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Abstract: In this paper, we introduce the new concepts of K-adjustability convexity and strictly
K-adjustability convexity which respectively generalize and extend the concepts of K-convexity
and strictly K-convexity. We establish some new existence and uniqueness theorems of zeros for
vector-valued functions with K-adjustability convexity. As their applications, we obtain existence
theorems for the minimization problem and fixed point problem which are original and quite different
from the known results in the existing literature.
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1. Introduction and Preliminaries

It is well known that convex analysis has played an important role in almost all branches of
mathematics, physics, economics, and engineering. Convexity is an ancient and natural notion and the
theory of convex functions is an essential part of the general subject of convexity.

Let V be a vector space. A nonempty subset A of V is called convex if for any x, y ∈ A, λx + (1−
λ)y ∈ A for all λ ∈ [0, 1]. Let X be a nonempty convex subset of V. A real-valued function f : X → R
is called convex if

f (tx + (1− t)y) ≤ t f (x) + (1− t) f (y) (1)

for all x, y ∈ X and t ∈ [0, 1]. If the above inequality (1) is strict whenever x 6= y and 0 < t < 1, then f
is called strictly convex. A function f : X → R is called concave (resp. strictly concave) if − f is convex
(resp. strictly convex). A large amount of new notions of generalized convexity and concavity have
been investigated by several authors; see, for example, ref. [1–15] and references therein.

The general vector optimization problem (VOP) for a vector-valued function f : X → V2 can be
formalized as follows:

(VOP)

{
Optimize f (x),
subject to x ∈ X

,

where V1 and V2 be vector spaces and X is a nonempty subset of V1. Vector optimization problems
have been intensively investigated, and various feasible methods have been proposed over a century
and has made more important contributions to improve our understanding of the real world around
us in various fields. Convex analysis and vector optimization has wide and significant applications
in many areas of mathematics, including nonlinear analysis, finance mathematics, vector differential
equations and inclusions, dynamic system theory, control theory, economics, game theory, machine
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learning, multiobjective programming, multi-criteria decision making, game theory, signal processing,
and so forth. For more details, see, e.g., ref. [1,7–10,16] and references therein.

In reality, we often encounter non-convex functions or non-concave functions when solving
problems in the real world, so these known results for convex functions or concave functions are not
easily applicable to work. Motivated by that reason, in this paper, we study and introduce the new
concepts of K-adjustability convexity and strictly K-adjustability convexity (see Definition 1 below).
A nontrivial example is given to illustrate that the concept of K-adjustability convexity is a real
generalization of the concept of K-convexity. In Section 3, we establish some new existence and
uniqueness theorems of zeros for vector-valued functions with K-adjustability convexity. As their
applications, we obtain existence theorems for minimization problem and fixed point problem which
are original and quite different from the known results in the literature.

2. New Concepts of K-Adjustability Convexity and Strictly K-Adjustability Convexity

Let V be a topological vector space (t.v.s., for short) with its zero vector θV . Let A be a nonempty
subset of V. We use the notations A, co(A) and co(A) to denote the closure, convex hull and closed
convex hull (i.e., the closure of the convex hull) of A, respectively. A nonempty subset K of V is
called a convex cone if K + K ⊆ K and λK ⊆ K for λ ≥ 0. A cone K is pointed if K ∩ (−K) = {θV}.
For a given cone K ⊆ V, we can define a partial ordering .K with respect to K by

x -K y⇐⇒ y− x ∈ K.

x ≺K y will stand for x -K y and x 6= y, while x �K y will stand for y− x ∈ intK, where intK denotes
the interior of K. A function ϕ : V → V is called to be -K-nondecreasing if x, y ∈ V with x -K y implies
ϕ(x) -K ϕ(y).

Let X be a topological space. A real-valued function h : X → R is lower semicontinuous (in short lsc)
(resp. upper semicontinuous, in short usc) if {x ∈ X : h(x) ≤ r} (resp. {x ∈ X : h(x) ≥ r}) is closed for
each r ∈ R.

Let Y be a t.v.s. with its zero vector θ, K be a proper (i.e., K 6= Y), closed and convex pointed cone
in Y with intK 6= ∅, e ∈ intK, and -K be a partial ordering with respect to K. A vector-valued function
f : X → Y is said to be (e, K)-lower semicontinuous [9,17] if for each r ∈ R, the set {x ∈ X : f (x) ∈
re− K} is closed.

In this paper, we introduce the concepts of K-adjustability convexity and strictly
K-adjustability convexity.

Definition 1. Let V1 and V2 be vector spaces, X be a nonempty convex set in V1, K be a given convex cone in
V2 and µ : V2 → V2 be a mapping. A vector-valued function f : X → V2 is called

(i) K-adjustability convex with respect to µ (abbreviated as (K, µ)-adjconvex) if

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) ∈ K (2)

for all x, y ∈ X and t ∈ [0, 1]. In particular, f is called K-convex if µ is an identity mapping on V2

and (2) becomes
t f (x) + (1− t) f (y)− f (tx + (1− t)y) ∈ K

for all x, y ∈ X and t ∈ [0, 1].
(ii) strictly K-adjustability convex with respect to µ (abbreviated as strictly (K, µ)-adjconvex) if

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) ∈ intK (3)
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for all x, y ∈ X with x 6= y and t ∈ (0, 1). In particular, f is called strictly K-convex if µ is an identity
mapping on V2 and (3) becomes

t f (x) + (1− t) f (y)− f (tx + (1− t)y) ∈ intK

for all x, y ∈ X with x 6= y and t ∈ (0, 1).

Here, we give an example where f is K-adjconvex but not K-convex.

Example 1. Let V1 = R, V2 = R2, X = [−1, 1] and K = R2
+:=

{
(x1, x2) ∈ R2 : xi ≥ 0, i = 1, 2

}
. Then X

is a nonempty convex subset of V1 and K is a convex cone in V2. Let f : X → V2 be defined by

f (x) =

{
(−x, 0), x ∈ [0, 1],
(0, x), x ∈ [−1, 0).

Take x̂ = 1
2 and ŷ = − 1

2 . Thus, we get

1
2

f (x̂) +
1
2

f (ŷ)− f
(

1
2

x̂ +
1
2

ŷ
)
=

(
−1

4
,−1

4

)
− (0, 0) =

(
−1

4
,−1

4

)
/∈ K,

which show that f is not K-convex. Now, let µ : V2 → V2 be defined by

µ(x, y) = (max {|x| , |y|} , 0) for (x, y) ∈ V2.

We claim that f is (K, µ)-adjconvex. Let x, y ∈ X and t ∈ [0, 1] be given. We consider the following
four possible cases:

Case 1. If x, y ∈ [0, 1], then t f (x) + (1− t) f (y) = (a, 0) for some a ≤ 0 and f (tx + (1− t)y) = (b, 0)
for some b ≤ 0. Since max {|a| , |0|} − b ≥ 0, we obtain

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) = (max {|a| , |0|} − b, 0) ∈ K.

Case 2. If x, y ∈ [−1, 0), then t f (x)+ (1− t) f (y) = (0, c) for some c ≤ 0 and f (tx+(1− t)y) = (0, d)
for some d < 0. So µ(t f (x) + (1− t) f (y)) = (max {|0| , |c|} , 0) and we get

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) ∈ K.

Case 3. Assume that x ∈ [0, 1] and y ∈ [−1, 0). Then t f (x) + (1− t) f (y) = (m, n) for some m, n ≤ 0.

• If tx + (1− t)y ∈ [0, 1], then f (tx + (1− t)y) = (λ, 0) for some λ ≤ 0. Hence, we have

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) = (max {|m| , |n|} − λ, 0) ∈ K.

• If tx + (1− t)y ∈ [−1, 0), then f (tx + (1− t)y) = (0, s) for some s < 0. Therefore,
we get

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) = (max {|m| , |n|} ,−s) ∈ K.

Case 4. Assume that x ∈ [−1, 0) and y ∈ [0, 1]. Following the same argument as Case 3,
we can verify

µ(t f (x) + (1− t) f (y))− f (tx + (1− t)y) ∈ K.

Therefore, by above cases, we prove that f is (K, µ)-adjconvex.

In Definition 1, if we take V = V1, V2 = R, K = [0,+∞) ⊂ R, then we obtain
the following concepts.
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Definition 2. Let X be a nonempty convex subset of a vector space V and µ : R → R be a function. A
real-valued function f : X → R is called

(i) adjustability convex with respect to µ (abbreviated as (µ)-adjconvex) if

f (tx + (1− t)y) ≤ µ(t f (x) + (1− t) f (y))

for all x, y ∈ X and t ∈ [0, 1]. In particular, if µ is an identity mapping on R, then f is called convex.
(ii) strictly adjustability convex with respect to µ (abbreviated as strictly (µ)-adjconvex) if

f (tx + (1− t)y) < µ(t f (x) + (1− t) f (y))

for all x, y ∈ X with x 6= y and t ∈ (0, 1). In particular, if µ is an identity mapping on R, then f is called
strictly convex.

In the following, unless otherwise specified, we always suppose that Y is a locally convex
Hausdorff t.v.s. with its zero vector θ, K be a proper, closed and convex pointed cone in Y with
intK 6= ∅, e ∈ intK, and -K be a partial ordering with respect to K. Recall that the nonlinear
scalarization function ξe : Y → R is defined by

ξe(y) = inf{r ∈ R : y ∈ re− K}, for all y ∈ Y.

Obviously, ξe(θ) = 0.
The following known result is very crucial in our proofs.

Lemma 1. (see [1,5,16,18–23]). For each r ∈ R and y ∈ Y, the following statements are satisfied:

(i) ξe(y) ≤ r ⇐⇒ y ∈ re− K;
(ii) ξe(y) > r ⇐⇒ y /∈ re− K;

(iii) ξe(y) ≥ r ⇐⇒ y /∈ re− intK;
(iv) ξe(y) < r ⇐⇒ y ∈ re− intK;
(v) ξe(·) is positively homogeneous and continuous on Y;

(vi) if y1 ∈ y2 + K (i.e., y2 -K y1), then ξe(y2) ≤ ξe(y1);
(vii) ξe(y1 + y2) ≤ ξe(y1) + ξe(y2) for all y1, y2 ∈ Y.

By Applying (i) of Lemma 1, one can easily verify the following result; see also [19,24].

Lemma 2. Let X be a topological space and f : X → Y be a vector-valued function. Then f is (e, K)-lower
semicontinuous if and only if ξe ◦ f is lower semicontinuous.

3. New Existence Results and Their Applications to Minimization Problem and Fixed Point
Problem

The following lemma is very important and will be used for proving our main results.

Lemma 3. Let µ : Y → Y be a vector-valued function satisfying the following condition:

(A) For any ε > 0, there exists γ > 0 such that

x /∈ −K and x �K γe implies µ(x)�K εe.

Then there exists a strictly decreasing sequence {λn}n∈N of positive real numbers such that µ(λn+1e)�K λne
for all n ∈ N and λn ↓ 0 as n→ ∞.

Proof. Given λ1 > 0. Then, by (A), there exists δ1 > 0 such that

x /∈ −K and x �K δ1e implies µ(x)�K λ1e. (4)
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Let λ2 = min
{

δ1
2 , λ1

2

}
and take w1 = λ2e ∈ intK. Then we have the following:

• w1 /∈ −K;
• w1 �K δ1e;
• λ2 < λ1.

So we have from (4) that
µ(w1)�K λ1e.

For λ2, it must exist δ2 > 0 such that

x /∈ −K and x �K δ2e implies µ(x)�K λ2e. (5)

Put λ3 = min
{

δ2
2 , λ2

2

}
and w2 = λ3e ∈ intK. Thus λ3 < λ2 and, by (5), we obtain

µ(w2)�K λ2e.

Continuing this process, for λj, j ∈ N with j ≥ 2, it must exist δj > 0 such that

x /∈ −K and x �K δje implies µ(x)�K λje. (6)

Take

λj+1 = min
{

δj

2
,

λj

2

}
(7)

and
wj = λj+1e ∈ Y.

Then we get from (6) and (7) that λj+1 < λj and µ(wj)�K λje. Therefore, we can construct a strictly
decreasing sequences {λn} of positive real numbers such that

µ(λn+1e)�K λne for all n ∈ N.

By (7), we have 0 < λn+1 ≤ λ1
2n for n ∈ N, which yields λn ↓ 0 as n→ ∞. The proof is completed.

The following result is immediate from Lemma 3 if we take Y = R, K = [0,+∞) ⊂ R and e = 1.

Corollary 1. Let µ : R→ R be a function satisfying the following condition:

(AR) For any ε > 0, there exists c > 0 such that

0 < x < c implies µ(x) < ε.

Then there exists a strictly decreasing sequence {λn}n∈N of positive real numbers such that µ(λn+1) < λn for
all n ∈ N and λn ↓ 0 as n→ ∞.

Corollary 2. Let µ : R→ R be a function satisfying lim
x→0+

µ(x) = 0. Then there exists a strictly decreasing

sequence {λn}n∈N of positive real numbers such that µ(λn+1) < λn for all n ∈ N and λn ↓ 0 as n→ ∞.

Proof. For any ε > 0, since lim
x→0+

µ(x) = 0, there exists δ = δ(ε) > 0 such that

0 < x < δ implies µ(x) < ε.

Therefore, the conclusion is immediate from Corollary 1.

We now establish the following crucial and useful existence result which is one of the main results
of this paper and will be applied to minimization problem and fixed point problem.
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Theorem 1. Let (E, ‖·‖) be a normed linear space, Y be a locally convex Hausdorff t.v.s. with its zero vector
θ, K be a proper, closed and convex pointed cone in Y with intK 6= ∅, and let e ∈ intK be fixed. Let W be
a nonempty weakly compact and convex subset of E, µ : Y → Y be a -K-nondecreasing vector-valued function
satisfying the condition (A) as in Lemma 3 and f : W → Y be a vector-valued function. Assume that

(H1) for any positive real number γ, {x ∈W : f (x) ∈ γe− K} is a nonempty closed subset of W,
(H2) f is (K, µ)-adjconvex.

Then there exists v ∈W such that f (v) ∈ −K.

Proof. By applying Lemma 3, there exists a strictly decreasing sequence {λn}n∈N of positive real
numbers such that

µ(λn+1e)�K λne for all n ∈ N, (8)

and λn ↓ 0 as n→ ∞. For any n ∈ N, let

Cn = {x ∈W : f (x) ∈ λne− K}.

Define F : W → R by
F(x) = ξe ◦ f (x) for x ∈W.

Applying Lemma 1, we have
Cn = {x ∈W : F(x) ≤ λn}.

Thus, by (H1), Cn is a nonempty closed subset of W. Clearly, Cn+1 ⊆ Cn for all n ∈ N. We choose
an arbitrary point zn from Cn for all n ∈ N. For any m, n ∈ N with m ≥ n, let

Dm,n = {zi : n + 1 ≤ i ≤ m + 1}.

We verify that
co(Dm,n) ⊆ Cn for all m, n ∈ N with m ≥ n. (9)

Indeed, let m, n ∈ N with m ≥ n. If m = n, then

co(Dn,n) = {zn+1} ⊆ Cn+1 ⊆ Cn

and (9) is true. For m ≥ 2 and n = m− 1, co(Dm,m−1) = co({zm, zm+1}). If x ∈ co(Dm,m−1), then there
exists t ∈ [0, 1] such that

x = tzm + (1− t)zm+1. (10)

Since zm, zm+1 ∈ Cm, f (zm), f (zm+1) ∈ λme− K. Since K is a convex cone, we get

t f (zm) + (1− t) f (zm+1) ∈ λme− K.

Thus, there exists ζ ∈ K such that t f (zm) + (1− t) f (zm+1) = λme− ζ. Since λme− ζ -K λme and µ is
-K-nondecreasing, we obtain

µ (t f (zm) + (1− t) f (zm+1)) = µ (λme− ζ) -K µ (λme) (11)

Taking into account (H2), (8) and (11), we get

f (x) -K µ (t f (zm) + (1− t) f (zm+1)) -K µ (λme)�K λm−1e

⇐⇒ F(x) = ξe ◦ f (x) < λm−1 (by Lemma 1)
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which means that x ∈ Cm−1. Hence co(Dm,m−1) ⊆ Cm−1 and (9) is true for m ≥ 2 and n = m− 1 < m.
Assume that (9) is valid for n = k < m. Note first that

co(Dm,k−1) = co({zi : k ≤ i ≤ m + 1})
= co({zk} ∪ {zk+1, · · · , zm+1})
= co({zk} ∪ Dm,k).

Let p ∈ co(Dm,k−1) be given. If p = zi for some i0 ∈ {k, k + 1, · · · , m + 1}, then p ∈ Ci0 ⊆ Ck−1.
Suppose p 6= zi for all i ∈ {k, k + 1, · · · , m + 1}. Thus, there exist γk, γk+1, · · · , γm+1 ∈ [0, 1) with
m+1
∑

i=k
γi = 1, such that p =

m+1
∑

i=k
γizi. Let

w =
m+1

∑
i=k+1

γi
1− γk

zi.

Due to
m+1
∑

i=k+1

γi
1−γk

= 1 and applying the induction hypothesis, we know

w ∈ co(Dm,k) ⊆ Ck

and

p =
m+1

∑
i=k

γizi = γkzk + (1− γk)w.

Since zk, w ∈ Ck, we have f (zk), f (w) ∈ λke− K and hence

γk f (zk) + (1− γk) f (w) ∈ λke− K.

So γk f (zk) + (1− γk) f (w) = λke− β for some β ∈ K. Since µ is -K-nondecreasing, by (H2), we obtain

f (p) -K µ (γk f (zk) + (1− γk) f (w)) = µ (λke− β) -K µ (λke)�K λk−1e

which implies p ∈ Ck−1. Hence co(Dm,k−1) ⊆ Ck−1. Therefore, (9) is true by mathematic induction.
For any n ∈ N, let

Un = {xi : i ≥ n + 1}.

Then co(Un) ⊆ Cn for all n ∈ N. Indeed, assume on the contrary that co(Uj∗) * Cj∗ for some

j∗ ∈ N. So, there exist zk1 , zk2 , · · · , zks ∈ Uj∗ and α1, α2, · · · , αs ≥ 0 with
s
∑

i=1
αi = 1, such that

s
∑

i=1
αizki

∈ co
(

Dks−1,k1−1
)

and
s
∑

i=1
αizki

/∈ Cj∗ . On the other hand, since ki ≥ j∗ + 1 for all 1 ≤ i ≤ s,

we have
Dks−1,k1−1 ⊆ Dks−1,j∗

and hence deduces from (9) that

co
(

Dks−1,k1−1
)
⊆ co

(
Dks−1,j∗

)
⊆ Cj∗ ,

which leads to a contradiction. Hence co(Un) ⊆ Cn for all n ∈ N. By the closedness of Cn, we get

co(Un) ⊆ Cn for all n ∈ N.
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Since co(Un+1) ⊆ co(Un) and co(Un) is weakly compact for all n ∈ N, {co(Un) : n ∈ N} is a family
of closed subsets of the weakly compact set co(U1) which has the finite intersection property.
Therefore we deduce

∅ 6=
⋂

n∈N
co(Un) ⊆

⋂
n∈N

Cn

and hence we can take v ∈ ⋂
n∈N

Cn ⊆W. So F(v) ≤ λn for all n ∈ N. Since λn ↓ 0 as n→ ∞, we get

F(v) ≤ 0 ⇐⇒ f (v) ∈ −K.

The proof is completed.

Corollary 3. Let W be a nonempty weakly compact and convex subset of a normed linear space (E, ‖·‖) with
origin θ, τ : R → R be a nondecreasing function satisfying lim

x→0+
τ(x) = 0 and h : W → R be a function.

Suppose that

(a) for any positive real number γ, {x ∈W : h(x) ≤ γ} is a nonempty closed subset of W,
(b) h is (τ)-adjconvex.

Then there exists v ∈W such that h(v) ≤ 0.

Proof. Take Y = R, K = [0,+∞) ⊂ R and e = 1. Then Y is a locally convex Hausdorff t.v.s. with
its zero vector θ = 0, K is a proper, closed and convex pointed cone in Y with intK = (0,+∞) 6= ∅,
and 1 ∈ intK. Define a partial ordering .K with respect to K by

x -K y⇐⇒ y− x ∈ K.

Then h is a mapping from W into Y and τ : Y → Y is a -K-nondecreasing function satisfying
the condition (A) as in Lemma 3. Clearly, conditions (a) and (b) respectively imply conditions (H1)
and (H2) as in Theorem 1. Hence all the assumptions of Theorem 1 are satisfied and therefore
the desired conclusion follows immediately from Theorem 1.

As a direct consequence of Theorem 1, we obtain the following existence result.

Theorem 2. In Theorem 1, if the condition (H1) is replaced with conditions (h1) and (h2), where

(h1) f is (e, K)-lower semicontinuous;
(h2) for any positive real number γ, there exists x ∈W such that f (x) ∈ γe− K.

Then there exists v ∈W such that f (v) ∈ −K.

Proof. For any positive real number γ, by (h1), (h2) and Lemma 2, the set

{x ∈W : f (x) ∈ γe− K}

is a nonempty closed subset of W. Therefore, the condition (H1) as in Theorem 1 holds. Applying
Theorem 1, we can immediately obtain the conclusion.

Corollary 4. In Corollary 3, if the condition (a) is replaced with conditions (a1) and (a2), where

(a1) h is lower semicontinuous;
(a2) for any positive real number γ, there exists x ∈W such that h(x) ≤ γ.

Then there exists v ∈W such that h(v) ≤ 0.

Applying Theorem 1, we can establish an existence theorem of zeros for vector-valued functions
with K-adjustability convexity under an additional assumption.
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Theorem 3. In Theorem 1, if we further assume that f (x) ∈ K for all x ∈W, then the equation f (x) = θ has
at least one root in W.

Proof. By Theorem 1, there exists v ∈W such that f (v) ∈ −K. Therefore, by our hypothesis, we get

f (v) ∈ K ∩ (−K) = {θ},

which deduces f (v) = θ. Hence v is a root of f (x) = θ. The proof is completed.

As an immediate consequence of Theorem 3, we obtain the following new existence theorem.

Corollary 5. In Corollary 3 (or Corollary 4), if we further assume that h(x) ≥ 0 for all x ∈W, then the equation
h(x) = 0 has at least one root in W.

The following new existence and uniqueness theorem of zeros for vector-valued functions with
strictly (K, µ)-adjconvexity is established by applying Theorem 3.

Theorem 4. In Theorem 1, if we further assume µ(θ) = θ, f (x) ∈ K for all x ∈W and the condition (H2) is
replaced with (H3), where

(H3) f is strictly (K, µ)-adjconvex,

then the equation f (x) = θ has a unique root in W.

Proof. Applying Theorem 3, the equation f (x) = θ has at least one root in W. Assume that u, v ∈
W are two distinct roots of f (x) = θ. Since W is convex and µ(θ) = θ, we have 1

2 u + 1
2 v ∈ W

and µ
(

1
2 f (u) + 1

2 f (v)
)
= θ. By (H3), we get

µ

(
1
2

f (u) +
1
2

f (v)
)
− f

(
1
2

u +
1
2

v
)
∈ intK

which implies

f
(

1
2

u +
1
2

v
)
∈ −intK ∩ K = ∅,

a contradiction. Therefore, the equation f (x) = θ has a unique root in W. The proof is completed.

Corollary 6. In Corollary 3, if we further assume that τ(0) = 0, h(x) ≥ 0 for all x ∈W and the condition (b)
is replaced with

(b1) h is strictly (τ)-adjconvex,

then the equation h(x) = 0 has a unique root in W.

As an interesting application of Corollary 5, we prove the following minimization theorem.

Theorem 5. Let W be a nonempty weakly compact and convex subset of a normed linear space (E, ‖·‖) with
origin θ and g : W → R be a convex, lower semicontinuous and bounded below function. Then

arg min
x∈W

g(x) :=
{

y ∈W : g(y) = inf
z∈W

g(z)
}
6= ∅.

Moreover, if g is strictly convex, then arg min
x∈W

g(x) is a singleton set.

Proof. Since g is bounded below, inf
z∈W

g(z) exists. Let h : W → R be defined by

h(x) = g(x)− inf
z∈W

g(z) for x ∈W.
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Clearly, the following hold:

• h(x) ≥ 0 for all x ∈W,
• h is convex and lower semicontinuous.

Notice that for any γ > 0, there exists xγ ∈W such that g(xγ) < inf
z∈W

g(z) + γ. Thus, we have

• For any positive real number γ, there exists x ∈W such that h(x) ≤ γ.

Applying Corollary 5, there exists v ∈ W such that h(v) = 0, or equivalence, g(v) = inf
z∈W

g(z).

Hence arg min
x∈W

g(x) 6= ∅. Assume that there exist u, v ∈ arg min
x∈W

g(x) with u 6= v. So g(u) = g(v) =

inf
z∈W

g(z). Since W is convex, we have 1
2 u + 1

2 v ∈W. By the strict convexity of g, we get

g
(

1
2

u +
1
2

v
)
<

1
2

g(u) +
1
2

g(v) = inf
z∈W

g(z)

which leads a contradiction. Therefore arg min
x∈W

g(x) is a singleton set. The proof is completed.

Finally, by applying Theorem 5, we establish a new fixed point theorem which is original and quite
different from the well-known generalizations in the literature.

Theorem 6. Let W be a nonempty weakly compact and convex subset of a normed linear space (E, ‖·‖) with
origin θ and T : W → W be a affine and continuous mapping. If inf

x∈W
‖Tx− x‖ = 0, then T admits a fixed

point in X.

Proof. Define g : W → [0,+∞) by

g(x) = ‖Tx− x‖ for x ∈W.

Since T is affine and continuous, g is convex, continuous and bounded below function. By Theorem 5,
arg min

x∈W
g(x) 6= ∅. Therefore, there exists v ∈W such that

‖Tv− v‖ = g(v) = inf
z∈W

g(z) = inf
z∈W
‖Tz− z‖ = 0.

Hence, we get Tv = v. The proof is completed.

Remark 1. Theorems 1–6 and Corollaries 1–6 are completely original and quite different from the known results
in the relevant literature.

4. Conclusions

The convexity of functions or sets plays a significant role in almost all branches of mathematics,
physics, economics and engineering. In this paper, we introduce the concepts of K-adjustability
convexity and strictly K-adjustability convexity which respectively generalize and extend the concepts
of K-convexity and strictly K-convexity. Some new existence and uniqueness theorems of zeros for
vector-valued functions with K-adjustability convexity are established. As their applications, we obtain
existence theorems for minimization problem and fixed point problem which are original and quite
different from the known results in the relevant literature.
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