
mathematics

Article

Tuning Multi-Objective Evolutionary Algorithms on
Different Sized Problem Sets

Matej Črepinšek, Miha Ravber * , Marjan Mernik and Tomaž Kosar

Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia
* Correspondence: miha.ravber@um.si

Received: 9 August 2019; Accepted: 3 Septemter 2019; Published: 6 Septemter 2019
����������
�������

Abstract: Multi-Objective Evolutionary Algorithms (MOEAs) have been applied successfully for
solving real-world multi-objective problems. Their success can depend highly on the configuration of
their control parameters. Different tuning methods have been proposed in order to solve this problem.
Tuning can be performed on a set of problem instances in order to obtain robust control parameters.
However, for real-world problems, the set of problem instances at our disposal usually are not
very plentiful. This raises the question: What is a sufficient number of problems used in the tuning
process to obtain robust enough parameters? To answer this question, a novel method called
MOCRS-Tuning was applied on different sized problem sets for the real-world integration and test
order problem. The configurations obtained by the tuning process were compared on all the used
problem instances. The results show that tuning greatly improves the algorithms’ performance and
that a bigger subset used for tuning does not guarantee better results. This indicates that it is possible
to obtain robust control parameters with a small subset of problem instances, which also substantially
reduces the time required for tuning.

Keywords: multi-objective evolutionary algorithms; class integration and testing order; search-based
software engineering; chess rating system; parameter tuning

1. Introduction

Setting control parameters of Evolutionary Algorithms (EAs) remains one of the biggest challenges
in evolutionary computation. Control parameters have a great impact on the performance of
Evolutionary Algorithms; a poor setting can even make it impossible to solve the given problem
at hand [1]. Tuning is performed in order to find good control parameters, and is known as a parameter
tuning problem [2]. Tuning plays an important role in evolutionary algorithms: not only does it
improve the algorithms’ performance, but it also enables us to perform a fair comparison between
different algorithms [3]. However, tuning is very time-consuming and, therefore, we cannot always
afford to tune an EA for each given instance of the problem individually even though tuning is carried
out off-line. To avoid tuning on individual problem instances, it can be carried-out on only a subset of
instances. This provides us with robust control parameters, making the tuned algorithm a generalist [4].
However, we do not know how many instances of the problem should be used in the tuning process to
produce robust control parameters, or if it is even possible.

To answer this question, we performed tuning with different sized sets of problem instances
(problem sets). The tuning was conducted with a novel method, which uses a Chess Rating System [3],
adapted for Multi-Objective Optimization and is called MOCRS-Tuning. MOCRS-Tuning uses a
meta-evolutionary approach to find the best configuration (control parameters) for the given MOEA.
The search for the best configuration is guided by a self-adaptive Differential Evolution (jDE) [5].
Since it is self-adaptive, we do not need to deal with additional parameters in the tuning process.
Each configuration of the MOEA is evaluated using a Chess Rating System with a Quality Indicator

Mathematics 2019, 7, 824; doi:10.3390/math7090824 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-4908-4631
https://orcid.org/0000-0002-2775-0667
http://www.mdpi.com/2227-7390/7/9/824?type=check_update&version=1
http://dx.doi.org/10.3390/math7090824
http://www.mdpi.com/journal/mathematics


Mathematics 2019, 7, 824 2 of 13

Ensemble (CRS4MOEA/QIE) [6]. The Chess Rating System treats each configuration as a player
and each comparison between two configurations as a game. In a game, approximation sets of two
competing configurations are evaluated with a Quality Indicator (QI) and compared. A game is played
between each player for every problem evaluated with different QIs. Afterwards, the player’s rating is
calculated using the resulting game outcomes. The rating acts as the configuration’s fitness. Because
different QIs are used in the assessment, the rating (fitness) reflects different aspects of quality [7].
The same Chess Rating System is incorporated in the Evolutionary Algorithms Rating System (EARS)
framework [8]. The EARS framework was used to compare the configurations obtained by tuning
an MOEA on differently sized problem sets. The tuning was performed on a real-world problem
called Integration and Testing Order (ITO) for which MOEAs have been shown suitable to solve
effectively [9,10]. A real-world problem will show the impact of tuning better, since MOEAs with
default control parameters perform relatively well on benchmark problems [11].

The remainder of the paper is organized as follows. The most relevant related work is presented in
Section 2. Section 3 describes the ITO problem. In Section 4, the Chess Rating System for evolutionary
algorithms is described. Section 5 describes the applied tuning method. The execution of the
experiment is presented in Section 6. Results are presented and discussed in Section 7. Section 8
concludes the paper.

2. Related Work

The issue of setting control parameters of EAs has been present since their conception.
Consequently, a significant amount of research has been done in the field of tuning evolutionary
algorithms. In the literature, numerous different tuning methods have been proposed [12–17],
and many studies on tuning have been conducted [1,18,19]. Below follows a brief description of
the most relevant related works.

Veček et al. [3] proposed a novel tuning method for single-objective EAs, which uses a Chess
Rating System called CRS-Tuning. The method was compared to two well-established tuning methods,
F-Race [12] and Estimation and Value Calibration of Evolutionary Algorithm Parameters (REVAC) [13].
They concluded that all three methods showed strengths and weaknesses in different areas, and the
results of the CRS-Tuning method were comparable with the results found by the other two methods.
The configurations found with CRS-Tuning were, in most cases, amongst the best when compared
using the Friedman ranking. In this study, we adapted the CRS-Tuning method for MOEAs using an
ensemble of QIs.

Smit and Eiben [4] used REVAC to tune an EA to a set of problems (generalist) to obtain robust
control parameters. They compared the generalist with the supposedly robust conventional values
and found great differences. The results also show that default settings of control parameters might
be far from optimal, even if they are meant to be robust. Our work shares some similarities, but was
extended to multi-objective problems. In addition, our experiments were performed on real-world
problems, which are not explored in detail, such as benchmark problems. This gives a better insight
into the robustness of control parameters.

Arcuri and Fraser [11,20] performed the largest empirical analysis to date on parameter tuning
in Search-Based Software Engineering (SBSE). Their analysis includes data from more than a
million experiments. In their experiments, they focused on test data generation for object-oriented
software using the EvoSuite tool. The results showed that tuning has a big impact on the
algorithm’s performance. They also provided guidelines on how to handle parameter tuning. In this
study, we also performed tuning on a software engineering problem. However, in our case, the problem
is multi-objective. In addition, because of the scale of their experiments, they limited the tuning process
to a predefined set of values for each control parameter.

Zaefferer et al. [21] also performed tuning on a real-world multi-objective problem. They tuned
two algorithms with Sequential Parameter Optimization (SPO) [15] for the cyclone (dust separator)
optimization problem. The algorithms were tuned under two different specifications. In the first



Mathematics 2019, 7, 824 3 of 13

case, the algorithms are tuned to require as few function evaluations as possible for a specified target
hypervolume value. In the second case, a very small budget was imposed, and the algorithms were
tuned for a best performance with respect to hypervolume. In our case, we used maximum evaluations
as the stopping criterion. In addition, more problem instances were considered, in order to observe
the impact on the performance of MOEAs. Furthermore, we considered more quality indicators for
better evaluation.

3. Integration and Testing Order

Software testing is an important activity in the Software Development Life Cycle (SDLC). It is
the process of finding defects in the software under development. Software testing also helps us to
identify errors, gaps or missing requirements [22]. It can be done manually or using automated tools
at different levels: unit testing, integration testing, system testing, and acceptance testing. Testing
shows a presence of defects, and not the absence of defects. Hence, it is often combined with static and
dynamic analysis of software (e.g., [23,24]). One common problem in software testing is determining
the order in which units need to be integrated and tested. The order is important since it affects the
design of test cases, the order in which units are developed, the order in which interaction problems
between units are detected and the number of required stubs. A stub is a dummy component that
simulates the functions of a real component (unit) [25]. Stubs are required when a unit depends on
another unit, which is not yet developed or tested. The construction of stubs is very error-prone
and expensive. The goal of the integration and testing order problem is to determine an order that
minimizes the stubbing cost [10]. The stubbing process is influenced by different objectives, which
makes MOEAs suitable for solving the ITO problem [9,10].

The two objectives of the problem that have to be minimized are the number of emulated attributes
and methods in the stub. An instance of the ITO problem is a system. In our experiments, we used
eight real-world systems:

• MyBatis (http://www.mybatis.org/mybatis-3/) is a first class persistence framework with
support for custom SQL, stored procedures and advanced mappings.

• AJHSQLDB (HyperSQL DataBase) (https://sourceforge.net/projects/ajhsqldb/) is the
aspect-oriented version of the leading relational database software written in Java.

• BCEL (Byte Code Engineering Library) (https://commons.apache.org/proper/commons-bcel/)
is intended to give users a convenient way to analyze, create, and manipulate (binary) Java
class files.

• JHotDraw (http://www.jhotdraw.org/) is a Java framework for technical and structured graphics.
• HealthWatcher (http://www.aosd-europe.net/) collects and manages public health related to

complaints and notifications.
• JBoss (http://jbossas.jboss.org/downloads) is a Java application server.
• AJHotDraw (http://ajhotdraw.sourceforge.net/) is an aspect-oriented refactoring of JHotDraw.
• TollSystems (http://www.comp.lancs.ac.uk/greenwop/tao) is a concept proof for automatic

charging of toll on roads and streets.

It should be noted that the systems used are just examples of problem instances for the ITO
problem and do not require any additional software in the execution environment. Information about
the systems, such as the number of dependencies, classes, aspects, and Lines of Code (LOC), is given
in Table 1.

http://www.mybatis.org/mybatis-3/
https://sourceforge.net/projects/ajhsqldb/
https://commons.apache.org/proper/commons-bcel/
http://www.jhotdraw.org/
http://www.aosd-europe.net/
http://jbossas.jboss.org/downloads
http://ajhotdraw.sourceforge.net/
http://www.comp.lancs.ac.uk/greenwop/tao


Mathematics 2019, 7, 824 4 of 13

Table 1. Eight real-world problem instances (systems) for the ITO problem used in the experiments.

Num Name Dependencies Classes Aspects LOC

1 AJHotDraw 1592 290 31 18,586
2 AJHSQLDB 1338 276 15 68,550
3 MyBatis 1271 331 - 23,535
4 JHotDraw 809 197 - 20,273
5 JBoss 367 150 - 8434
6 HealthWatcher 289 95 22 5479
7 BCEL 289 45 - 2999
8 TollSystems 188 53 24 2496

4. Chess Rating System for Evolutionary Algorithms

A chess rating system with a quality indicator ensemble (CRS4MOEA/QIE) is a novel method for
comparing MOEAs. We used the chess rating system to compare the different configurations of MOEAs
obtained by tuning. The idea behind the ensemble is that different aspects of quality are considered
since a single QI cannot reliably assess all aspects at once [26]. To ensure that all aspects of quality are
considered, we chose a diverse set of QIs [6]. Of course, a user could tailor the ensemble for his needs.
CRS4MOEA/QIE uses the Glicko-2 system [27] to estimate a player’s skill level. To rank players,
they need to participate in a tournament. The style of the tournament is round-robin where each player
plays against all other players. In the case of CRS4MOEA/QIE, players are different MOEAs and/or
different configurations thereof. A tournament consists of a series of games. Unlike classical chess
where only one game is played between two players, in our case, a game is played for each given
problem. In addition, in CRS4MOEA/QIE, a tournament is conducted with multiple independent runs
where multiple games are played for the same problem. Figure 1 shows how a single game between
two players is conducted. In the first step, two players participating in the tournament are selected.
In the next step, a problem is selected. The two players have to solve the same problem with the same
stopping criterion. After they reach the stopping criterion, they return an approximation set. In Step
4, a quality indicator from the ensemble is selected and is used to evaluate the two approximations.
In the last step, the two values returned by the QI are compared, and the outcome of the game is
decided. The outcomes of the games are used to update each player’s rating R and rating deviation
RD [27]. New (unrated) players have their starting rating set to 1500 and their RD to 350. A player’s
rating increases if he plays better than expected. Therefore a higher rating indicates a better player.
However, if he plays worse than expected, his rating decreases. In both cases, the amount by which
the rating increases/decreases depends on the player’s rating as well as the opponent’s rating. The
rating deviation measures the accuracy of a player’s rating. A smaller RD is desired since it indicates a
more reliable rating. In our experiments, CRS4MOEA/QIE was used in the tuning process to evaluate
different configurations and to compare the different configurations obtained by tuning.

Select two players Select a problem Solve a problem 

Select QI from ensemble Evaluate approximation 
sets with QI

Decide game outcome 
(player one wins, 

player two wins or draw)

1 2 3

4 5 6

Figure 1. A single game in CRS4MOEA/QIE.

5. MOCRS-Tuning Method

The tuning method (MOCRS-Tuning) used in our experiments is shown in Figure 2.
MOCRS-Tuning uses a meta-evolutionary approach for parameter tuning. The input parameters



Mathematics 2019, 7, 824 5 of 13

are the MOEA to be tuned, the set of problems (in our case systems) for which it will be tuned,
QIs used to evaluate and compare obtained results, control parameters to be tuned, and the number
of repetitions of the tuning process. First, an initial population of configurations is created for the
given MOEA. For each configuration, the control parameters are generated randomly within the
given lower and upper bounds. Before the main loop starts, the generated population containing
different configurations is evaluated using CRS4MOEA/QIE. The whole population participates in
the tournament and, when it is completed, each configuration obtains its rating R, which represents
its fitness. The tuning process takes place in the main loop and is guided by jDE and CRS4MOEA/QIE.
First, an offspring population of new configurations is generated with jDE’s search mechanisms.
Each newly generated solution plays in a tournament with the old population and is evaluated with
CRS4MOEA/QIE. In the next step, ratings of the newly generated solutions are compared with their
parents. If the offspring solution has a higher rating than its parent, it is added to the new population;
otherwise, its parent is added. In the case that the new population has new solutions, their ratings
need to be recalculated since the individuals rating is dependant on the whole population. If no new
solutions exist in the new population, this step can be skipped. The process is repeated until the
stopping criterion is met. The configuration with the highest rating is saved for later. The process
is repeated for the given number of repetitions. A completely new initial population is generated
in each repetition. When the number of repetitions is reached, one last tournament is performed.
In the tournament, the best configuration of each repetition is evaluated using CRS4MOEA/QIE.
The configuration with the highest rating is returned.

Input: MOEA, 
problems, QIs,

control parameters,
number of repetitions

Save configuration with 
the highest rating

Create initial population
of configurations

Evaluate initial population
using CRS4MOEA/QIE

Is stopping
criteria met?

Create new population
of configurations using jDE

Evaluate new population
using CRS4MOEA/QIE

Number of 
repetitions
reached?

Yes

No

Rank the configurations 
obtained through 

all the repetitions using 
CRS4MOEA/QIE 

Return the configuration 
with the highest rating

Yes

No

Figure 2. MOCRS-Tuning flowchart.



Mathematics 2019, 7, 824 6 of 13

6. Experiment

In the experiment, MOCRS-Tuning was performed on different sized problem sets. Figure 3
shows how the tuning was conducted. First, we gave MOCRS-Tuning only one system for the ITO
problem as input. The output was the best configuration found for the given system. Another system
was added, and the tuning process was performed again. This was repeated until all eight system
were used. This resulted in eight configurations, each tuned for the given problem set. Table 2 shows
which systems were used in the eight sets (column Systems included). The numbers correspond to
the systems in Table 1 (column Num). We also added the approximate tuning time. The tuning was
performed on a computer with an Intel(R) Core(TM) i7-4790 3.60 GHz CPU and 16 GB of RAM. As can
be seen, the tuning process was very time-consuming, taking approximately 63 h on eight systems.
Table 1 nicely shows our motivation. We wanted to test whether this tuning cost contributes to
overall results or will we receive similar results with default control parameters. Besides, we wanted to
investigate how many systems are enough to include in the tuning process for this particular real-world
(ITO) problem.

Integration and Testing Order Problem

Quality Indicator Ensemble 

MOCRS-TuningMOEA

Best configuration 
found for:

Tuning 
process

One system

Two systems

...
n systems

One system

Two systems

...

n systems

Figure 3. Experimental execution of the tuning process.

Table 2. System sets used and the approximate tuning time.

Run Systems Included Tuning Time (h)

1 4 14
2 4, 3 30
3 4, 3, 7 35
4 4, 3, 7, 5 37
5 4, 3, 7, 5, 1 41
6 4, 3, 7, 5, 1, 8 51
7 4, 3, 7, 5, 1, 8, 2 56
8 4, 3, 7, 5, 1, 8, 2, 6 63



Mathematics 2019, 7, 824 7 of 13

For comparison of the different configurations, we performed ranking using the EARS framework.
The ranking process is shown in Figure 4. As input, we give it the configurations we want to rank
and the problems (systems) on which they will be compared. When the tournament is completed,
EARS outputs a leaderboard consisting of ranks, ratings and rating deviations of all competing
players (configurations). In the experiment, the ranking was performed in two different scenarios.
Firstly, it was performed on configurations obtained with each repetition of the tuning process in
order to see the robustness of the method. This was done for each problem set. Secondly, the ranking
was performed on the best configurations for each problem set returned by MOCRS-Tuning and a
default configuration. The ranking was performed on each system individually.

Quality Indicator Ensemble 

Ranking
process

Integration and Testing Order Problem

Systems benchmark

Configurations 
leaderboardConfigurations

EARS 

CRS4MOEA/QIE 

Figure 4. Experimental execution of the ranking process.

Experimental Settings

In the experiment, MOCRS-Tuning was applied to MOEA/D [28], which was continuously
proven effective for solving multi-objective problems. The problem sets contained different numbers
of previously mentioned systems for the ITO problem. For each system, the stopping criterion was set
to 60,000 fitness evaluations [9,29]. The quality indicator ensemble contained five different QIs:

• Inverted Generational Distance (IGD+) [30]
• Hypervolume (HV) [31]
• R2 [32]
• Maximum Spread (MS) [33]
• Unary additive ε-indicator (Iε+) [26]

The number of repetitions in MOCRS-Tuning was set to 8. The control parameters which
underwent the tuning process were population size, crossover probability, and mutation probability.
MOCRS-Tuning accepts upper and lower bounds for control parameters in order to limit the search
space. Therefore, the lower and upper bounds for population size were set to 10 and 500, respectively.
For mutation and crossover probability, we set the lower and upper bound to 0.1 and 1.0, respectively.
The number of configurations (population size) for jDE was set to 20. The stopping criterion was set to
30 generations. In the ranking process (Figure 4), the number of independent runs of the tournament
was set to 15.

7. Results and Discussion

MOCRS-Tuning saves the best configuration in each repetition and, at the end, returns the best
one amongst all saved configurations. To observe the robustness of the tuning method, we performed



Mathematics 2019, 7, 824 8 of 13

ranking on the eight saved configurations for each problem set. We used the ranking process (Figure 4),
where the input was the eight configurations (Table 2), and the benchmark set contained the same
systems for which they were tuned. Using the ratings and RDs of the obtained configurations,
we plotted their Rating Intervals (RIs) also known as confidence intervals. In our case, we used the
95% confidence level, which, according to the three-sigma rule [34], means that we are 95% confident
that the rating R lies in the interval [R − 2RD, R + 2RD]. If we compare two rating intervals and they
do not overlap, then the two configurations are significantly different. The rating intervals of the eight
configurations for each problem set are shown in Figure 5. Each RI has a label showing the values of
the obtained control parameters. Significant differences occurred only in the case where one system
was used in the tuning. The best two configurations (Figure 5a) top) performed significantly better
than the two worst (Figure 5a) bottom). In the rest of the cases, where more than one system was used
in the tuning process, there are no significant differences between configurations. This indicates that
the tuning method is very robust.

In the next scenario, we took the best configuration for each problem set and performed the
ranking process on the eight systems. In this case, we also added the default configuration of MOEA/D
based on the authors’ recommendation and source code from the jMetal framework [35]. The default
value for population size was set to 100, crossover probability to 1.0 and mutation probability to 0.2.
Figure 6 shows the Rating Intervals of all configurations ranked on all eight systems. We can observe
that the tuned configurations performed significantly better than the default configuration in most cases
(Figure 6), proving that tuning can improve the algorithms’ performance greatly. There are significant
differences between tuned configurations only in the case of system AJHSQLDB. One would expect that
the configuration tuned on one system would perform the best on the system it was tuned. However,
if we look at rating intervals for JHotDraw, we can see that this is not the case. One explanation for
this phenomenon is that all other configurations also contained this system when they were tuned.
Another false assumption is that tuned configuration on all eight systems will outperform others in
all benchmarks. On the contrary, only for two systems this was the case (MyBatis and AJHSQLDB,
see Figure 6), which is a confirmation of the NFL theorem.

One of the more interesting findings is that there are few significant differences amongst tuned
configurations (e.g., AJHSQLDB). This means that the problem set size does not have such a big
impact on the algorithms performance as tuning itself. We can conclude from the results that tuning is
important and that tuning for each problem individually does not guarantee good performance.
When conducting tuning, the domain of the problem for which algorithms are tuned play an
important role. In addition, it is hard to determine the best number of problems used for tuning
in order to get the best performance.



Mathematics 2019, 7, 824 9 of 13

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(179)cp(0.87)mp(1.0)

MOEA/D_pop(218)cp(0.82)mp(0.8)

MOEA/D_pop(165)cp(0.78)mp(1.0)

MOEA/D_pop(229)cp(0.73)mp(1.0)

MOEA/D_pop(404)cp(0.71)mp(1.0)

MOEA/D_pop(404)cp(0.39)mp(1.0)

MOEA/D_pop(500)cp(1.0)mp(0.90)

MOEA/D_pop(288)cp(0.87)mp(0.66)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(127)cp(1.0)mp(0.95)

MOEA/D_pop(44)cp(1.0)mp(1.0)

MOEA/D_pop(20)cp(0.93)mp(1.0)

MOEA/D_pop(116)cp(0.59)mp(0.96)

MOEA/D_pop(62)cp(0.85)mp(1.0)

MOEA/D_pop(200)cp(0.66)mp(1.0)

MOEA/D_pop(144)cp(0.95)mp(0.54)

MOEA/D_pop(98)cp(0.63)mp(0.68)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(93)cp(0.86)mp(0.96)

MOEA/D_pop(99)cp(1.0)mp(1.0)

MOEA/D_pop(130)cp(0.38)mp(1.0)

MOEA/D_pop(116)cp(0.80)mp(0.78)

MOEA/D_pop(114)cp(0.94)mp(1.0)

MOEA/D_pop(44)cp(0.73)mp(0.73)

MOEA/D_pop(22)cp(0.79)mp(0.99)

MOEA/D_pop(69)cp(0.18)mp(0.56)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(232)cp(0.95)mp(0.67)

MOEA/D_pop(58)cp(0.6)mp(0.90)

MOEA/D_pop(168)cp(0.62)mp(0.92)

MOEA/D_pop(70)cp(0.79)mp(0.9)

MOEA/D_pop(81)cp(1.0)mp(0.59)

MOEA/D_pop(122)cp(0.53)mp(0.97)

MOEA/D_pop(96)cp(1.0)mp(1.0)

MOEA/D_pop(131)cp(0.76)mp(1.0)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(121)cp(1.0)mp(0.93)

MOEA/D_pop(80)cp(1.0)mp(1.0)

MOEA/D_pop(70)cp(0.77)mp(1.0)

MOEA/D_pop(77)cp(0.71)mp(0.98)

MOEA/D_pop(87)cp(0.89)mp(0.97)

MOEA/D_pop(143)cp(0.5)mp(1.0)

MOEA/D_pop(174)cp(0.99)mp(1.0)

MOEA/D_pop(187)cp(0.56)mp(0.89)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(249)cp(0.97)mp(0.91)

MOEA/D_pop(126)cp(0.56)mp(0.99)

MOEA/D_pop(69)cp(0.95)mp(1.0)

MOEA/D_pop(104)cp(0.45)mp(1.0)

MOEA/D_pop(20)cp(0.74)mp(1.0)

MOEA/D_pop(20)cp(0.67)mp(1.0)

MOEA/D_pop(204)cp(0.78)mp(0.71)

MOEA/D_pop(20)cp(0.1)mp(1.0)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(118)cp(0.87)mp(1.0)

MOEA/D_pop(87)cp(0.83)mp(1.0)

MOEA/D_pop(77)cp(0.63)mp(1.0)

MOEA/D_pop(84)cp(0.93)mp(1.0)

MOEA/D_pop(90)cp(0.76)mp(0.92)

MOEA/D_pop(20)cp(0.96)mp(1.0

MOEA/D_pop(131)cp(0.93)mp(0.91)

MOEA/D_pop(70)cp(0.53)mp(0.89)

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000
Rating

MOEA/D_pop(54)cp(0.59)mp(1.0)

MOEA/D_pop(103)cp(1.0)mp(0.93)

MOEA/D_pop(109)cp(0.87)mp(0.97)

MOEA/D_pop(56)cp(1.0)mp(1.0)

MOEA/D_pop(174)cp(0.64)mp(1.0)

MOEA/D_pop(20)cp(1.0)mp(1.0)

MOEA/D_pop(121)cp(0.86)mp(1.0)

MOEA/D_pop(102)cp(0.52)mp(0.95)

a) One system b) Two systems

c) Three systems d) Four systems

e) Five systems f) Six systems

g) Seven systems h) Eight systems

Figure 5. Rating intervals for configurations obtained from the eight repetitions within the
MOCRS-Tuning process ranked on eight different problem sets. For each configuration, the control
parameters population size (pop), crossover probability (cp) and mutation probability (mp) are given.



Mathematics 2019, 7, 824 10 of 13

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-2s

MOEA/D-tuned-3s

MOEA/D-tuned-7s

MOEA/D-tuned-8s

MOEA/D-tuned-1s

MOEA/D-tuned-6s

MOEA/D-tuned-5s

MOEA/D-tuned-4s

MOEA/D-default

AJHotDraw

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-8s

MOEA/D-tuned-3s

MOEA/D-tuned-7s

MOEA/D-tuned-5s

MOEA/D-tuned-2s

MOEA/D-tuned-1s

MOEA/D-tuned-4s

MOEA/D-tuned-6s

MOEA/D-default

AJHSQLDB

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-6s

MOEA/D-tuned-3s

MOEA/D-tuned-1s

MOEA/D-tuned-7s

MOEA/D-tuned-2s

MOEA/D-tuned-8s

MOEA/D-tuned-5s

MOEA/D-tuned-4s

MOEA/D-default

HealthWatcher

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-1s

MOEA/D-tuned-6s

MOEA/D-tuned-2s

MOEA/D-tuned-7s

MOEA/D-tuned-3s

MOEA/D-tuned-4s

MOEA/D-tuned-8s

MOEA/D-tuned-5s

MOEA/D-default

TollSystems

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-6s

MOEA/D-tuned-1s

MOEA/D-tuned-4s

MOEA/D-tuned-7s

MOEA/D-tuned-2s

MOEA/D-tuned-8s

MOEA/D-tuned-3s

MOEA/D-tuned-5s

MOEA/D-default

JBoss

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-5s

MOEA/D-tuned-7s

MOEA/D-tuned-4s

MOEA/D-tuned-6s

MOEA/D-tuned-1s

MOEA/D-tuned-2s

MOEA/D-tuned-3s

MOEA/D-tuned-8s

MOEA/D-default

JHotDraw

Rating Interval

1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-6s

MOEA/D-tuned-1s

MOEA/D-tuned-2s

MOEA/D-tuned-4s

MOEA/D-tuned-7s

MOEA/D-tuned-3s

MOEA/D-tuned-8s

MOEA/D-tuned-5s

MOEA/D-default

BCEL

Rating Interval

1000 1050 1100 1150 1200 1250 1300 1350 1400 1450 1500 1550 1600 1650 1700 1750 1800 1850 1900 1950 2000

Rating

MOEA/D-tuned-8s

MOEA/D-tuned-2s

MOEA/D-tuned-5s

MOEA/D-tuned-3s

MOEA/D-tuned-1s

MOEA/D-tuned-7s

MOEA/D-tuned-4s

MOEA/D-tuned-6s

MOEA/D-default

MyBatis

Figure 6. Rating intervals for the best configurations obtained with MOCRS-Tuning on different sized
problem set ranked on eight different systems where each configuration is marked from 1 s to 8 s,
which indicates the number of systems used in the tuning process.



Mathematics 2019, 7, 824 11 of 13

8. Conclusions

In this study, we investigated how the size of the problem set impacts the tuning of MOEAs.
The tuning was performed with MOCRS-Tuning, which uses a jDE and a chess rating system with
a quality indicator ensemble to find the best configuration for the given MOEA. The tuning was
conducted on different sized problem sets containing systems, which represent instances of the
real-world ITO problem. The obtained configurations were compared using the EARS framework.
The experiments were based on a chess rating system, which we showed to be equivalent to NHST
and the conclusions were comparable [3]. However, the approach can be performed with other
tuning methods. It is also not limited to a specific MOEA or a specific set of quality indicators.
The results show that the tuning method is robust no matter how many systems are used in the tuning
process. From the comparison of the different configurations, we see that tuning has a great impact on
the performance. We also concluded that tuning on individual problems is not always worth it since
it is very time-consuming and does not guarantee better results. Robust control parameters can be
obtained even on a small set of problem instances, since there were no significant differences amongst
tuned configurations in most cases. Using the novel tuning method for multi-objective algorithms
called MOCRS-Tuning, we demonstrated that good control parameters with a small problem set
(number of systems) can be obtained. With MOCRS-Tuning, the total tuning time required can be
substantially reduced, making it more practical and feasible.

For future work, we would like to perform tuning on additional MOEAs to investigate the novel
method better. One additional aspect we would also so like to consider in our future experiments
is the number of objectives. We would like to see how problems with higher numbers of objectives
affect the tuning process. Another possible threat to validity is the design of the tuning process. In our
experiment, we integrated eight different systems in a random order (see Table 2). We are interested in
how a different order would affect the performance of the configurations. The connected idea is to
carefully form system subsets. We can combine them based on certain characteristics of the problem.
Another goal is to use other real-world problems and observe how the configurations obtained on one
type of problem perform on another.

Author Contributions: Conceptualization, M.Č. and M.R.; methodology, M.Č.; writing—original draft
preparation, M.R.; software, M.Č.; validation, M.Č., T.K., M.R. and M.M.; and writing—review and editing,
M.M. and T.K.

Funding: This research was funded by the Slovenian Research Agency grant number P2-0041.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Eiben, A.E.; Smit, S.K. Parameter tuning for configuring and analyzing evolutionary algorithms. Swarm Evol. Comput.
2011, 1, 19–31. [CrossRef]

2. Karafotias, G.; Hoogendoorn, M.; Eiben, Á.E. Parameter control in evolutionary algorithms: Trends and
challenges. IEEE Trans. Evol. Comput. 2015, 19, 167–187. [CrossRef]

3. Veček, N.; Mernik, M.; Filipič, B.; Črepinšek, M. Parameter tuning with Chess Rating System (CRS-Tuning)
for meta-heuristic algorithms. Inf. Sci. 2016, 372, 446–469. [CrossRef]

4. Smit, S.K.; Eiben, A. Parameter tuning of evolutionary algorithms: Generalist vs. specialist. In European
Conference on the Applications of Evolutionary Computation; Springer: Berlin/Heidelberg, Germany, 2010;
pp. 542–551.

5. Brest, J.; Žumer, V.; Maučec, M. Self-Adaptive Differential Evolution Algorithm in Constrained
Real-Parameter Optimization. In Proceedings of the IEEE Congress on Evolutionary Computation
(CEC 2006), Vancouver, BC, Canada, 16–21 July 2006; pp. 215–222.

6. Ravber, M.; Mernik, M.; Črepinšek, M. Ranking Multi-Objective Evolutionary Algorithms using a Chess
Rating System with Quality Indicator ensemble. In Proceedings of the IEEE Congress on Evolutionary
Computation (CEC 2017), San Sebastian, Spain, 5–8 June 2017; pp. 1503–1510.

http://dx.doi.org/10.1016/j.swevo.2011.02.001
http://dx.doi.org/10.1109/TEVC.2014.2308294
http://dx.doi.org/10.1016/j.ins.2016.08.066


Mathematics 2019, 7, 824 12 of 13

7. Ravber, M.; Mernik, M.; Črepinšek, M. The Impact of Quality Indicators on the Rating of Multi-objective
Evolutionary Algorithms. In Proceedings of the Conference on Bioinspired Optimization Methods and Their
Applications (BIOMA 2016), Bled, Slovenia, 18–20 May 2016; pp. 119–130.

8. EARS—Evolutionary Algorithms Rating System (Github). 2019. Available online: https://github.com/UM-
LPM/EARS (accessed on 2 August 2019).

9. Assunção, W.K.G.; Colanzi, T.E.; Vergilio, S.R.; Pozo, A. A multi-objective optimization approach for the
integration and test order problem. Inf. Sci. 2014, 267, 119–139. [CrossRef]

10. Assunção, W.K.G.; Colanzi, T.E.; Pozo, A.T.R.; Vergilio, S.R. Establishing integration test orders of classes
with several coupling measures. In Proceedings of the Conference on Genetic and Evolutionary Computation
(GECCO 2011), Dublin, Ireland, 12–16 July 2011; pp. 1867–1874.

11. Arcuri, A.; Fraser, G. Parameter tuning or default values? An empirical investigation in search-based
software engineering. Empir. Softw. Eng. 2013, 18, 594–623. [CrossRef]

12. Birattari, M.; Stützle, T.; Paquete, L.; Varrentrapp, K. A racing algorithm for configuring metaheuristics.
In Proceedings of the Conference on Genetic and Evolutionary Computation (GECCO 2002), New York, NY,
USA, 9–13 July 2002; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2002; pp. 11–18.

13. Nannen, V.; Eiben, A.E. Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters.
In Proceedings of the 20th International Joint Conference on Artifical Intelligence, Singapore,
25–28 September 2007; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 2007; pp. 975–980.

14. Hutter, F.; Hoos, H.H.; Stützle, T. Automatic Algorithm Configuration Based on Local Search. In Proceedings
of the 22Nd National Conference on Artificial Intelligence, Vancouver, BC, Canada, 22–26 July 2007; Volume 2;
AAAI Press: New York, NY, USA, 2007; Volume 7, pp. 1152–1157.

15. Bartz-Beielstein, T.; Lasarczyk, C.W.; Preuß, M. Sequential parameter optimization. In Proceedings of the
IEEE Congress on Evolutionary Computation (CEC 2005), Edinburgh, UK, 2–5 September 2005; Volume 1,
pp. 773–780.

16. Smit, S.K.; Eiben, A.E.; Szlávik, Z. An MOEA-based Method to Tune EA Parameters on Multiple Objective
Functions. In Proceedings of the IJCCI (ICEC), Valencia, Spain, 24–26 October 2010; pp. 261–268.

17. Yuan, B.; Gallagher, M. Combining meta-EAs and racing for difficult EA parameter tuning tasks. In Parameter
Setting in Evolutionary Algorithms; Springer: Berlin/Heidelberg, Germany, 2007; pp. 121–142.

18. Montero, E.; Riff, M.C.; Neveu, B. A beginner’s guide to tuning methods. Appl. Soft Comput. 2014, 17, 39–51.
[CrossRef]

19. Smit, S.K.; Eiben, A.E. Comparing parameter tuning methods for evolutionary algorithms. In Proceedings
of the IEEE Congress on Evolutionary Computation (CEC 2009), Trondheim, Norway, 18–21 May 2009;
pp. 399–406.

20. Arcuri, A.; Fraser, G. On parameter tuning in search based software engineering. Search Based Softw. Eng.
2011, pp. 33–47.

21. Zaefferer, M.; Breiderhoff, B.; Naujoks, B.; Friese, M.; Stork, J.; Fischbach, A.; Flasch, O.; Bartz-Beielstein, T.
Tuning multi-objective optimization algorithms for cyclone dust separators. In Proceedings of the Conference
on Genetic and Evolutionary Computation (GECCO 2014), Vancouver, BC, Canada, 12–16 July 2014;
pp. 1223–1230.

22. Naumchev, A.; Meyer, B.; Mazzara, M.; Galinier, F.; Bruel, J.M.; Ebersold, S. AutoReq: Expressing and
verifying requirements for control systems. J. Comput. Lang. 2019, 51, 131–142. [CrossRef]

23. Choi, W.; Kannan, J.; Babic, D. A scalable, flow-and-context-sensitive taint analysis of android applications.
J. Comput. Lang. 2019, 51, 1–14. [CrossRef]

24. Tsutano, Y.; Bachala, S.; Srisa-An, W.; Rothermel, G.; Dinh, J. Jitana: A modern hybrid program analysis
framework for android platforms. J. Comput. Lang. 2019, 52, 55–71. [CrossRef]

25. Beizer, B. Software Testing Techniques; Dreamtech Press: Delhi, India, 2003.
26. Zitzler, E.; Thiele, L.; Laumanns, M.; Fonseca, C.M.; Da Fonseca, V.G. Performance assessment of

multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 2003, 7, 117–132. [CrossRef]
27. Glickman, M.E. Example of the Glicko-2 System; Boston University: Boston, MA, USA, 2012.
28. Zhang, Q.; Li, H. MOEA/D: A multiobjective evolutionary algorithm based on decomposition. IEEE Trans.

Evol. Comput. 2007, 11, 712–731. [CrossRef]
29. Guizzo, G.; Vergilio, S.R.; Pozo, A.T.; Fritsche, G.M. A multi-objective and evolutionary hyper-heuristic

applied to the Integration and Test Order Problem. Appl. Soft Comput. 2017, 56, 331–344. [CrossRef]

https://github.com/UM-LPM/EARS
https://github.com/UM-LPM/EARS
http://dx.doi.org/10.1016/j.ins.2013.12.040
http://dx.doi.org/10.1007/s10664-013-9249-9
http://dx.doi.org/10.1016/j.asoc.2013.12.017
http://dx.doi.org/10.1016/j.cola.2019.02.004
http://dx.doi.org/10.1016/j.jvlc.2018.10.005
http://dx.doi.org/10.1016/j.cola.2018.12.004
http://dx.doi.org/10.1109/TEVC.2003.810758
http://dx.doi.org/10.1109/TEVC.2007.892759
http://dx.doi.org/10.1016/j.asoc.2017.03.012


Mathematics 2019, 7, 824 13 of 13

30. Ishibuchi, H.; Masuda, H.; Tanigaki, Y.; Nojima, Y. Difficulties in specifying reference points to calculate
the inverted generational distance for many-objective optimization problems. In Proceedings of the IEEE
Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), Orlando, FL, USA,
9–12 December 2014; pp. 170–177.

31. Zitzler, E.; Thiele, L. Multiobjective evolutionary algorithms: a comparative case study and the strength
Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

32. Hansen, M.P.; Jaszkiewicz, A. Evaluating the Quality of Approximations to the Non-Dominated Set; IMM,
Department of Mathematical Modelling, Technical University of Denmark: Kongens Lyngby, Denmark, 1998.

33. Yen, G.G.; He, Z. Performance metric ensemble for multiobjective evolutionary algorithms. IEEE Trans.
Evol. Comput. 2014, 18, 131–144. [CrossRef]

34. Pukelsheim, F. The three sigma rule. Am. Stat. 1994, 48, 88–91.
35. Durillo, J.J.; Nebro, A.J. jMetal: A Java framework for multi-objective optimization. Adv. Eng. Softw. 2011,

42, 760–771. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/4235.797969
http://dx.doi.org/10.1109/TEVC.2013.2240687
http://dx.doi.org/10.1016/j.advengsoft.2011.05.014
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Integration and Testing Order
	Chess Rating System for Evolutionary Algorithms
	MOCRS-Tuning Method
	Experiment
	Results and Discussion
	Conclusions
	References

