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Abstract: In this paper, we study a Markovian queuing system consisting of two subsystems of an
arbitrary structure. Each subsystem generates a multi-class Markovian arrival process of customers
arriving to the other subsystem. We derive the necessary and sufficient conditions for the stationary
distribution to be of product form and consider some particular cases of the subsystem interaction for
which these conditions can be easily verified.
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1. Introduction

The product form of the stationary distribution greatly simplifies the analysis of complex queueing
systems. In such systems, the stationary distribution of the network can be written as the product of the
distributions of its nodes with the arrival rates modified to reflect the routing of customers in the network.
Jackson [1] showed that a specific class of open queueing networks has a product-form stationary
distribution. Gordon and Newell [2] introduced product-form Markovian models for closed queueing
networks. Kobayashi [3] and Towsley [4] developed forms of state-dependent routing in a queueing
network, allowing a product-form solution. Baskett et al. [5] found product-form solutions for open,
closed or mixed queueing networks with multiple classes of customers and various service disciplines
and service time distributions. Surveys by Disney and König [6], Nelson [7] and Balsamo [8], as well
as books by Kelly [9], Ross [10], Whittle [11] and Walrand [12] cover various aspects of product-form
solutions for conventional queueing networks.

Gelenbe [13,14] proposed models of a queueing network with positive and negative customers:
the G-networks. These models, which include G-networks with signals [15], resets [16], and multiple
customer classes [17], radically extend the class of Markovian queueing systems with the product-form
stationary distributions. The complexity of such systems continues to increase, with the introduction
of new extensions of G-networks being an essential area of research [18,19].

In conventional queueing networks, each node in isolation can be represented by a birth and death
process. Nodes in a Markov network [20] are Markovian queueing systems whose behavior can be
represented by general discrete-state Markov processes. The details of the nodes’ internal structure can
be ignored. Each node of a Markov network can have three types of state changes: arrival, departure
and internal transitions, which are distinguished only by the rates or probabilities at which they occur.
A transition of the network as a whole involves changes at only one or two nodes. The former case
corresponds to a network transition consisting of an internal change at one node. The latter consists of
a departure transition at one node that triggers an arrival transition at another node determined by a
routing probability.
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Naumov [21] obtained the necessary and sufficient conditions for a product-form solution for a
Markov network consisting of two nodes, the first of which generates a Markovian arrival process
(MAP) of customers arriving to the second node. Chao et al. [20] obtained the necessary and sufficient
conditions for a general Markov network to be of product form. Chao and Miyazawa [22] extended the
notion of quasi-reversibility to Markov networks and applied it to the study of networks with triggered
movements and positive and negative signals. In [23], Chao provided an overview of product-form
Markov networks.

The procedure for establishing the existence of a product-form stationary distribution for Markov
networks includes a solution of a system of nonlinear equations [20]. The objective of this paper
is to simplify this procedure for some Markov networks so that it can be easily applied in practice.
We consider two-node Markov networks and multi-class Markovian arrival processes (MMAP). In
Section 2, we formulate the basic properties of MMAP. In Section 3, we derive a matrix formulation of
the product-form conditions and develop a simple procedure to check whether a Markov network with
two customer classes is of product form. Examples given in Section 4 illustrate the theory developed in
the paper.

The following notation conventions are used throughout the article. Bold lowercase letters denote
vectors and bold capitalized letters denote matrices. Inequality x ≤ y represents xm ≤ ym for all vectors
x and y; δ(i, j) = 1 if i = j and δ(i, j) = 0 otherwise; I = [δ(i, j)] denotes the identity matrix; u is the
column vector of all ones; the i-th component of vector ei is equal to one, and the others are equal
to zero.

2. Multi-Class Markovian Arrival Process

Consider a multi-class arrival process T = ((τn, σn), n = 1, 2, . . .), where 0 ≤ τ1 ≤ τ2 ≤ . . . are the
arrival times and σn ∈ {1, 2, . . . , k} is the class of the n-th customer. Denote Nv(t) =

∑
τn≤ t

δ(v, σn) the

number of class v customers arrived during time t and N(t) = (N1(t), N2(t), . . . , Nk(t)). The process T
is a MMAP if for some random process X(t) with a finite set of states X the process (X(t), N(t)) is a
homogeneous Markov process and the following conditions are satisfied:

P{X(t + ε) = j,
k∑

v=1
Nv(t + ε) >

k∑
v=1

nv + 1|X(t) = i, N(t) = n} = o(ε),

P{X(t + ε) = j, N(t + ε) = n|X(t) = i, N(t) = n} = δ(i, j) + A0(i, j) + o(ε),
P{X(t + ε) = j, N(t + ε) = n + ev|X(t) = i, N(t) = n} = Av(i, j) + o(ε), v = 1, 2, . . . , k,

(1)

for all i, j ∈ X, t, ε > 0, and for all nonnegative integer vectors n of length k [24]. In this case, the
probability of more than one arrival in the interval of length ε is o(ε) and the process (X(t), N(t)) is
a Markov process that is homogeneous in time and in the second component [25]. That is, for all
0 ≤ k ≤ n, i, j ∈ X and s, t ≥ 0 we have:

P{X(s + t) = j, N(s + t) = n|X(s) = i, N(s) = k} = pi, j(n− k, t).

The phase process X(t) is a time-homogeneous Markov chain with a matrix of transition
probabilities:

P(t) =
∑
n≥0

P(n, t),

where P(n, t) =
[
pi, j(n, t)

]
[25]. It follows from (1) that matrices Av = [Av(i, j)], i, j ∈ X, v = 0, 1, . . . , k,

which characterize MMAP, have the following properties [26,27]:

1. Matrix A0 has non-negative off-diagonal elements.
2. Matrices Av, v = 1, 2, . . . , k, are non-negative.
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3. The matrix

A =
k∑

v=0

Av (2)

is the generator of the phase process.

Transition probability matrices P(n, t) can be calculated by the recursion [27]

P(0, t) = eA0t, P(n, t) =
k∑

v = 1
nv > 0

t∫
0

P(0, t− x)AvP(n− ev, x)dx, n , 0.

If matrices P(n, t) are known, the joint probability distribution of the number of arrivals in disjoint
intervals can be calculated as:

P{N(
r∑

j=0
t j) −N(

r−1∑
j=0

t j) = kr, r = 1, 2, . . . , m} =qP(t0)P(k1, t1)P(k2, t2) . . .P(km, tm)u,

k1, k2, . . . , km ≥ 0,t0, t1, . . . , tm > 0,m = 1, 2, . . .

where q = [qi] is a row vector of the initial probability distribution of the phase process, qi = P{X(0) = i}.
Consider the MAP of class v customers. It is characterized by transition probability matrices

Pv,m(t) =
∑

n ≥ 0
nv = m

P(n, t), k = 0, 1, . . . ,

which satisfy the following recursion:

Pv,0(t) = e(A−Av)t, Pv,n(t) =

t∫
0

Pv,0(t− x)AvPv,n−1(x)dx, n > 0. (3)

The joint probability distribution of the number of class v arrivals in disjoint intervals can be
calculated as:

P{Nv(
r∑

j=0
t j) −Nv(

r−1∑
j=0

t j) = kr, r = 1, 2, . . . , m} =qP(t0)Pv,k1(t1)Pv,k2(t2) . . .Pv,km(tm))u,

k1, k2, . . . , km ≥ 0,t0, t1, . . . , tm > 0,m = 1, 2, . . . .
(4)

If q is the stationary vector of A and satisfies qAv = avq, it follows from (3) that

qPv,n(t) = e−avt (avt)n

n!
q, n ≥ 0.

It follows from (4) that, in this case, the arrival process of class v customers is Poisson with rate
av = qAvu. Similarly, if matrix Av satisfies Avu = avu, it follows from (3) that

Pv,n(t)u = e−avt (avt)n

n!
u, n ≥ 0,

and the arrival process of class v customers is Poisson with rate av = qAvu (see also [28]). We next
show that the property qAv = avq is important for the existence of product-form distribution, in
contrast to the property Avu = avu, although in both cases the arrival processes are Poisson.
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3. Interacting Markovian Queueing Systems

We consider a Markov network with two nodes having state spaces X and Y. The first node
generates MMAP defined by non-zero matrices Λv = [Λv(i, j)], i, j ∈ X, v = 0, 1, . . . , n, and the second
node generates MMAP defined by non-zero matrices Mw = [Mw(k, r)], k, r ∈ Y, w = 0, 1, . . . , m. If the
nodes are operated in isolation, the first node could be represented by a homogeneous Markov process
with a generator:

Λ =
n∑

v=0

Λv. (5)

Also, the second could be represented by a homogeneous Markov process with a generator:

M =
m∑

w=0

Mw. (6)

When a class v customer arrives from the first node to the second, the state of the second node
changes according to a stochastic matrix Qv = [Qv(k, r)], k, r ∈ Y, v = 1, 2, . . . , n. When a class w
customer arrives from the second node to the first, the state of the first node changes according to a
stochastic matrix Pw = [Pw(i, j)], i, j ∈ X, w = 1, 2, . . . , m. The behavior of the system can be represented
by a homogeneous Markov process Z(t) = (X(t), Y(t)), with the finite state space Z = X×Y and
the generator

Θ = Λ0 ⊗ I +
n∑

v=1

Λv ⊗Qv +
m∑

w=1

Pw ⊗Mw + I⊗M0, (7)

where ⊗ denotes the Kronecker product.
Further, we assume that the generator Θ is irreducible. Therefore, the stationary distribution

π(i, k), i ∈ X, k ∈ Y, of the process Z(t) is the unique solution to the system of the following steady-state
equations:

∑
i∈X

π(i, r)Λ0(i, j) +
n∑

v=1

∑
i∈X

∑
k∈Y

π(i, k)Λv(i, j)Qv(k, r)+

+
m∑

w=1

∑
i∈X

∑
k∈Y

π(i, k)Pw(i, j)Mw(k, r) +
∑

k∈Y
π( j, k)M0(k, r) = 0, j ∈ X, r ∈ Y

(8)

which satisfy the normalizing condition: ∑
i∈X

∑
k∈Y

π(i, k) = 1. (9)

We next derive the conditions under which the stationary distribution has the product form:

π(i, k) = p(i)q(k), r ∈ X, k ∈ Y (10)

First, however, we need the following auxiliary result.

Theorem 1. The generators

L = Λ +
m∑

w=1

µw(Pw − I), (11)

M = M +
n∑

v=1

λv(Qv − I) (12)

are irreducible for any λv > 0, v = 1, 2, . . . , n, and µw > 0, w = 1, 2, . . . , m.
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Note that matrix L is the generator of a Markov process representing the behavior of the first node
with a multi-class Poisson arrival process with rates µw, w = 1, 2, . . . , m. Matrix M is the generator of
a Markov process representing the behavior of the second node with a multi-class Poisson arrival
process with rates λv, v = 1, 2, . . . , n. Therefore, Theorem 1 states that if the MMAP arriving to each
network node is replaced by a multi-class Poisson arrival process, then the generators of the Markov
processes representing each node in isolation are irreducible.

Theorem 2. For the stationary distribution of the process Z(t) to have the product form (10), it is necessary and
sufficient that vectors p = [p(i)] and q = [q(k)] satisfy the following equations:

p(Λ +
m∑

w=1

µw(Pw − I)) = 0, pu = 1, (13)

q(M +
n∑

v=1

λv(Qv − I)) = 0, qu = 1, (14)

n∑
v=1

p(Λv − λvI) ⊗ q(Qv − I) +
m∑

w=1

p(Pw − I) ⊗ q(Mw − µwI) = 0, (15)

λv = pΛvu, v = 1, 2, . . . , n, µw = qMwu, w = 1, 2, . . . , m. (16)

Hence, components p and q of the product form (10) can be found as the stationary distributions
of the nodes with Poisson arrival processes. However, this is not an easy task because the systems of
Equations (13) and (14) must be solved together with the conditions (16), and therefore the problem of
finding vectors p and q that satisfy the conditions of the theorem is nonlinear. In the next section, we
consider particular cases for which this problem can be simplified. The proofs of Theorems 1 and 2 are
provided in Appendix A.

Corollary 1. Let n = 1, m = 0, vector p be the solution of equations pΛ = 0, pu = 1, and vector q be the
solution of equations q(M + λ1(Q1 − I)) = 0, qu = 1, where λ1 = pΛ1u. Then, for the product form of the
stationary distribution of the process Z(t), it is necessary and sufficient that either pΛ1 = λ1p or qQ1 = q.

Proof. Indeed, according to Theorem 2, for the product-form stationary distribution π = (π(i, k)), it is
required that for any j ∈ X, r ∈ Y∑

i∈X

p(i)Λ1(i, j) − λ1p( j)


∑

k∈Y

q(k)Q1(k, r) − q(r)

 = 0,

which is equivalent to either pΛ1 = λ1p or qQ1 = q.
It was shown in Section 2 that if the condition pΛ1 = λ1p is fulfilled, then, in the stationary mode,

the MAP generated by the first node is Poisson with rate λ1 (see also [9,23]). Because of the PASTA
property (Poisson Arrivals See Time Averages) of the Poisson process, the stationary distribution of
the second node is equal to the stationary distribution of the Markov chain embedded at times before
the customer arrivals. However, then vector qQ1 is the stationary distribution of the Markov chain
embedded at times after the customer arrivals. Thus, the condition qQ1 = q implies that, for the
second node with Poisson arrivals, the Markov chains embedded before and after customer arrivals
have the same stationary distributions. �

Corollary 2. Let n = 1, m = 1, vector p be the solution of equations p(Λ + µ1(P1 − I)) = 0, pu = 1, where
µ1 = qM1u, and vector q be the solution of equations q(M + λ1(Q1 − I)) = 0, qu = 1, where λ1 = pΛ1u.
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Then for the product-form stationary distribution of the process Z(t), it is necessary and sufficient that at least
one of the following conditions is satisfied:

pΛ1 = λ1p and pP1 = p, (17)

pΛ1 = λ1p and qM1 = µ1q, (18)

qQ1 = q and pP1 = p, (19)

qQ1 = q and qM1 = µ1q. (20)

There exists a constant ψ , 0 such that∑
i∈X

p(i)Λ1(i, j) − λ1p( j) = ψ (
∑
i∈X

p(i)P1(i, j) − p( j)) (21)

for all j ∈ X, with
∑
i∈X

p(i)P1(i, j) , p( j), and

∑
k∈Y

q(k)M1(k, r) − µ1q(r) = ψ (q(r) −
∑
k∈Y

q(k)Q1(k, r)) (22)

for all r ∈ Y with
∑

k∈Y
q(k)Q1(k, r) , q(r).

Proof. According to Theorem 2, for the product-form stationary distribution π = (π(i, k)), it is required
that for any j ∈ §, r ∈ Y the following holds:( ∑

i∈X
p(i)Λ1(i, j) − λ1p( j)

)( ∑
k∈Y

q(k)Q1(k, r) − q(r)
)
+

+

( ∑
i∈X

p(i)P1(i, j) − p( j)
)( ∑

k∈Y
q(k)M1(k, r) − µ1q(r)

)
= 0.

(23)

The sufficiency of each of the five conditions given above for the product-form stationary
distribution π(i, k) is obvious. Let us prove that at least one of them is necessary for the stationary
distribution to be of product form.

Suppose that the stationary distribution π(i, k) has the product form. From (23), it follows that if
one of the vectors pΛ1 − λ1p, qM1 − µ1q, pP1 − p, qQ1 − q is a zero vector then there is another zero
vector in this group such that one of the conditions (17)–(20) is fulfilled. It remains to consider the case
when all these vectors are non-zero. Let X∗ be a set of j ∈ X such that p( j) ,

∑
i∈X

p(i)P1(i, j), and let Y∗

be a set of r ∈ Y such that q(r) ,
∑

k∈Y
q(k)Q1(k, r). Then, the following holds for all j ∈ X∗ and r ∈ Y∗:

∑
i∈X

p(i)Λ1(i, j) − λ1p( j)∑
i∈X

p(i)P1(i, j) − p( j)
=

∑
k∈Y

q(k)M1(k, r) − µ1q(r)

q(r) −
∑

k∈Y
q(k)Q1(k, r)

. (24)

Since the left-hand side of this equation does not depend on r, and the right-hand side does not
depend on j, then for j ∈ X∗ and r ∈ Y∗ they are both equal to some constant ψ and therefore (21) and
(22) are satisfied. Since vectors qM1 − µ1q and qQ1 − q are non-zero, it follows from (24) that for each
j ∈ X the relationships

∑
i∈X

p(i)Λ1(i, j) = λ1p( j) and
∑
i∈X

p(i)P1(i, j) = p( j) are both true or both false.

Then,
∑
i∈X

p(i)Λ1(i, j) , λ1p( j) for all j ∈ X∗ in (21), and therefore ψ , 0.�

The proof of the following Corollary 3 is similar to the proof of Corollary 2.
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Corollary 3. Let n = 2, m = 0, vector p be the solution of the linear system pΛ = 0, pu = 1, and vector
q be the solution of the linear system q(M + λ1(Q1 − I) + λ2(Q2 − I)) = 0, qu = 1, where λ1 = pΛ1u,
λ2 = pΛ2u. Then for the product-form stationary distribution of the process Z(t), it is necessary and sufficient
that at least one of the following conditions is satisfied:

pΛ1 = λ1p and pΛ2 = λ2p, (25)

pΛ1 = λ1p and qQ2 = q, (26)

qQ1 = q and pΛ2 = λ2p, (27)

qQ1 = q and qQ2 = q. (28)

There exists a constant ϕ , 0 such that∑
i∈X

p(i)Λ1(i, j) − λ1p( j) = ϕ (
∑
i∈X

p(i)Λ2(i, j) − λ2p( j)) (29)

for all j ∈ X with
∑
i∈X

p(i)Λ2(i, j) , λ2p( j), and

∑
k∈Y

q(k)Q2(k, r) − q(r) = ϕ (q(r) −
∑
k∈Y

q(k)Q1(k, r)) (30)

for all r ∈ Y with
∑

k∈Y
q(k)Q1(k, r) , q(r).

4. Examples

To demonstrate the applicability of the results obtained, let us consider several examples. Examples
1 and 2 illustrate the product-form conditions for n = 1 and m = 0.

Example 1. Consider a system with the first node consisting of a bunker with waiting space for one customer
and one server (Figure 1). There are always customers in the bunker. They arrive to the first node’s server,
bypassing the queue, only when the server and the waiting space are empty. In addition to the customers from
the bunker, there are customers from an external source forming a Poisson process with rate γ. An external
customer waits if, at the time of the customer’s arrival, the server is busy. If the waiting space is occupied, the
arriving customer is lost. All customers served by the first node arrive to the second node, consisting of one
server, without waiting space. The service times are exponentially distributed with parameters α and β for the
first and second servers, respectively. Because the first server is always busy, the departure process of the first
node is Poisson with rate α. The state of the first node can be represented by the number of customers in the
queue, and the state of the second node by the number of customers in service.
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Figure 1. A non-product-form system with a Poisson flow of customers arriving at the second server.

We here show that the stationary probability distribution of the network is not of product form.
This system is characterized by matrices

Λ =

[
−γ γ
α −α

]
, Λ1 =

[
α 0
α 0

]
, Q1 =

[
0 1
0 1

]
, M =

[
0 0
β −β

]
,



Mathematics 2019, 7, 799 8 of 12

and the solutions of the linear systems (13) and (14) are given by

p(0) =
α

α+ γ
, p(1) =

γ

α+ γ
, q(0) =

β

λ1 + β
, q(1) =

α
λ1 + β

.

where λ1 = pΛ1u = α. The steady-state equations for the stationary distribution of the process Z(t)
are as follows:

(α+ γ)π(0, 0) = βπ(0, 1), (β+ γ)π(0, 1) = α r(0, 0) + α π(1, 0) + α π(1, 1),
α π(1, 0) = γ π(0, 0) + β π(1, 1), (α+ β)π(1, 1) = γ π(0, 1).

It is easy to verify that the normalized solution of these equations is given by

π(0, 0) = αβ

αβ+(α+γ)2 , π(0, 1) = α(α+γ)

αβ+(α+γ)2 ,

π(1, 0) = γβ(α+γ)

(α+β)(αβ+(α+γ)2)
, π(1, 1) = γα(α+γ)

(α+β)(αβ+(α+γ)2)
.

It is clear that π(i, k) , p(i)q(k). Thus, although the second node has a Poisson arrival process,
this is not enough for the stationary distribution π(i, k) to have the product form. The product-form
condition of Corollary 1 does not hold since neither pΛ1 = λ1p nor qQ1 = q.

Example 2. Let the second node have w > 0 waiting spaces and no servers. An arriving customer takes one
of the free waiting spaces, if there are any. If all waiting spaces are occupied at the instant of arrival, then the
arriving customer and all those in the queue are considered served and leave the system.

Such a system with a Poisson arrival process can be represented by a Markov process with the state
setY = {0, 1, . . . , w}. This process has a uniform stationary distribution q(k) = 1/(w+ 1), k = 0, 1, . . .w,
and obviously satisfies the condition qQ1 = q. According to Corollary 1, the stationary distribution
π(i, k) has the product form.

Example 3. Now, to illustrate Corollary 2, consider a system with positive and negative customers. Each node
consists of one server without waiting space (Figure 2).
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Figure 2. A system with positive and negative customers.

The service times at the first and second servers are exponentially distributed with parameters α and β,
respectively. External Poisson processes of positive customers arrive to the servers with rates γ and δ, respectively.
A customer departing from the first server arrives to the second server as a positive customer. Arriving positive
customers are lost if the servers are busy. A customer leaving the second server comes to the first server as a
negative customer and—if the first server is busy—deletes the customer in service.

The matrices that specify the interaction of the nodes are as follows:

Λ =

[
−γ γ
α −α

]
, Λ1 =

[
0 0
α 0

]
, Q1 =

[
0 1
0 1

]
, M =

[
−δ δ
β −β

]
, M1 =

[
0 0
β 0

]
, P1 =

[
1 0
1 0

]
,
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and the solutions of the system of Equations (13) and (14) are given by the formulae

p(0) =
α+ µ1

α+ γ+ µ1
, p(1) =

γ

α+ γ+ µ1
, q(0) =

β

λ1 + δ+ β
, q(1) =

λ1 + δ
λ1 + δ+ β

, (31)

where
λ1 = αp(1), µ1 = βq(1). (32)

To check the conditions of Corollary 2, we first calculate the vectors that appear in them:

pΛ1 − λ1p = αp2(1)(1,−1), pP1 − p = p(1)(1,−1),
qM1 − µ1q = βq2(1)(1,−1), qQ1 − q = q(0)(−1, 1).

It is clear that the first four conditions of Corollary 2 are not satisfied for any positive parameters
α, β,γ, δ.

In the particular case of α = β = 2, δ = 1, γ = 3, the system of Equations (31) and (32) has the
unique solution λ1 = 1, µ1 = 1 and the parameter ψ from the fifth condition of Corollary 2 is ψ = 1.
Thus, in this case, the stationary distribution π(i, k) has the product form.

5. Conclusions

In this paper, we have studied a Markov network consisting of two nodes of arbitrary structure,
where each node generates a MMAP of customers arriving to the other node. We have derived the
necessary and sufficient conditions for the product-form stationary distribution of the network. Simple
criteria to check whether a Markov network with one and two customer classes is of product form have
been developed. Unlike the existing product-form criteria for Markov networks, the criteria obtained
in this article are readily applicable to establish the existence of a product-form stationary distribution
for specific Markovian queueing systems. The extension of the developed theory to networks with
more than two classes of customers is the subject of our future research.
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Appendix A

In order to prove Theorem 1, we use a criterion based on the existence of a non-negative vector
with positive and zero components, which we call semi-positive.

Lemma A1. A matrix B with non-negative off-diagonal elements is reducible if and only if there is a semi-positive
vector x such that Bx(i) = 0 for all indices i for which x(i) = 0.

Proof. If matrix B of order n is reducible, then there exists a partitionY, Z of the set X = {1, 2, . . . , n}
such that B(k, j) = 0 for all k ∈ Y, j ∈ Z. We define a semi-positive vector as follows: x( j) = 0 for
j ∈ Y, x( j) = 1 for j ∈ Z. If x(k) = 0, then k ∈ Y and we have

Bx(k) =
∑
j∈Y

B(k, j)x( j) +
∑
j∈Z

B(k, j)x( j) = 0,

since x( j) = 0 for j ∈ Y and B(k, j) = 0 for j ∈ Z.
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Let x be a semi-positive vector and Bx(k) = 0 for all k for which x(k) = 0. Let Y = {i|x(i) = 0}
andZ = {i|x(i) > 0}. Then the setsY and Z form a partition of the set X, and for every i ∈ Y we have

0 = Bx(i) =
∑
j∈Y

B(i, j)x( j) +
∑
j∈Z

B(i, j)x( j) =
∑
j∈Z

B(i, j)x( j).

Since all terms of the latter sum are non-negative and x( j) > 0 for j ∈ Z, it follows that B(i, j) = 0
for all j ∈ Y, j ∈ Z. Thus, matrix B is reducible. �

Proof of Theorem 1. Suppose that matrix L is reducible. Then, according to the lemma, there exists a
semi-positive vector x such that Lx(i) = 0 for all indices i for which x(i) = 0. Since the off-diagonal
elements of matrices Λ and Pw are non-negative, it follows that Λx(i) = 0 and Pwx(i) = 0 for all
w = 1, 2, . . . , m and all i for which x(i) = 0.

Vector y = x⊗ u is semi-positive and the following relationships hold:

Θy = Λ0x⊗ u +
n∑

v=1
Λvx⊗Qvu +

m∑
w=1

Pwx⊗Mwu + x⊗M0u =

= Λ0x⊗ u +
n∑

v=1
Λvx⊗ u +

m∑
w=1

Pwx⊗Mwu + x⊗ (M−
m∑

w=1
Mw)u

= Λx⊗ u +
m∑

w=1
(Pw − I)x⊗Mwu.

(A1)

Since y(i, k) = 0 if and only if x(i) = 0, it follows that

(Θy)(i, k) = (Λx⊗ u +
m∑

w=1
(Pw − I)x⊗Mwu)(i, k) =

= (Λx)(i) +
m∑

w=1
((Pw − I)x)(i))(Mwu)(k) = 0

for all indices (i, k) for which y(i, k) = 0. Hence, matrix Θ is reducible. The obtained contradiction
proves the irreducibility of matrix L. The irreducibility of matrix M can be proved in a similar fashion.
�

Proof of Theorem 2. Note that if a stationary distribution π = (π(i, k)), i ∈ X, k ∈ Y has the product
form π = p⊗ q, the system of steady-state equations πΘ = 0 can be rewritten as

pΛ0 ⊗ q +
n∑

v=1

pΛv ⊗ qQv +
m∑

w=1

pPw ⊗ qMw + p⊗ qM0 = 0. (A2)

First, we show that if the vectors p = (p(i)), i ∈ X, and q = (q(k)), k ∈ Y, satisfy Equations (13)
and (14), then the left-hand sides of (15) and (A2) coincide. We rewrite (13) and (14) as follows:

pΛ0 = µ p−
m∑

w=1

µwpPw −

n∑
v=1

pΛv, (A3)

qM0 = λq−
n∑

v=1

λvqQv −

n∑
w=1

qMw. (A4)
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Using these expressions, the following relationships can be derived:

pΛ0 ⊗ q +
n∑

v=1
pΛv ⊗ qQv +

m∑
w=1

pPw ⊗ qMw + p⊗ qM0 =

= (µ p−
m∑

w=1
µwpPw −

n∑
v=1

pΛv) ⊗ q +
n∑

v=1
pΛv ⊗ qQv+

+
m∑

w=1
pPw ⊗ qMw + p⊗ (λq−

n∑
v=1

λvqQv −
n∑

w=1
qMw) =

=
n∑

v=1
p(Λv − λvI) ⊗ qQv +

m∑
w=1

pPw ⊗ q(Mw − µwI)−

−

n∑
v=1

p(Λv − λvI) ⊗ q−
m∑

w=1
p⊗ q(Mw − µwI) =

=
n∑

v=1
p(Λv − λvI) ⊗ q(Qv − I) +

m∑
w=1

p(Pw − I) ⊗ q(Mw − µwI).

(A5)

Now we prove the necessity of conditions (13)–(15). Let the vector of the stationary probabilities
be represented as π = p ⊗ q. By post-multiplying (15) by matrix I ⊗ u, we obtain (13), and by
post-multiplying (15) by matrix u ⊗ I, we obtain (14). As it was proved previously, the systems
of Equations (14) and (A2) are equivalent. Therefore, conditions (13)–(15) are necessary for the
product-form stationary distribution. Let us now prove the sufficiency of these conditions.

If the stochastic vectors p = (p(i)), i ∈ X, and q = (q(k)), k ∈ Y, satisfy conditions (13)–(15),
then due to (A5), vector π = p ⊗ q is a solution of the system of steady-state Equation (A2). Since
the generator Θ of process Z(t) is irreducible, the normalized solution of this system is unique and
therefore vector π = p⊗ q is the stationary distribution of the process. �
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