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Abstract: We model the growth, dispersal and mutation of two phenotypes of a species using
reaction–diffusion equations, focusing on the biologically realistic case of small mutation rates.
Having verified that the addition of a small linear mutation term to a Lotka–Volterra system limits
it to only two steady states in the case of weak competition, an unstable extinction state and a stable
coexistence state, we exploit the fact that the spreading speed of the system is known to be linearly
determinate to show that the spreading speed is a nonincreasing function of the mutation rate, so that
greater mixing between phenotypes leads to slower propagation. We also find the ratio at which the
phenotypes occur at the leading edge in the limit of vanishing mutation.

Keywords: invasive species; linear determinacy; population growth; mutation; spreading speeds;
travelling waves

1. Introduction

The speed at which a species expands its range is a fundamental parameter in ecology, evolution
and conservation biology. Knowledge of this speed enables us to predict the ability of a species
to keep up with the rate at which the climate changes or the rate at which an exotic species invades,
representing two prominent ecological challenges [1,2]. It is known that traits such as dispersal and
population growth affect the rate at which a species expands its range, and there has been a suggestion
in recent work that polymorphism in traits could cause a species invasion to occur at a faster rate
than a single morph would in isolation [3,4]. Understanding the effect that each trait of a species
has, and could potentially have, on its rate of spread is therefore important to understanding how
the spread of a species can evolve.

Most common models of invasions in population dynamics incorporate aspects of dispersal and
growth, e.g., works by the authors of [5–8], however the mutation of one phenotype to another has
been a less common inclusion. Even the addition of a simple mutation term can dramatically affect
the behaviour of a model. A review of Cosner [9] singles out two models that involve mutation and
multiple dispersal strategies in a population of a species: the model introduced in Elliott and Cornell [3]
to investigate dispersal polymorphism for two morphs, in which a simple linear mutation is used,
and the model of Bouin et al. [10], motivated by the destructive invasion of cane toads across northern
Australia, in which mutations are considered to act as a diffusion process in the phenotype space.

Elliott and Cornell assume that the spread rate of the two phenotypes in their system, usually referred
to as the spreading speed, is determined by the linearisation of their system at the extinction state zero.
This assumption can be rigorously proved to hold under reasonable conditions on the parameters;
see the framework of Girardin [11], which applies in particular to this model, and also, for an alternative
approach, Morris [12], where the assumption is proved using earlier results of Wang [13] in the case where
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the mutation rate is small, which is generally the case for all organisms since natural selection typically
acts to minimize mutation rate [14]. Moreover, in addition to being linearly determined, the spreading
speed equals the minimal speed of a class of travelling waves [11,12], mimicking well-known results
on travelling waves and spreading speeds for the Fisher–KPP equation [15–17].

Knowing that the rate of spread is linearly determinate and linked to travelling wave speeds
provides a powerful tool that we exploit here to deduce ecologically-important information about
the invasion of trait-structured species using the model introduced in [3]. In particular, we establish
results on the dependence of spreading speeds on the mutation rate, and on the composition
of the leading edge of minimal speed travelling waves in the limit of vanishing mutation. Some of our
results focus, as in [3], on the case when different morphs have varying dispersal abilities or strategies,
and in addition, there is a trade-off between dispersal and growth. Such trade-offs are exhibited
by many species, including certain plants, insects and terrestrial arthropods; see, for instance,
the review of Bonte et al. [18] on the costs of dispersal.

Elliott and Cornell’s model examines the interaction between an establisher phenotype
with population density ne, and a disperser phenotype with population density nd, using a Lotka–Volterra
competition system:

∂ne

∂t
= De

∂2ne

∂x2 + rene(1−meene −mednd)− µene + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2 + rdnd(1−mdene −mddnd)− µdnd + µene.

(1)

The first term on the right hand side of each equation represents the dispersal of the phenotype
through diffusion, where De and Dd are the dispersal rates of each morph. The second term describes
the growth rate of the phenotype using a logistic term, this is similar to what is used in Fisher’s
model [16]. We use re and rd to represent the growth rate of each morph, mee and mdd represent
the intramorph competition, while med and mde represent the intermorph competition. The third
and fourth terms represent a linear mutation between the phenotypes at mutation rates of µe and µd,
where µ, e and d are constants. Note that we slightly modify the model in the work by the authors
of [3] here by replacing the parameters µe, µd in the work by the authors of [3] with µe and µd to enable
dependence on mutation to be investigated by variation of the single parameter µ. It is assumed that
all parameters of the system are positive real numbers.

As in the work by the authors of [3], we suppose a basic trade-off between dispersal and growth,
namely, that the establisher phenotype has the larger growth rate, while the disperser phenotype has
the larger dispersal rate,

re > rd, Dd > De. (2)

While trade-off (2) is not needed either in the proof of linear determinacy or in some of our
results on the dependence of spreading speed on mutation rate, we will make use of (2) to discuss
parameter-dependent options for the vanishing-mutation limit of spreading speeds in Section 3,
and in Section 4, where we characterize the composition of the leading edge of solutions of (1).
Further discussion on interesting possible implications of dispersal–growth trade-offs for this model
is presented in [12]. Following classical competition theory [19], we suppose throughout that
the intramorph competition is greater than the intermorph competition,

mdd > med, mee > mde. (3)

We also have in mind throughout that the mutation rate µ is relatively small in comparison to the
other parameters, to remain biologically realistic [14].
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Kolmogorov, Petrovskii and Piskunov [15] studied the existence of monotonic travelling wave
solutions of the scalar form of the equation

∂u
∂t

= A
∂2u
∂x2 + f (u). (4)

Throughout this work, we will consider travelling wave solutions to be solutions of the
Equation (4) of the form u(x, t) = w(x − ct), where w : Rn → Rn is called the wave profile
and c ∈ R is the speed of the wave. Kolmogorov, Petrovskii and Piskunov studied the case
when n = 1, A = d and f (u) = ru(1 − u), proposed by Fisher [16], and proved there is a
continuum of values of c for which a monotonic travelling wave solution exists, specifically if c ≥ c∗,
where c∗ = 2

√
rd is the minimal travelling wave speed, as well as establishing stability properties

of the minimal-speed front. Aronson and Weinberger [17] further studied this system and characterised
c∗ as a spreading speed. These results were extended to cooperative systems of equations for a suitable
class of nonlinearities f by Volpert, Volpert and Volpert [20].

The system (1) is of the form (4) if we let u = (ne, nd)
T ∈ R2, A be a diagonal matrix containing

the dispersal rates,

A =

(
De 0
0 Dd

)
, (5)

and f be a nonlinear function containing the growth, competition and mutation terms,

f (ne, nd) =

(
rene(1−meene −mednd)− µene + µdnd
rdnd(1−mdene −mddnd) + µene − µdnd

)
. (6)

In the following, we will use the notation u > v to denote that the ith component of each vector
satisfies ui > vi, for each i, similarly for u < v, u ≥ v and u ≤ v. We say that u ∈ Rn is positive
if u > 0. The notation u ∈ (a, b] denotes that the ith component of each vector satisfies the inequality
ai < ui ≤ bi for each i.

Elliott and Cornell investigated numerically the effect of varying the parameters on the spreading
speed of the system and interestingly found that, for certain values of growth and dispersal rate,
the system would spread faster in the presence of both phenotypes than just one phenotype would
spread in the absence of mutation [3]. They predict the spreading speed obtained for each set of
parameters in the limit of small mutation, using the front propagation method of van Saarloos [21],
making the assumption that the spreading speed of system (1) is linearly determinate in order to do so.
As µ→ 0 the three possible limiting speeds are

ve = 2
√

reDe, vd = 2
√

rdDd, v f =
|reDd − rdDe|√

(re − rd)(Dd − De)
. (7)

Condition (2) is enough to ensure that v f exists and is faster than ve and vd, which are
the spreading speeds of the two Fisher–KPP equations that would be satisfied by each phenotype
in isolation. The faster speed v f is predicted for parameters in the region of the positive quadrant
of (rd/re, De/Dd)-space, which satisfies the inequalities

Dd
De

+
rd
re

> 2,
De

Dd
+

re

rd
> 2, (8)

represented by the shaded area in Figure 1.
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Figure 1. Parameter regions showing when the faster invasion speed observed by the authors of [3]
occurs. In the upper left unshaded region the solution travels at the speed at which the establisher
travels without competition. In the lower right unshaded region the solution travels at the speed at
which the disperser travels without competition. In the shaded region the faster spreading speed
is observed.

The spreading speed of the system is said to be linearly determinate if it is the same as the spreading
speed of the system obtained when (1) is linearised about the (0, 0) equilibrium, namely,

∂ne

∂t
= De

∂2ne

∂x2 + (re − µe)ne + µdnd

∂nd
∂t

= Dd
∂2nd
∂x2 + (rd − µd)nd + µene.

(9)

This assumption is one that is suggested by the numerical studies in [3], but is not always true
even in the scalar case [21–24]. Stokes [25] calls the minimal wave speed c∗ “pulled” if it is equal
to the linearised spreading speed, that is, the speed of the front is determined by the individuals
at the leading edge. Similarly the minimal wave speed is said to be “pushed” if its speed is greater than
the linearised spreading speed, in this case the speed is determined by individuals behind the leading
edge. Typically there are qualitative differences in wave behaviour depending on whether the wave
is pushed or pulled, e.g., stability in the scalar case is discussed in the work by the authors of [26].

In the case of systems, most sufficient conditions for linear determinacy require a cooperative
assumption on the system. A system is cooperative when the off-diagonal elements of the Jacobian
matrix of f are always non-negative, i.e.,

∂ fi(u)
∂uj

≥ 0, if i 6= j. (10)

In biological terms this would mean that each phenotype benefits from the presence of others.
A cooperative system is useful mainly due to the existence of a comparison principle for such
systems [27,28], which is useful in particular in the proof of linear determinacy.

Theorem 1 (Comparison Principle [13], Theorem 3.1). Let A be a positive definite diagonal matrix. Assume
that f is a vector-valued function in Rn that is continuous and piecewise continuously differentiable in R,
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and that the underlying system (4) is cooperative. Suppose that u(x, t) and v(x, t) are bounded on R× [0, ∞)

and satisfy
∂u
∂t
− A

∂2u
∂x2 − f (u) ≤ ∂v

∂t
− A

∂2v
∂x2 − f (v)

If u(x, t0) ≤ v(x, t0) for x ∈ R, then

u(x, t) ≤ v(x, t), for x ∈ R, t ≥ t0.

Linear determinacy was shown to hold for some cooperative systems by Lui [27], and the result
was extended to more general cooperative systems by Weinberger, Lewis and Li [28], who assumed,
in particular, that for any positive eigenvector q of f ′(0),

f (αq) ≤ α f ′(0)q, for α > 0. (11)

This reduces to a condition imposed by Hadeler and Rothe [23] in the scalar case.
Unfortunately, we see from the Jacobian matrix (12) that our system (1) is only partially cooperative,

J f (ne, nd) =

(
re(1− 2meene −mednd)− µe µd− remedne

µe− rdmdend rd(1−mdene − 2mddnd)− µd

)
. (12)

In fact it is typically only cooperative at small population densities due to the relative smallness
of the mutation term (see Figure 2).

Figure 2. Solution of the system (1) with parameter values: De = 0.3, Dd = 1.5, re = 1.1, rd = 0.2,
mee = 1.0/1.2, mdd = 1.0, med = 0.8, mde = 0.7, µe = 0.001, µd = 0.00025. A Heaviside step function
was used as initial condition for each component.

However, Girardin [11] has recently established a linear determinacy result for a class
of non-cooperative reaction–diffusion systems that includes the case considered here; see Theorem 1.7,
together with Theorems 1.5 and 1.6, of Girardin [11], which apply here because when (ne, nd) = (0, 0),
the Jacobian (12) always has at least one positive eigenvalue, which can be seen from arguments
similar to those used in the proof of Proposition 3.1 below. An alternative proof of linear determinacy
for the particular system (1) is given by Morris [12], Theorems 4.5 and 2.15, using the linear determinacy
framework outlined by Wang [13]. This latter result is proved under the assumption of sufficiently
small mutation and intermorph competition, and uses the fact that (1) is cooperative at low population
densities to trap the nonlinearity f between two cooperative nonlinearities, f− and f+.

Exploiting this linear determinacy, we answer ecologically important questions pertaining to our
system in the case of small mutation rate. We first take advantage of a Perron–Frobenius structure
to investigate the effect of mutation on spreading speed, and show that an increase in mutation between
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morphs results in a decrease in the value of the spreading speed; see Theorem 3. This slowing of the speed
of propagation as the mutation rate increases is mathematically related, in fact, to the so-called ‘reduction
phenomenon’, that greater mixing lowers growth, discussed in Altenberg [29]. Secondly we investigate
the composition of the leading edge of invasion in the limit of small mutation rate, and demonstrate the
effects of dispersal, growth rate and mutation on this composition. As a by-product, we also characterise
the vanishing-mutation limit of the spreading speed for three different regimes of diffusion and growth
parameters in Theorem 2, which yields, in particular, a rigorous explanation of the parameter-dependent
selection criteria for the three possible limiting speeds (7) that were discussed in the work by the authors
of [3].

We draw the reader’s attention to two further interesting references that tackle questions
for systems related to (1). Griette and Raoul [30], motivated by an epidemiological model,
studied the existence and properties of travelling waves for a special case of system (1). They assume,
in particular, that De = Dd, of which advantage can be taken to prove an explicit formula
for the spreading speed and to characterise the shape of travelling wave solutions, including proving
non-monotone behaviour in one phenotype and asymptotic behaviour at ±∞. Clearly this assumption
of equal dispersal rates, though realistic for the modelling of wild type and mutant types of a virus in
the work by the authors of [30] and extremely useful mathematically, is not reasonable for the dispersal
polymorphism that is our focus here. Cantrell, Cosner and Yu [31] study (1) from the perspective not
of propagation phenomena but of dynamics on a bounded domain. They provide a detailed study
of equilibria, the phase plane and dynamics for a range of different parameters, including various
regimes for the competition parameters mee, med, med, mde.

The rest of the paper is organised as follows. Section 2 presents preliminary material on equilibria
of the system (1) and their relationship to equilibria for the related competition–diffusion system when
µ = 0. The effect of mutation on spreading speeds is discussed in Section 3, using the characterisation
of the spreading speed as the linearly-determined minimal speed of a family of travelling waves, which can
be expressed and analysed in terms of Perron–Frobenius matrix theory. Section 4 focusses on the parameter
regime, in which the dispersal and growth of both morphs play a role in the vanishing-mutation limit
of the spreading speed and derives an expression for the ratio of the morphs in the leading edge
of the invasion in this case. Some conclusions and remarks are given in Section 5.

2. Equilibria of the System

We begin with a brief discussion of the equilibria of the system (1) under our assumption (3)
on the competition parameters; see also the work by the authors of [31] for further investigation of
equilibria of (1). A much studied competition–diffusion system, similar to (1) but where there is no
mutation between phenotypes and both intramorph competition values equal one, is the Lotka–Volterra
system of equations [32–35],

∂ne

∂t
= De

∂2ne

∂x2 + rene(1− ne −mednd),

∂nd
∂t

= Dd
∂2nd
∂x2 + rdnd(1− nd −mdene).

(13)

Lewis, Li and Weinberger [5] note that a coexistence equilibrium for this system (13) exists
if, and only if, (1 − med)(1 − mde) > 0; that is, either when both med < 1 and mde < 1, or both
med > 1 and mde > 1. Note that the case where med < 1 and mde < 1 corresponds to the condition (3)
in our system (1). A stability analysis shows that this coexistence equilibrium is stable when med < 1
and mde < 1, and unstable when med > 1 and mde > 1, where here stability is understood in the sense
of stability of the ODE system given by (13) with De = Dd = 0. It should also be noted that the works
by the authors of [5,34] also study the case where one species invades the territory of another, while
we, and also the authors of [3,30], are concerned with two morphs of a species invading a previously
unoccupied territory.
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For our system (1) we can easily see that there only exist two constant equilibria by plotting
the nullclines of (6),

rene(1−meene −mednd)− µene + µdnd = 0, (14)

rdnd(1−mdene −mddnd)− µdnd + µene = 0, (15)

and observe where they intersect. The nullclines confirm for a specific choice of parameters that
we only have two non-negative equilibria and that they are the extinction equilibrium and a single
coexistence equilibrium (Figure 3a). The nullclines appear as they do in Figure 3a if the parameters
satisfy the conditions

µd
remed

<
re − µe
remee

,
µe

rdmde
<

rd − µd
rdmdd

, (16)

which aligns with our assumption that the mutation is relatively small. We note that it is clearly also
possible to deal with cases in which the mutation does not satisfy assumptions (16), however we are
only interested in the case of small mutation here.

-0.5 0.5 1.0 1.5 2.0 2.5 3.0
ne

-0.5

0.5

1.0

1.5

2.0

2.5

3.0
nd

(a)

-0.5 0.5 1.0 1.5 2.0 2.5 3.0
ne

-0.5

0.5

1.0

1.5

2.0

2.5

3.0
nd

(b)

Figure 3. (a) Nullclines of Equation (6) and (b) Nullclines of Equation (17). Parameter values De = 0.3,
Dd = 1.5, re = 1.1, rd = 0.2, mee = 1.0/1.2, mdd = 1.0, med = 0.8, mde = 0.7, µe = 0.01, µd = 0.025.
Each point at which the nullclines intersect represents an equilibrium. We can see that for this choice
of parameters Equation (6) has only two non-negative equilibria, while (17) has four.

However, simply plotting the nullclines of our system does not tell us the stability of each
equilibrium, we therefore consider a modified version of (6) without the mutation terms, which we
call g,

g(ne, nd) =

(
rene(1−meene −mednd)

rdnd(1−mdene −mddnd)

)
. (17)

Due to the relative smallness of the mutation terms, we can then introduce them as a perturbation
before using the implicit function theorem.

First we evaluate the equilibria of g. We can easily see that there are four equilibria by plotting
the nullclines,

rene(1−meene −mednd) = 0, (18)

rdnd(1−mdene −mddnd) = 0, (19)
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which we do in Figure 3b for certain parameters. The equilibria of (17) consist of an extinction
equilibrium (0, 0), two equilibria on the axes where one phenotype is present while the other is extinct,
(1/mee, 0), (0, 1/mdd), and a coexistence equilibrium(

mdd −med
meemdd −medmde

,
mee −mde

meemdd −medmde

)
which we refer to as (n∗e , n∗d) for simplicity. Note that (n∗e , n∗d) is a coexistence equilibria due
to the condition (3) specified earlier.

The Jacobian of (17) is

Jg(ne, nd) =

(
re(1− 2meene −mednd) −remedne

−rdmdend rd(1−mdene − 2mddnd)

)
. (20)

Substituting in values of ne and nd at each of the equilibria to the trace and determinant of (20)
we see that the equilibrium (n∗e , n∗d) is stable, while the other three are unstable. Note also that
the determinant of (20) is non-zero when evaluated at each of the equilibria of (17).

We now use the implicit function theorem [36] to determine how each equilibrium moves when
mutation is introduced to the system (17) as a perturbation. To do so, we suppose that there exists
µ > 0 such that

f (ne, nd) = g(ne, nd) + µM

(
ne

nd

)
(21)

where g is defined in (17) above, µ is a non-negative scalar parameter which we use to vary the mutation
and M is the matrix of mutation coefficients

M =

(
−e d
e −d

)
. (22)

The equilibria for our original system (1) satisfy f (ne, nd) = 0, where f is the nonlinearity (6), so that

g(ne, nd) + µM

(
ne

nd

)
= 0. (23)

As a consequence of the implicit function theorem, in a neighbourhood of µ = 0 and an equilibrium
(n̄e, n̄d) of g, there is a unique solution of (23) which is a continuously differentiable function of µ,
say h(n̄e,n̄d)

(µ), provided g is invertible at (n̄e, n̄d). This ensures we can differentiate (23) in order
to obtain an expression describing how an equilibrium (n̄e, n̄d)

T is perturbed upon the introduction
of mutation µ. Since the determinant of the Jacobian matrix Jg is not equal to zero at any of the equilibria,
we may invert Jg and obtain the expression

Θ(n̄e, n̄d) :=
d

dµ
h(n̄e ,n̄d)

(µ)

∣∣∣∣
µ=0

= −Jg(n̄e, n̄d)
−1M

(
n̄e

n̄d

)
. (24)

Clearly the extinction equilibrium (0, 0) remains at (0, 0), and the implicit function theorem ensures
the local uniqueness of this equilibrium for small µ > 0. Evaluating (24) at each of the other equilibria
of g, we see that the equilibrium (1/mee, 0) is perturbed into the lower right quadrant, because

Θ
(

1
mee

, 0
)
=

µe
rerd(mee −mde)

(
remed
mee

− rd
mee

(mee −mde),−re

)T
. (25)
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Note that the term (mee − mde) is positive due to the condition (3). Similarly, the equilibrium
(0, 1/mdd) is perturbed into the upper left quadrant, since

Θ
(

0,
1

mdd

)
=

µd
rerd(mdd −med)

(
−rd,

rdmde
mdd

− re

mdd
(mdd −med)

)T
. (26)

Finally, the coexistence equilibrium is perturbed a small amount in a direction which is dependant
on the parameters of the system,

Θ (n∗e , n∗d) =

(
ren∗e n∗d [µe(mdd −med)− µd(mee −mde)]

rdn∗e n∗d [µd(mee −mdd)− µe(mdd −med)]

)
. (27)

Moreover, since the Jacobian is a continuous function of µ, we know that for small µ 6= 0,
the stability of each of the equilibria remains the same as when µ = 0. Therefore, by introducing
a small amount of mutation to our system, we are left with two non-negative equilibria: an unstable
extinction state (0, 0) and a stable coexistence state (n∗e , n∗d).

3. The Role of Mutation in Spreading Speeds

In this and the following section, we derive predictions about the spreading of species modelled
by (1) by exploiting the linear determinacy of the system together with the fact that the spreading
speed can be characterised using travelling waves.

We being by deriving a µ-dependent expression for the minimal travelling wave speed
of the linearisation of (1) about the origin. If the general reaction–diffusion system (4) admits
a travelling wave solution u(x, t) = w(x− ct), then by substituting w(x− ct) in to the general form (4)
we may write the system in the form of a travelling wave equation:

Aw′′(ξ) + cw′(ξ) + g(w(ξ)) + µMw(ξ) = 0. (28)

We now have an ordinary differential equation in the single variable ξ = x− ct, the linearisation
of which about the origin is

Aw′′(ξ) + cw′(ξ) + g′(0)w(ξ) + µMw(ξ) = 0. (29)

Further, if we substitute the ansatz solution w(ξ) = e−βξq into (29), we obtain the eigenvalue problem(
βA + β−1(g′(0) + µM)

)
q = cq, (30)

where β > 0 is the spatial decay and q > 0 denotes the phenotypic distribution at the leading edge.
We define the matrix on the left hand side to be

Hβ,µ := βA + β−1(g′(0) + µM) = βA + β−1 f ′(0). (31)

For µ > 0 the matrix Hβ,µ has strictly positive off-diagonal elements and therefore
by the Perron–Frobenius theorem has a Perron–Frobenius eigenvalue, which is plotted in Figure 4
as a function of β. This Perron–Frobenius eigenvalue, which we denote ηPF

(
Hβ,µ

)
, is the larger

of the two real eigenvalues of Hβ,µ and has a one-dimensional eigenspace spanned by a positive
eigenvector. Further, this Perron–Frobenius eigenvalue is positive for every β, µ > 0.
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ηPF

Figure 4. Perron–Frobenius eigenvalue of Hβ, which exists when µ > 0. Parameters used are De = 0.3,
Dd = 1.5, re = 1.1, rd = 0.2, e = 0.001, d = 0.00025, µ = 1.

Proposition 1. The Perron–Frobenius eigenvalue of the matrix βA+ β−1 f ′(0) is strictly positive for all µ > 0,
β > 0

Proof. Multiplying the matrix βA + β−1 f ′(0) on the right by (d, e)T we obtain

(βA + β−1 f ′(0))

(
d
e

)
=

(
βDed + β−1red
βDde + β−1rde

)
> 0. (32)

By Corollary 1.6 of Crooks [37], this implies

ηPF(βA + β−1 f ′(0)) > 0. (33)

Definition 1. The minimal speed of the travelling wave solution w(ξ) = e−βξ q of (28) for a given µ > 0
is given by

η(µ) := inf
β>0

ηPF
(

Hβ,µ
)

. (34)

We define β(µ) to be the value of β at which η(µ) is attained.

Note that it follows from Gershgorin’s Circle Theorem that ηPF(Hβ,µ)→ ∞ as β→ 0 and β→ ∞,
which, together with Lemma 1.1 (5)–(6) of Wang [13] and the fact that β 7→ ηPF(β2 A+ f ′(0)) is a strictly
convex function of β by Lemma 3.7 of Crooks [37], implies that there exists a unique value β = β(µ)

at which infβ>0 ηPF(Hβ,µ) is attained.
In the case µ = 0, the matrix Hβ,0 is diagonal, and therefore does not have a Perron–Frobenius

eigenvalue. Instead the matrix Hβ,0 has the two eigenvalues

βDd + β−1rd, and βDe + β−1re, (35)

which we plot in Figure 5a as functions of β (for certain parameters). The minimum of the first curve
in (35) is 2

√
rdDd, which we note is the Fisher speed of the disperser vd, and occurs at the β-value

βd =
√

rd/Dd. (36)

Similarly, the minimum of the second curve in (35) is the Fisher speed of the disperser ve = 2
√

reDe,
and occurs at the β-value

βe =
√

re/De. (37)
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The third point of interest is the point at which the the two curves in (35) cross, which is v f ,
and occurs at the β-value

β f =

√
re − rd√

Dd − De
. (38)

By analogy with the Perron–Frobenius eigenvalue we consider the maximum of these two
eigenvalues for each β, which we plot in Figure 5b. Note here the similarity to the plot
of the Perron–Frobenius eigenvalue of Hβ,µ, seen in Figure 4.

0.0 0.5 1.0 1.5 2.0 2.5 3.0
β

1

2

3

4

5
η

(a)
0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

1

2

3

4

5
η

(b)

Figure 5. (a) Eigenvalues of Hβ in the case of µ = 0 when De = 0.3, Dd = 1.5, re = 1.1, rd = 0.2.
(b) η corresponding to each β for µ = 0.

Definition 2. We define the minimum over β of the maximum function of eigenvalues defined in (35) to be η0.
Likewise, we denote the value of β at which this minimum is obtained by β∗.

Note that, in Figure 5, the minimum over β of the maximum of the eigenvalues (35) is the point
at which they both meet, and therefore in this case η0 = v f and β∗ = β f .

However there are also regions of parameters in which the eigenvalues (35) meet in such a way
that this is not the case. The condition that the minima of the two eigenvalues lie on either side
of the point at which they meet, which is equivalent to the minimum value of β of the maximum
of the eigenvalues being at the crossing point, as in Figure 5, is√

rd
Dd

<

√
re − rd

Dd − De
<

√
re

De
, (39)

which implies the condition
re

rd
+

De

Dd
> 2 and

rd
re

+
Dd
De

> 2, (40)

imposed by Elliott and Cornell [3] ensuring that the faster spreading speed v f (7) is obtained in the limit
as µ → 0. Further, when condition (40) is satisfied, Hβ∗ ,0 is a multiple of the identity and has
a repeated eigenvalue with a two-dimensional eigenspace. We consider this case, where v f is obtained
as the limiting speed as µ → 0, to be of most biological interest, as unlike ve and vd, v f is then
dependent on the traits of both morphs and occurs as a result of polymorphism.

In the case that the condition (40) is not satisfied we would expect one of the individual speeds be
selected. For example if the dispersal and growth rates of each phenotype satisfy

re

rd
+

De

Dd
< 2 and

rd
re

+
Dd
De

> 2, (41)
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then the individual speed of phenotype d is selected. In this case the minimum over β of the maximum
of the eigenvalues (35) is no longer the crossing point of the eigenvalues, and is instead the minimum
of the eigenvalue curve βDd + β−1rd, therefore η0 = vd and β∗ = βd. Similarly, in the case

re

rd
+

De

Dd
> 2 and

rd
re

+
Dd
De

< 2, (42)

where the individual speed of phenotype e is selected, we see that η0 = ve and β∗ = βe. It is not
possible for both inequalities in (40) to be reversed while the condition (2) holds.

Proposition 2. If (40) holds, then η0 = v f and β∗ = β f . If (41) holds, then η0 = vd and β∗ = βd.
If (42) holds, then η0 = ve and β∗ = βe.

The values η0 and β∗, defined in Definition 2 using the eigenvalues of the matrices Hβ,0, are
shown in Morris [12] Theorems 5.6–5.11 to be the limits of η(µ) and β(µ) as the mutation rate µ→ 0.
In light of the linear determinancy of the spreading speed established in the work by the authors of
[11,12], this yields a rigorous characterisation of the limit of the spreading speed as µ → 0, which
shows, in particular, that the limiting speeds (7) predicted by Elliott and Cornell [3] using the front
propagation method of van Saarloos [21] are indeed what is obtained in the limit of small mutation.
Here we summarise the results and refer to Theorems 5.6–5.11 of Morris [12] for details of the proofs.

Theorem 2. In all three of the parameter regions (40)–(42),

lim
µ→0

η(µ) = η0, lim
µ→0

β(µ) = β∗,

where η0, β∗ are as defined in Definition 2, that is,

(i) if (40) holds, then

lim
µ→0

η(µ) =
|reDd − rdDe|√

(re − rd)(Dd − De)
, lim

µ→0
β(µ) =

√
re − rd√

Dd − De
,

(ii) if (41) holds, then
lim
µ→0

η(µ) = 2
√

rdDd, lim
µ→0

β(µ) =
√

rd/Dd,

(iii) if (42) holds, then
lim
µ→0

η(µ) = 2
√

reDe, lim
µ→0

β(µ) =
√

re/De.

Note that Tang and Fife [38] established the existence of travelling fronts for (1) for all speeds
greater than or equal to max{2

√
reDe, 2

√
rdDd}. Therefore, interestingly, in the case when (2) and (40)

are satisfied, the limit as µ→ 0 of the minimal front speed η(µ) is strictly larger than the minimal front
speed for (1) in the absence of mutation.

Since calculating the spreading speed η(µ) involves minimizing in β and the diffusion matrix A
is not a multiple of the identity, finding an explicit expression for η(µ) is not very tractable. However,
by adapting an argument from the work by the author of [37], we show that η(µ) is a nonincreasing
function of the mutation rate µ. A key ingredient of the proof is the following classical result of
Cohen [39] on convexity properties of Perron–Frobenius eigenvalues.
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Lemma 1 (Cohen [39]). Let P, Q ∈ Rn×n such that P is diagonal and Q has positive off-diagonal elements.
Then the Perron–Frobenius eigenvalue of P + Q is a convex function of P; that is, given diagonal matrices P1

and P2 and 0 < α < 1,

ηPF(αP1 + (1− α)P2 + Q) ≤ αηPF(P1 + Q) + (1− α)η PF(P2 + Q). (43)

This convexity, together with the fact that ηPF(M) = 0, can now be exploited to obtain
the following.

Theorem 3. η(µ) is a nonincreasing function of µ.

Proof. Take µ0 > 0, define Z to be the 2× 2 zero matrix, and define

P := β(µ0)
2 A− β(µ0)η(µ0)I + g′(0) (44)

Note that β(µ0) > 0 and

ηPF(β2 A− βη(µ0)I + g′(0) + µ0M) ≥ 0, ∀ β > 0, (45)

ηPF(β(µ0)
2 − β(µ0)η(µ0)I + g′(0) + µ0M) = 0. (46)

Now for any µ > 0, we know that

ηPF (P + µM) = µ ηPF

(
1
µ

P + M
)

, (47)

and in particular, ηPF(P + µM) and ηPF

(
1
µ P + M

)
have the same sign. Moreover,

ηPF

(
1

µ0
P + M

)
= 0. (48)

For any µ > µ0, we can write,

1
µ

P =
µ0

µ

(
1

µ0
P
)
+

(
1− µ0

µ

)
Z. (49)

Now in Lemma 1, let P/µ0 and Z be P1 and P2, respectively, and let α := µ0/µ. Then by the
convex dependence of ηPF,

ηPF

(
1
µ

P + M
)
≤ µ0

µ
ηPF

(
1

µ0
P + M

)
+

(
1− µ0

µ

)
ηPF (Z + M)

=
µ0

µ
ηPF

(
1

µ0
P + M

)
+

(
1− µ0

µ

)
ηPF (M) .

(50)

We know from (48) that the first term is equal to zero, and ηPF(M) = 0 implies the second term
is also zero. The inequality (50) therefore becomes

ηPF

(
1
µ

P + M
)
≤ 0, µ > µ0. (51)

Using (47), this implies
ηPF (P + µM) ≤ 0, µ > µ0, (52)
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and substituting in the full expression for P and dividing by β(µ0) then yields

ηPF(β(µ0)A + β(µ0)
−1(g′(0) + µM)) ≤ η(µ0), µ > µ0. (53)

Hence
inf
β>0

ηPF(βA + β−1(g′(0) + µM)) ≤ η(µ0). (54)

Since the expression on the left hand side of (54) is the definition of η(µ), we have

η(µ) ≤ η(µ0). (55)

Since this holds for any µ > µ0, we have therefore shown that η(µ) is a nonincreasing function of µ.

In light of the linear determinancy of the spreading speed [11,12], Theorem 3 establishes that
the spreading speed for the nonlinear system (1) is a nonincreasing function of the mutation rate
µ. Interestingly, this is related mathematically to the so-called “reduction phenomenon” discussed
by Altenberg [29], which roughly says that, under certain conditions, greater mixing results in lowered
growth. On the other hand, our result can be interpreted as showing that greater mixing results
in a slower speed of propagation. It is possible, in fact, to make use of Theorem 6(iii) [29] to give
a slightly different proof of Proposition 3.

4. Behaviour at the Leading Edge in the Limit µ→ 0

Here we study the Perron–Frobenius eigenvector qβ(µ) corresponding to the eigenvalue η(µ)

in the limit as the mutation rate µ → 0, with the aim of determining the ratio of the phenotypes
in the leading edge of an invasion. We do this under conditions (2) and (8) on the dispersal and growth
parameters, which, by Theorem (2)(i), ensures that the faster speed v f is obtained as µ → 0 and,
as we will see, results in both phenotypes being present in the leading edge. Throughout this section
we therefore assume that

re

rd
+

De

Dd
> 2 and

rd
re

+
Dd
De

> 2, (56)

as well as
re > rd, Dd > De, (57)

and for convenience in the following, define the quantities

a := β∗
2
Dd − rd, b := −β∗

2
De + re. (58)

Note that a straightforward calculation shows that the condition

a > 0 and b > 0 (59)

is equivalent to the condition (56). We consider this parameter regime to be of greatest biological
interest, since unlike ve and vd, the value v f is dependent on the traits of both morphs and occurs
as a result of polymorphism. Note that it is shown by (Girardin [40], Theorem 1.1) that the eigenvector
qβ(µ), which arises in the explicit solution of the linearised problem (29), does indeed also
characterise the asymptotic behaviour of travelling wave solutions of the nonlinear system (1) close
to the extinction state.

In the absence of mutation (µ = 0), Figure 5 illustrates the β-dependence of eigenvalues
of the matrix Hβ,0 for a choice of dispersal and growth parameters for which conditions (56) and (57)
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are satisfied. Under these conditions, the minimal travelling wave speed η0 is obtained at the point
at which the two eigenvalues of Hβ,0 meet, so that

η0 = β∗Dd + β∗
−1

rd = β∗De + β∗
−1

re, β∗ =

√
re − rd

Dd − De
. (60)

In this case, Hβ∗ ,0 is a multiple of the identity, so has a repeated eigenvalue with a two-dimensional
eigenspace, making it not obvious a priori what ratio between the two components one would expect
in the limit of vanishing mutation.

We therefore investigate the Perron–Frobenius eigenvector q of Hβ(µ),µ in the limit µ → 0,
restricting attention to the region of parameters in which (56) and (57) hold. Recall from Theorem 2
that limµ→0 η(µ) = η0 and limµ→0 β(µ) = β∗, and assume that the following limits exist.

η′(0) = lim
µ→0

η(µ)− η0

µ
, β′(0) = lim

µ→0

β(µ)− β∗

µ
. (61)

Note that we provide further numerical justification of these assumptions in Figure 6.
Rewriting (30) as a system of scalar equations and taking β = β(µ), we obtain(

β(µ)De +
(re − µe)

β(µ)
− η(µ)

)
+

µd
β(µ)

q2

q1
= 0, (62)(

β(µ)Dd +
(rd − µd)

β(µ)
− η(µ)

)
q2

q1
+

µe
β(µ)

= 0, (63)

for µ > 0. Then adding and subtracting η0 from (62) and (63), and dividing by µβ(µ)−1 yields

β∗
(βDe + β−1re)− (β∗De + β∗

−1
re)

µ
− β∗

η − η0

µ
− e + d

q2

q1
= 0 (64)(

β∗
(βDd + β−1rd)− (β∗Dd + β∗

−1
rd)

µ
− β∗

η − η0

µ
− d

)
q2

q1
+ e = 0 (65)

Now bearing in mind (61) and the fact that β∗ 6= 0, it follows from (64) that

q02

q01

:= lim
µ→0

q2

q1

exists, so that taking the limit µ → 0 in (64), (65), we obtain a system of two equations in the three
unknowns q02 /q01 , η′(0) and β′(0),

β∗
[

Deβ′(0)− reβ′(0)
β∗2 − η′(0)

]
− e + d

(
q02

q01

)
= 0, (66)

β∗
[

Ddβ′(0)− rdβ′(0)
β∗2 − η′(0)

](
q02

q01

)
− d

(
q02

q01

)
+ d = 0. (67)

To obtain a third equation, recall that the eigenvalues λ of Hβ,µ satisfy det (Hβ,µ − λI) = 0, so that

(λ− βDe − β−1(re − µe))(λ− βDd − β−1(rd − µd))− β−2µ2ed = 0, (68)

and further, at β = β(µ), we have

∂λ

∂β
= 0, when λ = η(µ). (69)
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Differentiating (68) with respect to β and setting β = β(µ), λ = η(µ) , we then multiply the result
by β3 to obtain

(β2(De + Dd)− (re + rd − µe− µd))β η(µ)− 2µ2ed = (70)

(β2De − (re − µe))(β2Dd + (rd − µd)) + (β2De + (re − µe)(β2Dd − (rd − µd)).

Then differentiating with respect to µ and letting µ → 0 yields a third equation relating β′(0)
and η′(0), namely

2β∗(bDd − aDe)β′(0) + η0(a− b)β′(0) + β∗(a− b)η′(0) = (bd− ae), (71)

where a and b are as defined in (58). Recall from (59) that a, b are both positive due to the assumption
(56) on the parameters De, Dd, re and rd.

We thus have a system of three equation (66), (67) and (71), which we solve. Eliminating η′(0)
and β′(0) gives the explicit expression for q02 /q01 :

qratio :=
q02

q01

=

√
be
ad

=

√
(re − β∗2De)e
(β∗2Dd − rd)d

> 0. (72)

Recall that this is the ratio of the two components of the eigenvector of (30) in the limit µ→ 0,
where q2 represents the disperser and q1 the establisher. This quantity therefore predicts the ratio
of the two morphs present in the leading edge of the minimal-speed travelling wave solution
to our system [40], which gives insight into the expected long-time behaviour of the solution of (1)
with Heaviside initial conditions that models the invasion of the two morphs into an empty region.
Note that since qratio > 0, both morphs play a role in the leading edge.

The presence of the two positive quantities a and b in (72) emphasizes that this expression holds
only in the zone where (56), which is equivalent to (59), is satisfied, in which case the faster speed
v f is obtained in the limit µ → 0. If instead either condition (41) or condition (42) holds, in which
case the µ → 0 limits of β(µ) and η(µ) are given by Theorem 3.5 (ii) or (iii) and depend either only
on De, re or only on Dd, rd, then up to normalisation, the µ → 0 limit q0 of the eigenvector qβ(µ)

is either (1, 0)T or (0, 1)T , corresponding to qratio = 0 or ∞. This is because the diagonal matrix
Hβ∗ ,0 = diag(β∗De +

re
β∗ , β∗Dd +

rd
β∗ ) is then no longer a multiple of the identity and the eigenvector

q0 satisfies Hβ∗ ,0 q0 = η0 q0. So in these parameter zones, one of the two phenotypes will dominate
the leading edge of the front in the limit µ → 0, in contrast to the zone when (56) holds, when (72)
is valid and both components play a role.

4.1. Discussion of Leading Edge Behaviour

In order to investigate the effects of parameters on the proportion of each morph in the leading
edge, note that using the substitutions r = rd/re, D = De/Dd, m = e/d, we can rewrite (72)
as a function of only three variables, the ratio of the growth rates r, the ratio of the dispersal rates D,
and the ratio of the mutation rates m, namely,

qratio =

√(
2D− rD− 1
2r− rD− 1

)
m. (73)

This is both biologically interesting and mathematically elegant.
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Figure 6. Numerical solutions of (a) η′(µ), (b) β′(µ) demonstrating convergence as µ → 0, obtained
using Mathematica. Parameter values are re = 1.1, rd = 0.2, De = 0.3, Dd = 1.5, e = 0.001 and
d = 0.00025.

It is instructive and biologically relevant to comment on the effect on qratio of varying parameters
r, D, and m. Figure 7 illustrates how the ratio of growth, dispersal and mutation rates affects
the proportion of each morph in the leading edge of the invasion wave.

We see in Figure 7a that as re increases (or rd decreases) there is an increase in the establisher
morph in the leading edge. However, as qratio does not fall below 1, there is always a larger amount
of the disperser morph in the leading edge. As we increase re to infinity (or decrease rd to 0) qratio tends
to
√
(1− 2/D)m. Observe also that in (i), qratio blows up at the value of r = rd/re at which, for the fixed

value of D = De/Dd in the plot, our assumption that a > 0 and b > 0 stops holding. This corresponds
to the (normalised) eigenvector q0 approaching the eigenvector (0, 1)T and the parameters D, r entering
the zone where (41) holds and limµ→0 η(µ) is the Fisher speed of the disperser morph vd instead of v f .
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Figure 7. Parameter sweeps of Equation (73). We fix D and m in (a), r and m in (b), and r and D in (c).
When fixed, parameters take the values r = 0.2/1.1, D = 0.3/1.5, m = 0.001/0.00025.

Figure 7b tells us that as we increase Dd (or decrease De), there is an increase in the disperser morph
in the leading edge. If De and Dd are close enough in value, it is possible that the establisher morph
outnumbers the disperser in the leading edge, which we see in the region in which qratio drops below
one. As we increase Dd to infinity (or decrease De to 0) qratio tends to

√
m/(1− 2r). In the case of (ii),
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the ratio qratio becomes zero at the value of D = De/Dd at which, for the fixed value of r = rd/re

in the plot, our assumption that a > 0 and b > 0 no longer holds. This corresponds to the (normalised)
eigenvector q0 approaching the eigenvector (1, 0)T and the parameters D, r entering the zone where (42)
holds and limµ→0 η(µ) is the Fisher speed of the establisher morph ve instead of v f .

In Figure 7c we see that if the mutation rate of a morph is increased it results in a decrease
in the density of that morph in the leading edge. Since the ratio m is not restricted to a particular
range, like r and D due to (2), we see that the mutation rate is also able to change which morph
is more prevalent in the leading edge. If we fix all parameters but the mutation rates in (73) we obtain
qratio =

√
km, where k > 0 is a constant. Thus qratio goes to zero as m grows smaller and blows up as m

tends to infinity. These provide us with interesting predictions which could be tested experimentally
with real biological systems.

Note that, of course, the results of the works by the authors of [11,12] on linear determinacy
and existence of travelling waves are valid for all parameter choices De, Dd, re, rd. The fact that the
expression qratio only holds in some parameter zones is just an expression of the fact that only for
certain parameters does the eigenvector that describes the leading edge of the front, which is strictly
positive whenever µ > 0, tend to a strictly positive eigenvector as µ→ 0.

Recall that we made assumptions (61) on the existence of η′(0) and β′(0), for which we now
provide some justification by numerically solving Equations (62), (68) and (70) as a system of
three equations in q2/q1, η(µ) and β(µ). Differentiating the latter two with respect to µ we plot
η′(µ), β′(µ) and q2/q1 as functions of µ in Figure 6 demonstrating the existence of η′(0), β′(0) and
qratio for this set of parameters. Note that as µ increases we see an increase in the proportion of the
phenotype nd, which is expected as for this set of parameters e > d.

Finally, we also plot β(µ) and η(µ) as functions of µ in Figure 8. As µ→ 0 we see β(µ) and η(µ)

converge to the values β∗ and η0, respectively. Further, as we increase µ we observe a decrease
in the minimal spreading speed η(µ), this is consistent with our result in Section 4.1.
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0.8659
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1.52995
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Figure 8. Numerical solutions of (a) β(µ) and (b) η(µ) demonstrating convergence to β∗ and η0,
respectively, as µ→ 0, obtained using Mathematica. The behaviour of η(µ) is consistent with our result
that η(µ) is a nonincreasing function of µ. Parameter values: re = 1.1, rd = 0.2, De = 0.3, Dd = 1.5,
e = 0.001 and d = 0.00025.

5. Conclusions and Remarks

This article exploits linear determinacy of the competition–diffusion-mutation system (1)
to establish ecologically-motivated results about the invasion properties of a species with two morphs.
These results constitute theoretical predictions of the model, of which the most significant are

(i) the spreading speed decreases as the mutation rate increases;
(ii) there are three possible spreading speeds in the limit of vanishing mutation rate, the choice

of which depends on the dispersal and growth parameters; and
(iii) the ratio of the phenotypes in the leading edge of the invasion.
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It would, of course, be valuable to compare these predictions with experimental or empirical
data. Note that on the one hand, for the parameter regime (40), so-called ‘anomalous spreading’ in [3],
the spreading speed in the vanishing mutation limit is faster than either phenotype would spread
in isolation. On the other hand, once mutation is present, the spreading speed is a nonincreasing function
of mutation. Although these predictions are rigorous consequences of the model, their juxtaposition
is slightly counter-intuitive from an ecological point of view.

Activity on propagation phenomena in models incorporating mutation has increased markedly
in recent years (see the works by the authors of [10,11,30,40] and many others) and is producing a
growing body of interesting results and open questions. A natural progression of our work would be
a detailed analysis of systems for N morphs, in particular, dependence of spreading speeds and the
composition of the morphs in the leading edge on parameters. The methods developed in Sections 3
and 4 have the clear potential to yield results in the N morph case. Also interesting is the role of
functional trade-offs in determining spreading speeds in competition–diffusion mutation models,
some first results on which are established in [12]. More wide-ranging questions include how best to
model mutation (for instance, should the rate µ be replaced by a density-dependent rate), whether
continuous or discrete trait models are most appropriate in a given setting, and how to pass rigorously
from a discrete setting with a large number of traits to the continuous-trait setting.
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