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Abstract: Two mappings Lw and Pw, in connection with Fejér’s inequality, are considered for the
convex and nonsymmetric monotone functions. Some basic properties and results along with some
refinements for Fejér’s inequality according to these new settings are obtained. As applications,
some special means type inequalities are given.
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1. Introduction

In 1906, L. Fejér [1] proved the following integral inequalities known in the literature as
Fejér’s inequality:

f
( a + b

2

) ∫ b

a
g(x)dx ≤

∫ b

a
f (x)g(x)dx ≤ f (a) + f (b)

2

∫ b

a
g(x)dx, (1)

where f : [a, b] → R is convex and g : [a, b] → R+ = [0,+∞) is integrable and symmetric to
x = a+b

2
(

g(x) = g(a + b − x), ∀x ∈ [a, b]
)
. If in (1) we consider g ≡ 1, we recapture the classic

Hermite–Hadamard inequality [2,3]:

f
( a + b

2

)
≤ 1

b− a

∫ b

a
f (x)dx ≤ f (a) + f (b)

2
.

In [4], two difference mappings L and P associated with Hermite–Hadamard’s inequality have been
introduced as follows:

L : [a, b]→ R, L(t) =
f (a) + f (t)

2
(t− a)−

∫ t

a
f (s)ds

P : [a, b]→ R, P(t) =
∫ t

a
f (s)ds− (t− a) f

( a + t
2

)
.

Some properties for L and P, refinements for Hermite–Hadamard’s inequality and some applications
were raised in [4] as well:
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Theorem 1 (Theorem 1 in [4]). Let f : I ⊂ R→ R be a convex mapping on the interval I and let a < b be
fixed in I◦. Then, we have the following:

(i) The mapping L is nonnegative, monotonically nondecreasing, and convex on [a, b]
(ii) The following refinement of Hadamard’s inequality holds:

1
b− a

∫ b

a
f (s)ds ≤ 1

b− a

∫ b

y
f (s)ds +

(y− a
b− a

) f (a) + f (y)
2

≤ f (a) + f (b)
2

,

for each y ∈ [a, b].
(iii) The following inequality holds:

α
f (t) + f (a)

2
(t− a) + (1− α)

f (s) + f (a)
2

(s− a)−

f (αt + (1− α)s) + f (a)
2

[αt + (1− α)s− α] ≥

α
∫ t

a
f (u)du + (1− α)

∫ s

a
f (u)du−

∫ αt+(1−α)s

a
f (u)du,

for every t, s ∈ [a, b] and each α ∈ [0, 1].

Theorem 2 (Theorem 2 in [4]). Let f : I ⊂ R→ R be a convex mapping on the interval I and let a < b be
fixed in I◦. Then, we have the following:

(i) The mapping P is nonnegative and monotonically nondecreasing on [a, b].
(ii) The following inequality holds:

0 ≤ P(t) ≤ L(t), f or all t ∈ [a, b].

(iii) The following refinement of Hadamard’s inequality holds:

f
( a + b

2

)
≤
[
(b− a) f

( a + b
2

)
− (y− a) f

( a + y
2

)]
+

1
b− a

∫ y

a
f (s)ds ≤ 1

b− a

∫ b

a
f (s)ds,

for all y ∈ [a, b].

The main results obtained in [4] (Theorems 1 and 2) are based on the facts that if f : [a, b] → R
is convex, then for all x, y ∈ [a, b] with x 6= y we have (see, [5,6]):

f
( x + y

2

)
≤ 1

y− x

∫ y

x
f (s)ds ≤ f (x) + f (y)

2
,

and

f (x)− f (y) ≥ (x− y) f ′+(y),

where f ′+(y) is the right-derivative of f at y.
Motivated by the above concepts, inequalities and results, we introduce two difference mappings,
Lw and Pw, related to Fejér’s inequality:

Lw : [a, b]→ R, Lw(t) =
f (a) + f (t)

2

∫ t

a
w(s)ds−

∫ t

a
f (x)w(x)dx,

Pw : [a, b]→ R, Pw(t) =
∫ t

a
f (x)w(x)dx− f

( a + t
2

) ∫ t

a
w(x)dx.

In the case that w ≡ 1, the mappings Lw and Pw reduce to L and P, respectively.
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In this paper we obtain some properties for Lw and Pw that imply some refinements for Fejér’s
inequality in the case that w is a nonsymmetric monotone function. Also, our results generalize
Theorems 1 and 2 from Hermite–Hadamard’s type to Fejér’s type. Furthermore as applications,
we find some numerical and special means type inequalities.

To obtain our respective results, we need the modified version of Theorem 5 in [7] which includes
the left and right part of Fejér’s inequality in the monotone nonsymmetric case.

Theorem 3. Let f : I ⊂ R→ R be a convex function on the interval I and differentiable on I◦. Consider a, b ∈ I◦

with a < b such that w : [a, b]→ R is a nonnegative, integrable and monotone function. Then

(1) If w′(x) ≤ 0 (w′(x) ≥ 0), a ≤ x ≤ b and f (a) ≤ f (b)
(

f (a) ≥ f (b)
)
, then

∫ b

a
f (x)w(x)dx ≤ f (a) + f (b)

2

∫ b

a
w(x)dx. (2)

(2) If w′(x) ≥ 0 (w′(x) ≤ 0), a ≤ x ≤ b and f (a) ≤ f ( a+b
2 )

(
f (a) ≥ f ( a+b

2 )
)
, then

f
( a + b

2

) ∫ b

a
f (x)w(x)dx ≤

∫ b

a
f (x)w(x)dx. (3)

The main point in Theorem 3 (1) (w′(x) ≤ 0), is that we have (2) for any x, y ∈ [a, b] with
f (x) ≤ f (y) without the need for w to be symmetric with respect to x+y

2 . Also similar properties hold
for other parts of the above theorem.

Example 1. Consider f (x) = 1
t and w(x) = 1

t2 for t > 0. It is clear that f is convex and w is nonsymmetric
and decreasing. If we consider 0 < x ≤ y, then from the fact that (y− x)2 ≥ 0 we obtain that

2
x + y

≤ x + y
2xy

.

This inequality implies that
2

x + y

(y− x
xy

)
≤ y2 − x2

2x2y2 .

It follows that
2

x + y

( 1
x
− 1

y

)
≤ 1

2x2 −
1

2y2 .

So ( 1
x+y

2

) ∫ y

x

1
t2 dt ≤

∫ y

x

1
t3 dt,

shows that f and w satisfy (3) on [x, y], where w is not symmetric. Also, we can see that f and w satisfy (2).

2. Main Results

The first result of this section is about some properties of the mapping Lw where the function w is
nonincreasing.

Theorem 4. Let f : I ⊂ R→ R be a convex function on the interval I and differentiable on I◦. Consider a, b ∈ I◦

with a < b such that w : [a, b] → R is a nonnegative and differentiable function with w′(x) ≤ 0 for all
a ≤ x ≤ b. Then

(i) The mapping Lw is nonnegative on [a, b], if f (a) ≤ f (t) for all t ∈ [a, b].
(ii) The mapping Lw is convex on [a, b], if f is nondecreasing. Also Lw is monotonically nondecreasing

on [a, b].
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(iii) The following refinement of (2) holds:

∫ b

a
f (x)w(x) ≤∫ b

y
f (x)w(x)dx +

f (a) + f (y)
2

∫ y

a
w(x)dx ≤ (4)

f (a) + f (b)
2

∫ b

a
w(x)dx,

for any y ∈ [a, b] with f (a) ≤ f (y).
(iv) If f is nondecreasing, then the following inequality holds:

t
∫ u

a
f (x)w(x)dx + (1− t)

∫ v

a
f (x)w(x)dx−

∫ tu+(1−t)v

a
f (x)w(x)dx ≤

t
f (u) + f (a)

2

∫ u

a
w(x)dx + (1− t)

f (v) + f (u)
2

∫ v

a
w(x)dx (5)

− f (tu + (1− t)v) + f (a)
2

∫ tu+(1−t)v

a
w(x)dx,

for any u, v ∈ [a, b] and each t ∈ [0, 1].
(v) If f ′ ∈ L([a, b]), then for each t ∈ [a, b] we have

|Lw(t)| ≤
(t− a)2

2

∫ t

a
w(x)| f ′(x)|dx. (6)

Furthermore when | f ′| is convex on [a, b], then:

|Lw(t)| ≤
t− a

2

[
| f ′(a)|

∫ t

a
(t− x)w(x)dx + | f ′(t)|

∫ t

a
(x− a)w(x)dx

]
. (7)

Proof. (i) We need only the inequality

∫ t

a
f (x)w(x)dx ≤ f (a) + f (t)

2

∫ t

a
w(x)dx,

for all t ∈ [a, b]. This happens according to Theorem 3 (1).
(ii) Without loss of generality for a ≤ y < x < b consider the following identity:

Lw(x)− Lw(y) = (8)

f (x) + f (a)
2

∫ x

a
w(s)ds− f (y) + f (a)

2

∫ y

a
w(s)ds−

∫ x

y
f (s)w(s)ds

Dividing with “x− y” and then letting x → y we obtain that

2L
′
+w(y)− f (a)w(y) + f (y)w(y) = f ′+(y)

∫ y

a
w(s)ds. (9)

Also from the convexity of f we have

f ′+(y) ≤
f (x)− f (y)

x− y
,
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which, along with the fact that w is nonincreasing, implies that

f ′+(y)
∫ y

a
w(s)ds ≤ f (x)− f (y)

x− y

∫ y

a
w(s)ds

≤ f (x) + f (a)
x− y

∫ x

a
w(s)ds− f (y) + f (a)

x− y

∫ y

a
w(s)ds (10)

+ [ f (y)− f (a)]w(y)− f (x) + f (y)
x− y

∫ x

y
w(s)ds.

So from (9) and (10) we get

L
′
+w(y) ≤ (11)

f (x) + f (a)
2(x− y)

∫ x

a
w(s)ds− f (y) + f (a)

2(x− y)

∫ y

a
w(s)ds− f (x) + f (y)

2(x− y)

∫ x

y
w(s)ds.

On the other hand from (8) and Theorem 3 (1), we have

Lw(x)− Lw(y)
x− y

≥

f (x) + f (a)
2(x− y)

∫ x

a
w(s)ds− f (y) + f (a)

2(x− y)

∫ y

a
w(s)ds− f (x) + f (y)

2(x− y)

∫ x

y
w(s)ds,

and, along with (11), we obtain that

Lw(x)− Lw(y)
x− y

≥ L
′
+w(y).

This implies the convexity of Lw(t).
For the fact that L is monotonically nondecreasing, from convexity of f on [a, b] we have

f ′+(y) ≥
f (y)− f (a)

y− a
,

for all y ∈ [a, b] and so

Lw(x)− Lw(y)
x− y

≥ L
′
+w(y) =

f ′+(y)
2

∫ y

a
w(s)ds +

f (a)w(y)
2

− f (y)w(y)
2

=
1
2

[
f ′+(y)

∫ y

a
w(s)ds +

(
f (a)− f (y)

)
w(y)

]
≥

1
2

[
f ′+(y)(y− a)−

(
f (y)− f (a)

)]
w(y) ≥ 0,

for any x > y.
(iii) Since Lw is monotonically nondecreasing we have 0 ≤ Lw(y) ≤ Lw(b), for all y ∈ [a, b] and so

f (y) + f (a)
2

∫ y

a
w(x)dx−

∫ y

a
f (x)w(x)dx ≤

f (b) + f (a)
2

∫ b

a
w(x)dx−

∫ b

a
f (x)w(x)dx,

which implies that

∫ b

y
f (x)w(x)dx +

f (a) + f (y)
2

∫ y

a
w(x)dx ≤ f (a) + f (b)

2

∫ b

a
w(x)dx. (12)
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Also, by the use of Theorem 3 (1) we get

∫ b

y
f (x)w(x)dx +

f (a) + f (y)
2

∫ y

a
w(x)dx (13)

≥
∫ b

y
f (x)w(x)dx +

∫ y

a
f (x)w(x)dx =

∫ b

a
f (x)w(x)dx.

Now from (12) and (13), we have the result.
(iv) Since Lw is convex, then from the fact that

Lw(tu + (1− t)v) ≤ tLw(u) + (1− t)Lw(v),

for any u, v ∈ [a, b] and each t ∈ [0, 1], we have the result.
(v) The following identity was obtained in [8]:

f (a) + f (t)
2

∫ t

a
w(x)dx−

∫ t

a
f (x)w(x)dx =

(t− a)2

2

∫ 1

0
p(s) f ′

(
sa + (1− s)t

)
ds, (14)

for any t ∈ [a, b] where

p(s) =
∫ 1

s
w
(
ua + (1− u)t

)
du +

∫ 0

s
w
(
ua + (1− u)t

)
du, s ∈ [0, 1].

Since w is nonincreasing, then we obtain

∫ 1

s
w
(
ua + (1− u)t

)
du ≤ w

(
sa + (1− s)t

)
(as + (1− s)t− a) =

w
(
sa + (1− s)t

)
(1− s)(t− a),

and ∫ 0

s
w
(
ua + (1− u)t

)
du ≤ w

(
sa + (1− s)t

)
(t− sa− (1− s)t) =

w
(
sa + (1− s)t

)
s(t− a).

So

|p(s)| ≤ w
(
sa + (1− s)t

)
(t− a), s ∈ [0, 1]. (15)

Now by the use of (15) in (14) we get

|Lw(t)| ≤
(t− a)3

2

∫ 1

0
w
(
sa + (1− s)t

)
| f ′(sa + (1− s)t)|ds, (16)

for any t ∈ [a, b]. Using the change of variable x = sa + (1− s)t and some calculations imply that

|Lw(t)| ≤
(t− a)2

2

∫ t

a
w(x)| f ′(x)|dx,

for any t ∈ [a, b]. Furthermore if | f ′| is convex on [a, b], then from (16) and by the use of the change of
variable x = sa + (1− s)t we get

|Lw(t)| ≤
(t− a)3

2

[
| f ′(a)|

∫ t

a

t− x
t− a

w(x)
dx

t− a
+ | f ′(t)|

∫ t

a

x− a
t− a

w(x)
dx

t− a

]
,

which implies that
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|Lw(t)| ≤
(t− a)

2

[
| f ′(a)|

∫ t

a
(t− x)w(x)dx + | f ′(t)|

∫ t

a
(x− a)w(x)dx

]
,

for any t ∈ [a, b].

Remark 1. (i) By the use of Theorem 3 (1), it is not hard to see that if w is nondecreasing on [a, b], then some
properties of Lw and corresponding results obtained in Theorem 4 may change. However the argument of proof
is similar. The details are omitted.

(ii) Theorem 4 gives a generalization of Theorem 1, along with some new results.

The following result is including some properties of the mapping Pw in the case that w is
nondecreasing.

Theorem 5. Let f : I ⊂ R→ R be a convex function on the interval I and differentiable on I◦. Consider a, b ∈ I◦

with a < b such that w : [a, b] → R is a nonnegative and continuous function with w′(x) ≥ 0 for all
a ≤ x ≤ b. Then

(i) Pw is nonnegative, if f (a) ≤ f
( a+t

2
)

for any t ∈ [a, b].
(ii) If for any x < y we have f (x) ≤ f ( x+y

2 ), then Pw is nondecreasing on [a, b].
(iii) If f ′ ∈ L([a, b]), then for each t ∈ [a, b] we have

|Pw(t)| ≤ (t− a)
[ ∫ a+t

2

a
w(x)(x− a)| f ′(x)|dx +

∫ t

a+t
2

w(x)(t− x)| f ′(x)|dx
]

. (17)

Furthermore when | f ′| is convex on [a, b], then:

|Pw(t)| ≤
[ ∫ a+t

2

a
w(x)(t− x)(x− a)dx +

∫ t

a+t
2

w(x)(t− x)2dx
]
| f ′(a)|+ (18)[ ∫ a+t

2

a
w(x)(x− a)2dx +

∫ t

a+t
2

w(x)(t− x)(x− a)dx
]
| f ′(t)|.

(iv) The following inequality holds:

Pw(t)− Lw(t) ≤
∫ t

a
f (x)w(x)dx, (19)

provided that f (a) ≤ f
( a+t

2
)

for all t ∈ [a, b].
(v) If for any x < y we have f (x) ≤ f ( x+y

2 ), then the following refinement of (3) holds:

f
( a + b

2

) ∫ b

a
w(x)dx ≤∫ t

a
f (x)w(x)dx + f

( a + b
2

) ∫ b

a
w(x)dx− f

( a + t
2

) ∫ t

a
w(x)dx ≤ (20)∫ b

a
f (x)w(x)dx,

for all t ∈ [a, b].

Proof. (i) It follows from Theorem 3 (2).
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(ii) Suppose that a ≤ x < y < b. So from Theorem 3 (2) and the facts that w is nondecreasing and
f is convex, we get

Pw(y)− Pw(x) =∫ y

a
f (t)w(t)dt− f

( a + y
2

) ∫ y

a
w(t)dt−

∫ x

a
f (t)w(t)dt + f

( a + x
2

) ∫ x

a
w(t)dt =∫ y

x
f (t)w(t)dt + f

( a + x
2

) ∫ x

a
w(t)dt− f

( a + y
2

) ∫ y

a
w(t)dt ≥

f
( x + y

2

) ∫ y

x
w(t)dt + f

( a + x
2

) ∫ x

a
w(t)dt− f

( a + y
2

) ∫ y

a
w(t)dt ≥

f
( x + y

2

)
(y− x)w(x) + f

( a + x
2

)
(x− a)w(a)− f

( a + y
2

)
(y− a)w(y) ≥[

f
( x + y

2

)
(y− x) + f

( a + x
2

)
(x− a)− f

( a + y
2

)
(y− a)

]
w(a) ≥ 0.

This completes the proof.
(iii) The following identity is obtained in [8]:

∫ t

a
f (x)w(x)dx− f

( a + t
2

) ∫ t

a
w(x)dx = (t− a)2

∫ 1

0
k(s) f ′

(
sa + (1− s)t

)
ds,

for any t ∈ [a, b], where

k(s) =


∫ s

0
w
(
ua + (1− u)t

)
du, s ∈ [0, 1

2 );

−
∫ 1

s
w
(
ua + (1− u)t

)
du, s ∈ [ 1

2 , 1].

By similar method used to prove part (v) of Theorem 4, we can obtain the results. We omitted the
details here.

(iv) By Theorem 3 (1), for any t ∈ (a, b] we have

∫ a+t
2

a
f (x)w(x)dx ≤

f
( a+t

2
)
+ f (a)

2

∫ a+t
2

a
w(x)dx ≤

f
( a+t

2
)
+ f (a)

2

∫ t

a
w(x)dx, (21)

and ∫ t

a+t
2

f (x)w(x)dx ≤
f
( a+t

2
)
+ f (t)

2

∫ t

a+t
2

w(x)dx ≤
f
( a+t

2
)
+ f (t)

2

∫ t

a
w(x)dx. (22)

If we add (21) to (22), we obtain∫ t

a
f (x)w(x)dx ≤

[
f
( a + t

2

)
+

f (a) + f (t)
2

] ∫ t

a
w(x)dx,

which is equivalent with

∫ t

a
f (x)w(x)dx ≤ −Pw(t) + Lw(t) + 2

∫ t

a
f (x)w(x)dx.

This implies the desired result.
(v) The left side of (20) is a consequence of assertion (i) and the following inequality:

∫ t

a
f (x)w(x)dx− f

( a + t
2

) ∫ t

a
w(x)dx ≥ 0,

for all t ∈ [a, b].
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Since Pw is nondecreasing we have Pw(t) ≤ Pw(b) for all t ∈ [a, b], i. e.

∫ t

a
f (x)w(x)dx− f

( a + t
2

) ∫ t

a
w(x)dx ≤∫ b

a
f (x)w(x)dx− f

( a + b
2

) ∫ b

a
w(x)dx.

Then we have the right side of (20).

Remark 2. (i) By the use of Theorem 3 (2) (w is nonincreasing on [a, b]) in the proof of Theorem 5, we can
obtain some different properties for Pw with new corresponding results. The details are omitted.

(ii) Theorem 5 gives a generalization of Theorem 2, along with some new results.

3. Applications

The following means for real numbers a, b ∈ R are well known:

A(a, b) =
a + b

2
arithmetic mean,

Ln(a, b) =
[ bn+1 − an+1

(n + 1)(b− a)

] 1
n

generalized log−mean, n ∈ R, a < b.

The following result holds between the two above special means:

Theorem 6. For any a, b ∈ R with 0 < a < b and n ∈ N we have

An(a, b) ≤ Ln
n(a, b) ≤ A(an, bn). (23)

In this section as applications of our results in previous section, we give some refinements for the
inequalities mentioned in (23).

Consider a, b ∈ (0, ∞) with a < b. Define{
f (x) = xn, x ∈ [a, b] and n ≥ 1;

w(x) = x−s, x ∈ [a, b] and s ∈ [0, 1) ∪ (1, ∞).

From (4) with some calculations we have

bn−s+1 − an−s+1

n− s + 1
≤

bn−s+1 − tn−s+1

n− s + 1
+

an + tn

2

( t1−s − a1−s

1− s

)
≤

an + bn

2

( b1−s − a1−s

1− s

)
,

for all t ∈ [a, b], which implies that

(b− a)Ln−s
n−s(a, b) ≤

(b− t)Ln−s
n−s(t, b) + A(an, tn)

( t1−s − a1−s

1− s

)
≤ (24)

A(an, bn)
( b1−s − a1−s

1− s

)
.

Inequality (24) gives a refinement for the right part of (23).
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In the case that s = 1 we have

(b− a)Ln−1
n−1(a, b) ≤ (b− t)Ln−1

n−1(t, b) + ln
t
a

A(an, tn) ≤ ln
t
a

A(an, bn).

In the case that s = 0 we get

Ln
n(a, b) ≤

( b− t
b− a

)
Ln

n(t, b) +
( t− a

b− a

)
A(an, tn) ≤ A(an, bn), (25)

for all t ∈ [a, b]. In fact inequality (25) is equivalent with the first inequality obtained in the applications
section of [4].

Now with the same assumption for f and w as was used to obtain (24), by the use of (20) we get:

An(a, b)
( b1−s − a1−s

1− s

)
≤

An(a, b)
( b1−s − a1−s

1− s

)
+ (t− a)Ln−s

n−s(t, a)− An(a, t)
( t1−s − a1−s

1− s

)
≤ (26)

(b− a)Ln−s
n−s(b, a),

for all t ∈ [a, b] and s ∈ [0, 1) ∪ (1, ∞). Inequality (26) gives a refinement for the left part of (23). Also if
we consider s = 1, then we obtain

ln
b
a

An(a, b) ≤ ln
b
a

An(a, b) + (t− a)Ln−1
n−1(t, a)− ln

t
a

An(a, t) ≤ (b− a)Ln−1
n−1(b, a),

for all t ∈ [a, b]. In a more special case, if we set s = 0, then we get:

An(a, b) ≤ An(a, b) +
( t− a

b− a

)[
Ln

n(t, a)− An(a, t)
]
≤ Ln

n(b, a),

for all t ∈ [a, b].
Finally we encourage interested readers to use inequalities (4)–(7) and inequalities (17)–(20),

for appropriate functions f and w to obtain some new special means types and numerical inequalities.
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2012, 57, 377–386.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.7153/mia-2018-21-54
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Main Results
	Applications
	References

