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Abstract: This paper is devoted to an analysis on locating and counting satellite components
born along the stability circle in the parameter space for a family of Jarratt-like iterative methods.
An elementary theory of plane geometric curves is pursued to locate bifurcation points of such
satellite components. In addition, the theory of Farey sequence is adopted to count the number
of the satellite components as well as to characterize relationships between the bifurcation points.
A linear stability theory on local bifurcations is developed based upon a small perturbation about
the fixed point of the iterative map with a control parameter. Some properties of fixed and critical
points under the Möbius conjugacy map are investigated. Theories and examples on locating and
counting bifurcation points of satellite components in the parameter space are presented to analyze
the bifurcation behavior underlying the dynamics behind the iterative map.

Keywords: parameter space; Möbius map; bifurcation point; Jarratt’s method; Farey sequence;
conjugacy
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1. Introduction

A dynamical system can be formulated by any fixed rule describing the time-dependence of
an evolving point with its position in the relevant state(phase)-space. It is then best described by
a function whose domain and codomain respectively consist of time as an independent variable
and state(phase)-space as a dependent variable. The independent variable time can be measured in
terms of integers, real or complex numbers. An example of continuous dynamical systems can be
seen in differential equations, while other examples of discrete dynamical systems can be seen in
difference equations. This analysis will be limited to a discrete dynamical system which is governed
by a difference equation in the form of an iterative method: with Ψ f as a fixed point operator [1]

xn+1 = Ψ f (xn), for n ∈ N∪ {0}. (1)

Such an operator Ψ f can be found in root-finding problems of many fields of applied sciences
and has been enhanced by many researchers [2–9] to find better iterative numerical solutions.

The convergence behavior of iterative sequence (1) indeed implies the long-term behavior of
discrete dynamical system (1). Hence, taking initial guess x0 as an evolving point, we can trace the
long-term behavior of the discrete dynamical system as a sequence of k-fold compositions of Ψ f
applied to an initial guess x0:

{x0, Ψ f (x0), Ψ2
f (x0), · · · , Ψk

f (x0), · · · , },
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where Ψ f is generally meromorphic. The lemma in Section 1.2.1 of [10] suffices to deal with Ψ f that is
a rational function.

Cordero et al. [11] have recently introduced a family of optimal iterative root-finding methods for
a system of nonlinear equations F(x) = 0 in the following form:{

y(n) = x(n) − γ · F′(x(n))
−1

F(x(n)),

x(n+1) = x(n) − H(t(n))F′(x(n))
−1

F(x(n)), n = 0, 1, · · · , with t(n) = F′(x(n))
−1

F′(y(n)),
(2)

where γ is a complex-valued parameter; F : D ⊆ Cm → Cm has a zero α ∈ D with m ∈ N and is
holomorphic [12] in a neighborhood of α; H : X → X is a matrix function with X = Cm×m as an
m×m complex matrix satisfying the following hypotheses (i)–(iii):

(i) H′(u)(v) = h1uv with H′ as the first derivative of H such that H′ : X → L(X),
(ii) H′′(u, v)(w) = h2uvw with H′′ as the second derivative of H such that H′′ : X‘2 → L(X),

(iii) H′′′(u, v, w)(s) = h3uvws with H′′′ as the third derivative of H such that H′′′ : X‘3 → L(X),

where L(X) denotes the space of linear mappings from X → X and h1, h2, h3 ∈ C.

Then, we have the following variant of Theorem 3 presented from Cordero et al. [11]:

Theorem 1. Let γ = 2/3, F and H be introduced in Equation (2) with H(I) = I, h1 = −3/4, h2 = 9/4 and
|h3| < ∞. Then, iterative numerical scheme (2) converges to the root α of F, starting from a given initial guess
x(0) sufficiently close to α, with the following error equation:

en+1 =
(
(5 +

38
81

h3)C3
2 − C2C3 +

C4

9
)
e4

n + O(e5
n),

where Cj =
1
j! F′(α)−1F(α), j = 2, 3, · · · and en = x(n) − α.

Applications of the above theorem cover a number of existing studies introduced in [11]
and references cited therein. For m = 1, by considering the one-point compactification of C,
namely, the Riemann sphere C = C ∪ {∞}, Cordero et al. [11] have pursued the complex dynamics
on C for Jarratt-like uniparametric iterative map (2), with

H(t) = 1− 3
4
(t− 1) +

9
8
(t− 1)2 +

1
6

λ(t− 1)3 for parameter λ = h3, (3)

for periodic points via Möbius conjugacy [13] map M(z) = z−a
z−b , (a 6= b) applied to a quadratic

polynomial (z− a)(z− b). Although they included an analysis of the λ-parameter space, our primary
aim of this paper is to pursue a somewhat advanced study of the λ-parameter space where bifurcation
behavior along the stability circle needs to be extensively analyzed.

The remaining part of this paper is devoted to the development of further properties in additional
five sections. Described in Section 2 are preliminary studies on long-term behavior of a dynamical
system via conjugacy defined on C. Section 3 fully discusses a linear stability theory based on the
analysis of a small perturbation about the fixed point of the iterative map (2) under the Möbius
conjugacy and classifies the local bifurcations into three types according to the location of the spectral
radius of the conjugated iterative map along the unit circle. In Section 4, we describe some properties
of the fixed and critical points related to the dynamics under the Möbius conjugacy map. Section 5
investigates a long-term dynamical behavior of the conjugated iterative map. Parameter spaces
along with dynamical planes are defined and extensively explored with a number of self-explanatory
illustrative figures. In addition, we develop a theory on tracking down bifurcation points budding
from another component [14] in the parameter space from a viewpoint of plane geometry. Finally,
in Section 6, we draw an overall conclusion and briefly state the future work.
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2. Preliminary Studies

For ease of discussion of two dynamical systems F and G, one needs to perceive the notion
of conjugacy [15,16], follow Theorem 2.1 of [16] describing the invariances of topological and
diffeomorphic conjugacies, and remark on the preservation of the dynamical behavior between two
n-fold composite dynamical systems Fn and Gn under topological conjugacy with Fn = h ◦ Gn ◦ h−1

for any integer n.
The following lemma is a variant of the well-known Banach fixed-point theorem or contraction

mapping principle [17].

Lemma 1. Let Ω ⊂ C and f : Ω → Ω be analytic. Furthermore, let f have a fixed point ξ ∈ Ω with
| f ′(ξ)| < 1. Then, f has a unique fixed point ξ and the sequence {zn+1 = f (zn)}∞

0 converges to ξ, provided
that any z0 ∈ Ω is given.

In Lemma 1, z0 can be chosen as a critical point z∗ of f , due to the fact that f ′(z∗) = 0 implies
z∗ ∈ Ω. The result of Lemma 1 with z0 = z∗ yields the following corollary.

Corollary 1. Let ξ be the fixed point described in Lemma 1. Then, every critical orbit (which is an orbit of a
critical point) of f tends to ξ.

Remark 1. Corollary 1 provides a background for the definition of the parameter space to be discussed in
Section 5. In fact, an orbit of any point in a small neighborhood of the fixed point ξ tends to ξ according to
Proposition 4.4 of [18], which constitutes a basis for the definition of the dynamical plane in Section 5.

The following definition [19–21] plays a role in describing the qualitative behavior of a dynamical
system.

Definition 1. Let z0 be in the domain of f . The orbit of z0 is defined to be the sequence { f k(z0)}∞
k=0 with f k as

the k-fold composite map of f . Then, we say the following:

(a) z0 has period k (or is a period-k point ) if f k(z0) = z0, with all distinct z0, f (z0), f 2(z0), · · · , f k−1(z0).
If k = 1, then z0 is called a fixed point.

(b) If z0 is a period-k point (or k-periodic point), then the orbit of z0 is called a k-periodic orbit (or k-cycle).
(c) If z0 is a point some iterate of which is periodic, i.e., if there exists an integer 1 ≤ ` ≤ k− 2 satisfying

f k(z0) = f k−`(z0), then z0 is called an eventually periodic (or a pre-periodic) point.
(d) If the the orbit of z0 contains a subsequence converging to to a stable periodic point, then z0 is called an

asymptotically periodic point.
(e) If z0 is not of types (a),(c),(d), then z0 is called an aperiodic (or a non-periodic) point. The orbit of such z0

is said to be “non-periodic, stochastic or chaotic”.

3. Linear Stability Theory and Local Bifurcations

Consider a discrete dynamical system F : Cm ×C→ Cm with m ∈ N defined by

zn+1 = F (zn, λ), n ∈ N∪ {0}, (4)

where λ ∈ C is a control parameter and z0 ∈ Cm is given. Assuming ξ ∈ Cm is a fixed point of F , we
take a small perturbation about ξ by writing

zn = ξ + δn, (5)
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where the initial perturbation δ0 6= 0 is arbitrary. For a given λ, expanding Equation (4) about ξ up to
the first-order term in δn yields:

ξ + δn+1 = F (ξ + δn, λ) = F (ξ, λ) + Sδn + O(|δn|2), (6)

with S = S(ξ, λ) as an m×m Jacobian matrix evaluated at ξ. As a consequence, we are ready to discuss
the linear stability about the fixed point by considering

δn+1 = Sδn. (7)

We transform Equation (7) by means of an m×m nonsingular matrix P to obtain

bn+1 = Jbn, (8)

where bn = P−1δn, and J = P−1SP is the Jordan canonical form [22] of S with k Jordan blocks
J1, J2, · · · , Jk. A typical Ji is given by an ri × ri upper triangular matrix with ωi’s as all diagonal entries
and 1’s as all super-diagonal entries as shown below:

Ji =



ωi 1 0 · · · 0

0 ωi 1
. . .

...
...

. . . . . . . . . 0
0 · · · 0 ωi 1
0 · · · · · · 0 ωi


,

where ωi is an eigenvalue of S. Without loss of generality, let Ji be chosen such that |ωi| = ρ(S), which
is the spectral radius of S. For simplicity, we denote Ji by J̃, ωi by ω and ri by r. The limit behavior of
the perturbation δn = Pbn will be best described by analyzing a subsystem

b̃n+1 = J̃ b̃n = J̃n b̃0, (9)

where b̃n ∈ Cr consists of the corresponding r components of bn related with J̃. Note that, by induction
on n ∈ N, J̃n is given by

J̃n =



ωn (n
1)ω

n−1 (n
2)ω

n−2 · · · ( n
r−1)ω

n−r+1

0 ωn (n
1)ω

n−1 · · · ( n
r−2)ω

n−r+2

...
. . . . . . . . .

...
...

. . . . . . ωn (n
1)ω

n−1

0 · · · · · · 0 ωn


. (10)

If r = 1 in Equation (10), i.e., all eigenvalues of S are simple, then, based on the component-wise
expressions, we easily obtain the following lemma:

Lemma 2.

(i) limn→∞ δn = 0 if and only if ρ(S) < 1.
(ii) | limn→∞ δn| = ∞ if and only if ρ(S) > 1.

(iii) 0 < | limn→∞ δn| ≤ M for some finite M > 0 if and only if ρ(S) = 1.

If r ≥ 2 in Equation (10), i.e., some eigenvalues of S are multiple, and then we obtain:

Lemma 3.

(i) limn→∞ δn = 0 if and only if ρ(S) < 1.
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(ii) | limn→∞ δn| = ∞ if and only if ρ(S) ≥ 1.

Proof. (i) After close inspection of upper off-diagonal entries in Equation (10), we find
limn→∞ (n

j)|ω|n−j = limn→∞
n(n−1)(n−2)···(n−j+1)

j! |ω|j−n = limn→∞
n(n−1)(n−2)···(n−j+1)

j! e(j−n) ln |ω| = 0 for 1 ≤ j ≤ r− 1

if and only if |ω| < 1 by applying L’Hospitals’s rule j times. Hence, all upper off-diagonal entries
vanish as n→ ∞ if and only if |ω| < 1. (ii) Similarly, we find limn→∞ (n

j)|ω|n−j = ∞ for 1 ≤ j ≤ r− 1
if and only if |ω| ≥ 1.

Remark 2. When all eigenvalues of S are simple, according to Lemma 2, the fixed point behavior or long-term
orbit behavior of the iterative map F is stable if and only if ρ(S) < 1 (modulus of all eigenvalues of S < 1),
and unstable if and only if ρ(S) > 1 (modulus of some eigenvalues of S > 1) from a viewpoint of the linear
stability. According to the Bolzano–Weierstrass Theorem [14], the result (iii) of Lemma 2 indicates that there
exists a convergent subsequence of {δn}, which will induce k-periodic orbits of F as well as its non-periodic
bounded orbits, if and only if ρ(S) = 1.

Since ρ(S) around the unit circle plays a significant role in stability analysis, we had better
designate the unit circle as the stability unit circle shown in Figure 1 for further analysis.

Consequently, the geometrical properties in the parameter space when ρ(S) = 1 would play
key roles in analyzing the long-term orbit behavior of F . Such a long-term orbit behavior will often
experience an abrupt qualitative change when an eigenvalue ω (or Floquet multiplier [23]) of S with
the maximum modulus crosses a certain location ω∗ of the stability unit circle. This kind of qualitative
change in the behavior of a dynamical system is called a bifurcation. We classify such bifurcations [24]
in the space of control parameters into three types according to the location of ω∗ along the stability
unit circle as follows:

(1) The (cyclic) fold(saddle-node) bifurcation occurs when ω∗ = 1.
(2) The flip(period-doubling) bifurcation occurs when ω∗ = −1.
(3) The Neimark–Sacker(secondary Hopf) bifurcation occurs when ω∗ = eiθ , purely complex,

with θ 6= π, 0 < θ < 2π.

The location of the control parameter in the parameter space where a qualitative change in the
behavior of a dynamical system occurs is called a bifurcation point. To locate such a bifurcation point,
after solving the relation |ω| = ρ(S(ξ, λ) = 1 for λ in terms of ω exactly or numerically, we can trace
the control parameter λ as ω varies along the stability unit circle. As a result, the bifurcation point λ∗

in the parameter space can be given by λ(ω∗) based on the types of bifurcation mentioned above.

Re(�)

Im(�)

FoldFlip

Neimark-Sacker

Neimark-Sacker

Figure 1. Bifurcations on the stability unit circle.

4. Fixed and Critical Points under the Möbius Conjugacy Map

For iterative map (2) with m = 1 and H(t) given by Equation (3), we will discuss some properties
of fixed and critical points under the Möbius conjugacy map, as λ varies in the finite complex plane.
To effectively treat a one-dimensional iterative map, we conveniently denote x(n) = xn for n ∈ N∪ {0}.

Let Ψ f be defined by xn+1 = Ψ f (xn) in Equation (2) and be conjugate to a map J through
a diffeomorphic Möbius conjugacy map M(z) as introduced in Section 1. For ease of analysis,
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we consider f (z) = (z− a)(z− b) as a prototype quadratic polynomial and find that the resulting J
will generally take the form dependent on a, b and λ. Very favorably, M(z) with f (z) = (z− a)(z− b)
leads us to:

J(z; λ) =
z4(405 + 32λ + 1134z + 1134z2 + 486z3 + 81z4)

81 + 486z + 1134z2 + 1134z3 + z4(405 + 32λ)
, (11)

which is free of a and b.

We now find the derivative of J from Equation (11) given by:

J′(z; λ) =
324z3(z + 1)6Q(z; λ)

q(z)2 , (12)

where Q(z; λ) = 405 + 32λ + z(810− 48λ) + z2(405 + 32λ) and q(z) = 81 + 486z + 1134z2 + 1134z3 +

z4(405 + 32λ).
With our first glance of Equation (12), we find that z = −1 is a free critical points [25] for any λ ∈ C.

Other free critical points may be found from the roots of Q(z; λ) as a function of λ.
Useful properties of J and J′ regarding the strange fixed points [25] and free critical points can be

derived in the similar manner as done in Sections 3.1 and 3.2 of [16]. The important consequences of
these properties lead us to the following proposition:

Proposition 1.

(a) If ξ ∈ C is any fixed point of J, then so is 1
ξ .

(b) If ζ ∈ C is any critical point of J, then so is 1
ζ .

(c) J( 1
z ; λ) = 1

J(z;λ) holds for any λ ∈ C and any z ∈ C.
(d) J′(ξ; λ) = J′( 1

ξ ; λ) for any λ ∈ C and any fixed point ξ ∈ C of J.

The underlying dynamics behind iterative map (11) will be initiated by investigating the fixed
points of J and their stability. Fixed points of J can bound from the roots of J(z; λ)− z:

J(z; λ)− z =
z(z− 1) · T(z; λ)

q(z)
, (13)

where T(z; λ) = 81 + 567z + 1701z2 + z3(2430− 32λ) + 1701z4 + 567z5 + 81z6.
Clearly, z = 1 is a strange fixed point which may give us an appealing impact on the relevant

dynamics. To locate other strange fixed points dependent on λ, we seek the roots z of T(z; λ) = 0 in
Equation (13) for given values of λ. In view of Proposition 1(a), the strange fixed points of J(z; λ) are

found by solving T(z; λ) = ∏ 3
i=1(z

2 + ciz + 1) = 0, i.e., z = − 1
2
(
ci +

√
c2

i − 4
)

where ci, (1 ≤ i ≤ 3)

are the three roots of the relation 16(2λ− 81) + 1698c− 567c2 + c3 = 0.
In view of Equation (12), we are able to describe the stability of the strange fixed point z(λ) = 1

using λ-values in the following theorem whose proof is the similar to that of Theorem 3.5 from [16].

Theorem 2. Let us define Y = {λ ∈ C : |λ + 405
4 | > 324}, S = {λ ∈ C : |λ + 405

4 | = 324} and
M = {λ ∈ C : |λ + 405

4 | < 324}. Then, the strange fixed point z(λ) = 1 becomes attractive, parabolic,
and repulsive, respectively, whenever λ ∈ Y , λ ∈ S, and λ ∈ M.

Remark 3. Figure 2 displays Y , S, and M. It is better to call S the stability circle since the fixed point
z(λ) = 1 with λ in a neighborhood of S becomes either repulsive or attractive.
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Figure 2. Stability circle S for strange fixed point z(λ) = 1.

5. Bifurcation in the Parameter Space

Our further investigation on the complex dynamics of conjugated map J(z; λ) given by
Equation (11) is essentially limited to the analysis of long-term behavior of J(z; λ). A useful task
is preferably to use a free critical point z and generate its orbit under the action of J(z; λ), which will
induce attracting periodic orbits for each given λ according to Corollary 1. The orbit behavior of two
critical points z and 1

z of J is best described in Proposition 1(c) and Remark 4.

Corollary 2. Let q ∈ N be given. If z ∈ C is a q-periodic point of J, then so is 1
z .

Proof. With the help of Proposition 1(c) and fixed point invariance property [16] under topological
conjugacy for q-fold composition of J with h(z) = 1

z , we easily find that Jq( 1
z ; λ) = 1

Jq(z;λ) =
1
z for any

given λ ∈ C.

Proposition 2. Let ξ(λ) be a fixed point of J(z; λ) found from T(z; λ) = 0 in Equation (13). Let ζ1(λ) and
ζ2(λ) =

1
ζ1(λ)

be two critical points of J(z; λ) found from Q(z; λ) = 0 in Equation (12). Suppose that the orbit
of critical point ζ1 approaches a q-periodic point ξ of J, i.e., Jq(ξ; λ) = ξ in the long run for a given λ ∈ C and
q ∈ N. Then, the orbit of ζ2 approaches a q-periodic point 1

ξ of J(z; λ).

Proof.

ξ(λ) = lim
n→∞

Jn(ζ1; λ) = lim
k→∞

Jpk+q(ζ1; λ) = Jq ◦ ( lim
k→∞

Jpk(ζ1; λ) = Jq(ξ(λ); λ), (14)

after writing out n = pk + q for any p ∈ N with q ∈ {0, 1, 2, · · · , p− 1}. In view of Proposition 1(c)
and Equation (14), we find:

lim
n→∞

Jn(ζ2; λ) = lim
n→∞

Jn(
1
ζ1

; λ) =
1

limn→∞ Jn(ζ1; λ)
=

1
Jq(ξ; λ)

=
1
ξ
= Jq(

1
ξ

; λ).

Remark 4. In view of Proposition 2, the orbit of ζ2 behaves in quite the same way as the other ζ1 does.

By consulting Section 4.1 of [16], we now reintroduce the notions of the parameter space P and
dynamical plane D to effectively display the iteration dynamics of J as follows:

P = {λ ∈ C : an orbit of a free critical point z tends to a number σp ∈ C under the action of J(z; λ)},
D = {z ∈ C : an orbit of z for a given λ ∈ P tends to a number σd ∈ C under the action of J(z; λ)}.
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In view of Equation (13), the possible fixed points are given by 0, 1, ∞ and ξ(λ). When σp, σd ∈
{0, 1, ∞, ξ(λ)}, there may exist a q-periodic point in the orbit for q ∈ N∪ {0}. If q = 0, then the orbit is
non-periodic but bounded.

Thanks to the basic properties of the dynamical plane D consisting of a union of attractor basins,
extensively studied in [11], we in this paper only investigate some interesting properties of the
parameter plane P . According to Remark 4, we consider only one branch of the critical points ζ1 for
its typical orbit behavior.

In Figure 4, a parameter space P associated with free critical points ζ1(λ) is illustrated. If a
q-periodic orbit is generated under the action of J(ζ1; λ) for λ ∈ P , then λ is painted in color cq

assigned by Table 1 as well as identified by Figure 3. Throughout the current computing experiments
with the aid of Mathematica [26], the error bound has been set to 10−6 within 3000 iterations to check
the q-periodic convergence of an orbit related to P or D.

Table 1. Coloring scheme for a q-periodic orbit with q ∈ N∪ {0}.

q Cq

1
C1(fixed point ∞)

magenta
C1(fixed point 0)

cyan
C1(fixed point 1)

yellow
C1(other strange fixed point)

red

C2orange
C3

light green
C4

brown
C5

blue
C6green

C7
dark yellow

C8
antique white

C9
light pink

C10
khaki

C11
melon

C12
thistle

C13
lavender

C14
turquoise

C15
plum

C16
orchid

C17
medium orchid

C18
blue violet

C19
dark orchid

C20
purple

C21
powder blue

C22
sky blue

C23
deep sky blue

C24
dodger blue

C25
royal blue

C26
medium spring green

C27
apple green

C28
medium sea green

C29
forest green

C30
dark blue

C31
olive drab

C32
bisque

C33
moccasin

C34
light salmon

C35
salmon

C36
light coral

C37
Indian red

C38
dark red

C39
peach puff

C40
fire brick

C41
sandy brown

C42
wheat

C43
tomato

2 ≤ q ≤ 92
C44

orange red
C45

chocolate
C46

pink
C47

pale violet red
C48

deep pink
C49

violet red
C50

gainsboro
C51

light gray
C52

dark gray
C53gray

C54
charteruse

C55
electric indigo

C56
electric lime

C57
lime

C58
silver

C59
teal

C60
pale turquoise

C61
rosy brown

C62
honeydew

C63
lemon chiffon

C64
misty rose

C65
mint cream

C66
gold

C67
crimson

C68
light crimson

C69
lavender blush

C70
slate blue

C71
light cyan

C72
coral

C73
light blue

C74
aquamarine

C75
light yellow

C76peru
C77

violet
C78

papaya whip
C79

dark orange
C80sea green

C81
yellow green

C82
emerald green

C83
Maya blue

C84
sapphire blue

C85
linen

C86
beige

C87
oldlace

C88
navajo white

C89
coral pink

C90
dark salmon

C91
light magenta

C92
ruby

q= 0 ∗ or
q > 92

Cq

black

∗: q = 0 implies that the orbit is non-periodic but bounded. These 96 colors are explicitly illustrated in Figure 3.

∞(1) 0(1) 1(1) 1 2 3 4 5 6 7 8 9

10 11 12 13 14 15 16 17 18 19 20 21

22 23 24 25 26 27 28 29 30 31 32 33

34 35 36 37 38 39 40 41 42 43 44 45

46 47 48 49 50 51 52 53 54 55 56 57

58 59 60 61 62 63 64 65 66 67 68 69

70 71 72 73 74 75 76 77 78 79 80 81

82 83 84 85 86 87 88 89 90 91 92 93

Figure 3. Color chart defined in Table 1.
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The following theorem describes the favorable property of symmetry on the parameter space.

Theorem 3. Parameter space P is symmetric about its horizontal axis.

Proof. The proof follows from Theorem 4.3 of [16] by identifying F(λ, z) in Lemma 3.5 of [6] such that
F(λ, z) = Q(z; λ) = 405(z + 1)2 + 16λ(2− 3z + 2z2) and using J(z; λ) from Equation (11).

Judging from the parameter spaces in Figure 4, we instantly find a number of typical regions
identified by arrow numbers 1 ≤ q ≤ 10. With λ selected in a region identified by q, the critical orbit
approaches to a q-periodic point of J. Note that the possible fixed points of J(z; λ) from Equation (13)
are 0, 1, ∞ and ξ(λ) given by the roots of T(z; λ). Similarly, Equation (12) gives the possible critical
points given by the roots of Q(z; λ). Since J(0; λ) = 0, J(−1; λ) = 1 = J(1; λ), J(∞; λ) = ∞ for any
λ ∈ C and J(ζ(λ); λ) is λ-dependent, one should pay attention to the orbit behavior of a λ-dependent
critical point ζ(λ) as λ varies in the complex plane. Such an orbit behavior of ζ(λ) is effectively
characterized by tracing the relevant limit behavior such that

lim
n→∞

Jn(ζ(λ); λ) = γ ∈ C.

2 1

4

3 6

5

7

9

10

8

1

-500. -400. -300. -200. -100. 0. 100. 200. 300.

-400.

-300.

-200.

-100.

0.

100.

200.

300.

400.

Figure 4. Parameter space P .

If γ is not a constant but bounded, then the orbit of ζ(λ) will approach a non-periodic but
bounded orbit. On the other hand, if γ is constant, then we write n = pk + q for any p ∈ N with
q ∈ {0, 1, 2, · · · , p− 1}. Thus, we obtain

lim
n→∞

Jn(ζ(λ); λ) = lim
k→∞

Jpk+q(ζ(λ); λ) = Jq ◦ ( lim
k→∞

Jpk(ζ(λ); λ) = Jq(ζ(γ); γ) = γ ∈ C,

implying that γ is a q-periodic point. In case γ = ξ(λ), then

Jq(ξ(λ); λ) = ξ(λ) for q ∈ {0, 1, 2, · · · , p− 1},
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which implies that ξ(λ) is any attracting q-periodic point due to Jq(ξ(λ); λ) being a bivariate rational
function of z and λ; note that q = 0 induces a non-periodic bounded point. Hence, any attracting
q-periodic components occur along the boundary ∂Y as seen in P .

We further observe the following bifurcation phenomena as λ varies: when λ crosses the boundary
∂Y , the fixed point ξ(λ) = 1 loses its stability, but another non-periodic bounded point or attracting
q-periodic fixed point will gain their stability and begin to emerge along the boundary ∂Y .

Figure 5 displays components where q-periodic orbits are generated with q ∈ {0, 1, 2, 3, · · · , }
budding from the component Y associated with the fixed point ξ(λ) = 1. The q-periodic satellite
components with q ∈ N can be seen, some of which are indicated by numbers q with arrow lines. Their
boundaries are inscribed along the boundary of Y in the manner of Farey sequence [27]. The number
of q-periodic satellite components can be determined by means of the lengths of this Farey sequence,
which will be discussed later in Section 5.1.2.

50. 75. 100. 125. 150. 175. 200. 225. 250.

-100.

-75.

-50.

-25.

0.

25.

50.

75.

100.

(a) λ0,1 ∈ S

-430. -390. -350. -310. -270. -230. -190. -150. -110.

-160.

-120.

-80.

-40.

0.

40.

80.

120.

160.

(b) λ1,2 ∈ S

-280. -270. -260. -250. -240. -230. -220.

225.

235.

245.

255.

265.

275.

285.

(c) λ2,3 ∈ S

-160. -140. -120. -100. -80. -60. -40.

210.

230.

250.

270.

290.

310.

330.

(d) λ3,4 ∈ S

-15. -12. -9. -6. -3. 0. 3. 6.

288.

291.

294.

297.

300.

303.

306.

309.

(e) λ3,5 ∈ S

25. 35. 45. 55. 65. 75.

235.

245.

255.

265.

275.

285.

(f) λ5,6 ∈ S

91. 94. 97. 100. 103.

244.

247.

250.

253.

256.

(g) λ6,7 ∈ S

105. 115. 125. 135.

205.

215.

225.

235.

(h) λ5,8 ∈ S

142. 144. 146. 148.

204.

206.

208.

210.

(i) λ8,9 ∈ S

Figure 5. Bifurcation point λ`,k of a period-k componentHk along the stability circle S.
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5.1. Locating and Counting Bifurcation Points Budding from Y

We first introduce some notions for a qualitative as well as a quantitative bifurcation analysis.
A component H in P is called hyperbolic if J(z; λ) has a finite attracting cycle for each given λ ∈ H;
here, the word ’hyperbolic’ comes from the meaning of ’hyperbolicity’ [28] of a rational function,
not from that of a fixed point of a dynamical system. It turns out that H is an open set with infinitely
many connected components, each of which is characterized by the period of the corresponding cycle.
From now on, we will omit the word ’hyperbolic’ to describe components under consideration as
simply as possible. The notions for satellite and primitive components should be referred to those
described in [21]. The primitive components are indeed standing alone themselves.

Figure 6 well illustrates typical bifurcation geometries between such two aforementioned
components H and W. The location of the control parameter where H buds from W is said to
be the root point [21] of H. If we view this kind of budding phenomenon from the side of W, then the
root point can be regarded as a bifurcation point of W where it splits into two components based on the
lexical meaning of the word bifurcation.

W

H

Λ

(a)

W

H

Λ

(b)

H

Λ

(c)

Figure 6. Typical bifucation geometries for satellite and primitive components. (a) inscription;
(b) circumscription; (c) mergence.

To develop a technique tracking down such bifurcation points in P , it is useful to define a
k-periodic (hyperbolic) component Hk = {λ ∈ C : J(z; λ)that has an attracting k-cycle} as a subset
of H. For notational convenience, we now write J(z; λ) as Jλ(z) to locate bifurcation points under
discussion. We further characterize Hk by the following expression:

Hk = {λ ∈ C : there exist ξ such that Jk
λ(ξ) = ξ and

∣∣∣∣ d
dz

Jk
λ(z)

∣∣∣∣
z=ξ

< 1}. (15)

In particular, H1 plays the role of a main component from which finite-periodic components
are born. A choice of λ-dependent free critical points ζ(λ) satisfying Q(ζ; λ) = 0 in Equation (12)
would produce P whose λ-value leads us to a long-term dynamical behavior with possible periodic,
non-periodic or chaotic orbits, as λ varies in the complex plane. An analysis of periodic orbits of ζ(λ)

in the long run is of our current interest. To fully characterize H1, we need to inspect the strange fixed
point ξ(λ) = 1 with ξ(λ) given by a root of T(ξ; λ) in Equation (13). In the current analysis, we are
limited to considering satellite components Hq born along the stability circle S being associated with
the strange fixed point ξ(λ) = 1.

5.1.1. Tracking down Bifurcation Points of Satellite Components Budding from Y

As we can see parameter spaces P in Figure 4, various components of finite periods bud from
the boundary S of Y . It would be better to call Y the main component due to the fact that satellite
components of finite periods bud from Y as typically configured with W = Y in Figure 6a.

Let ∂Y denote the boundary of Y and λ be a boundary point of ∂Y . If a period-q component Hq

emerges at λ, then it is natural to name such λ as the period-q bifurcation point. If a primitive component
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Hq emerges at λ, then such a bifurcation point λ usually turns out to be a cusp point at which two
branches of a boundary curve ∂Hq meet together such that the tangent of each branch is equal.

Suppose that a period-q component Hq, as shown in Figure 6, buds at λ ∈ ∂Y
⋂

∂Hq from Y for a
given q ∈ N. Then, the q-periodic point ξ of J satisfies the following relations:{

J q
λ (ξ) = Jλ(ξ) = ξ,
d
dz J q

λ (z)|z=ξ = βq,
(16)

where Jλ(ξ) ≡ J(ξ; λ) and β = J ′λ (ξ). Let ξ = |ξ|eit be a parametric representation for t ∈ [0, 2π].
It will be shown that relation βq = 1 is satisfied at λ where Y and Hq share the common tangent line as
illustrated in Figure 6.

Due to the fact that Jλ(ξ(t)) in Equation (11) is a bivariate rational function of both variables ξ

and λ, we solve Jλ(ξ(t)) = ξ(t) for λ to obtain:

λ(t) = Φ(ξ(t)) = Φ(J q
λ (ξ(t))), (17)

with Φ(z) as a rational function. Thus, such λ(t) will trace a parametric curve in C as a function of t.
As a result, the derivative dλ

dt computed at the fixed point ξ is given by:

dλ

dt
=

dΦ(z(t))
dz

· dz
dt

∣∣∣
z= ξ

=
dΦ(J q

λ (z(t))
dz

· dz
dt

∣∣∣
z= ξ

=
dΦ(z(t))

dz
· βq · dz

dt

∣∣∣
z= ξ

, (18)

which implies that βq = 1 by directly comparing the second and last relations in Label (18).
Note that dλ

dt represents the common tangent line evaluated at the period-q point ξ(t) in the
direction of t. Solving process of βq = 1 suggests us the following notion of `/q–bifurcation point as
introduced in the work of [16]:

Definition 2. For a given q ∈ N, let β(λ) = ei2π`/q, with ` ∈ {0, 1, 2, · · · , q− 1} and gcd(`, q) = 1 for
` 6= 0, then λ is called the `/q–bifurcation point of Y or `/q–root point of Hq.

According to the values of β in Definition 2, the fold bifurcation and the flip bifurcation
respectively occur with (`, q) = (0, 1) and (`, q) = (1, 2), while the Neimark–Sacker bifurcation
occurs with all other values of (`, q).

In view of Theorem 2 and by a close inspection of the parameter space P , we desire to locate the
`/q–bifurcation point λ along ∂Y . To this end, from relation

β = J ′λ (ξ)|ξ=1 =
1296

405 + 4λ
,

we find λ in terms of β:

λ = −405
4

+
324
β

. (19)

After substituting β = e2iπ`/q in Definition 2, we obtain the following proposition.

Proposition 3. The desired `/q–bifurcation points λ`,q along ∂Y are found to be

λ`,q = −405
4

+
324

ei2π`/q ,

for a given q ∈ N with ` ∈ {0, 1, 2, · · · , q− 1} and gcd(`, q) = 1 for ` 6= 0.

Table 2 lists some values of λ`,q for 1 ≤ q ≤ 10, and some of them are indicated by arrow lines
in Figure 5. The 0/1-bifurcation point is of fold bifurcation and the 1/2-bifurcation point is of flip
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bifurcation. All other `/q–bifurcation points are of Neimark–Sacker bifurcation. It is interesting to
observe intuitively that q-periodic components Hq for (q = 2, 4, 6, · · · , ) are born in descending order
of its area size monotonically clockwise along the upper half-circle of S.

Table 2. Selected `/q–bifurcation points λ`,q for 1 ≤ q ≤ 10.

q `

0 1 2 3 4 5 6 7 8 9

1 222.75
2 −425.25

3
(
−263.25
−280.592

)
∗

(
−263.25
280.592

)
4

(
−101.25
−324

) (
−101.25

324

)
5

(
−1.12849
−308.142

) (
−363.372
−190.442

) (
−363.372
190.442

) (
−1.12849
308.142

)
6

(
60.75
−280.592

) (
60.75

280.592

)
7

(
100.761
−253.313

) (
−173.347
−315.877

) (
−393.164
−140.578

) (
−393.164
140.578

) (
−173.347
315.877

) (
100.761
253.313

)
8

(
127.853
−229.103

) (
−330.353
−229.103

) (
−330.353
229.103

) (
127.853
229.103

)
9

(
146.948
−208.263

) (
−44.988
−319.078

) (
−405.71
−110.815

) (
−405.71
110.815

) (
−44.988
319.078

) (
146.948
208.263

)
10

(
160.872
−190.442

) (
−201.372
−308.142

) (
−201.372
308.142

) (
160.872
190.442

)
∗:
(
−263.25
−280.592

)
≡ −263.25− 280.592 i, i =

√
−1.

5.1.2. Counting Bifurcation Points of Satellite Components Budding from Y

The Farey sequence Fn is a set of rational numbers p
q with coprime integers p and q satisfying

0 ≤ p ≤ q ≤ n arranged in ascending order by size. Charles Haros [29] discovered this sequence in
1806, but Augustin-Louis Cauchy [30] named it after geologist John Farey [31].

On the left side of Figure 7, we find dots with ordered pairs of numbers (`, q) indicating
circumferential locations of bifurcation points λ`,q along the boundary of Y . Furthermore, on the
right side of Figure 7, we also find their homeomorphic images onto the upright unit interval.

(0,1)(1,2)

(1,3)

(2,3)

(1,4)

(3,4)

(1,5)

(2,5)

(3,5)

(4,5)

(1,6)

(5,6)

(1,7)

(2,7)

(3,7)

(4,7)

(5,7)

(6,7)

(1,8)(3,8)

(5,8)(7,8)

(1,9)

(2,9)

(4,9)

(5,9)

(7,9)

(8,9)

(1,10)

(3,10)

(9,10)

(7,10)

(0,1)

(1,2)

(1,1)

(1,3)

(2,3)

(1,4)

(3,4)

(1,5)

(2,5)

(3,5)

(4,5)

(1,6)

(5,6)

(1,7)

(2,7)

(3,7)

(4,7)

(5,7)

(6,7)

(1,8)

(3,8)

(5,8)

(7,8)

(1,9)

(2,9)

(4,9)

(5,9)

(7,9)

(8,9)

(1,10)

(3,10)

(7,10)

(9,10)

Figure 7. Farey sequence of bifurcation points λ`,q.
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Thus, `
q ∈ Fn if 0 ≤ ` ≤ q ≤ n with coprime integers ` and q, treating the numbers 0 ≡ 0

1 and

1 ≡ 1
1 . For example,

F1 =

{
0
1

,
1
1

}
, F2 =

{
0
1

,
1
2

,
1
1

}
, F3 =

{
0
1

,
1
3

,
1
2

,
2
3

,
1
1

}
, · · · .

Here, 1
1 simply indicates the top end of the upright unit interval and matches the circumferential

location with 0
1 . As described in [27], we introduce the well-known Farey addition: if a

b and c
d with

a
b < c

d are Farey neighbors, then the mediant is given by:
a
b

⊕ c
d
=

a + c
b + d

and satisfies
a
b
<

a + c
b + d

<
c
d

.

Figure 7 illustrates such properties as typically shown by an example:
1
3
<

3
8
<

2
5

.

Indeed, the total number of bifurcation points of λ`,q with q ≤ n is given by |Fn| − 1, with |Fn| as
the length of Fn stated in the theorem below.

Theorem 4. With φ(k) as Euler’s totient function, the length of Farey sequence Fn is given by:

|Fn| = 1 +
n

∑
k=1

φ(k).

Proof. The Farey Sequence Fn−1 contains every reduced fraction with denominators at most n− 1.
If we want to create Fn we have to add all reduced fractions with a denominator that is coprime to n.
Therefore, |Fn| = |Fn−1|+ φ(n) with |F1| = 2 = 1 + φ(1). Hence, the proof is completed.

A result of the above theorem directly leads us to:

Corollary 3. The total number of q-periodic satellite components budding from Y with q ≤ n is given by the
summatory Euler’s totient function:

Φ(n) =
n

∑
k=1

φ(k).

6. Discussion with Concluding Remarks

Under the Möbius conjugacy map M(z) = z−a
z−b , (a 6= b) applied to a simple quadratic polynomial,

we have explored bifurcation phenomena behind the long-term orbit of a free critical point under
the action of Jarratt-like iterative map (2) with H(t) in Equation (3). The bifurcation behavior for
occurrence of q-periodic satellite components has been analyzed in the parameter spaces in view of
elementary theory of plane geometry. The boundary of the main component where the λ-dependent
critical orbit of Jλ(z) tends to the fixed point 1 has been found to be a circle along which infinitely
many periodic satellite components are born. The linear stability theory and the elementary viewpoint
of plane geometry on the existence of the common tangent line between the boundary of the main and
budding components have enabled us to successfully locate bifurcation points where new satellite
components arise. In addition, a theory of the Farey sequence plays an essential role in counting the
number of such bifurcation points characterized by inscription-type bifurcation geometries illustrated in
Figure 6a.

Future study should focus not only on long-term orbit behavior in the parameter spaces for
bifurcation phenomena related to satellite and primitive components, but also convergence behavior
dependent on initial values in the dynamical planes.
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