from the Corollary 2, we get√
ee0.2t |y(t)| > |y(t + θ)|. Hence,

D+W(t) = 2y(t)
[(

1
12

e−0.2t +
1
4

)
y(t)− 1

9

∫ 0

−∞
eθ−0.2ty(t + θ)dθ

]
≤ 2y(t)

[(
1

12
e−0.2t +

1
4

)
y(t)− 1

9

∫ 0

−∞
eθ−0.2t |y(t + θ)| dθ

]
≤ 2y2(t)

[(
1

12
e−0.2t +

1
4

)
− 1

9

∫ 0

−∞
es−0.2t√ee0.2t

]
≤ 2

[
1
12

+
1
4
+

√
e

9

]
y2(t) = qW(t),

where q = 2
[

1
12 + 1

4 +
√

e
9

]
. By condition, qτ

′
+ λτ

′
< ln(e), we get τ

′
< 0.6978. In addition, we have

W(ξ
′
m) = y2(ξ

′
m) = wmy2(ξ

′−
m ) = wmW(ξ

′−
m ).

Therefore, system (24) is mean square exponentially stable at the origin by Corollary 2; see the comparative
results Figures 3 and 4.
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Figure 1. Shows that fixed impulsive effects, random impulsive effects and without impulsive effects
of system (23).
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Figure 2. Comparative results between fixed and random time impulsive effects of system (23).
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Figure 3. Shows that fixed impulsive effects, random impulsive effects and without impulsive effects
of system (24).
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Figure 4. Comparative results between fixed and random time impulsive effects of system (24).

Remark 6. The above two examples show that the unstable system can be exponentially stabilized by using
the random impulses. Moreover, Figures 2 and 4 represent the comparative results between fixed and random
time impulses.

5. Conclusions

In this paper, we obtained several sufficient conditions for exponential stability and weakly
exponential stability of RIIDDS by using the Lyapunov function and Razumikhin technique.
Furthermore, we showed that random impulses are fast convergence compared with the fixed time
impulses. Thus, we conclude that the random impulses are a better way to stabilize the various
unstable differential systems in the future.
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