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Abstract: A differential equation of panel vibration in supersonic flow is established on the basis
of the thin-plate large deflection theory under the assumption of a quasi-steady temperature field.
The equation is dimensionless, and the derivation of its second-order Galerkin discretization yields
a four-dimensional system. The algebraic criterion of the Hopf bifurcation is applied to study the
motion stability of heated panels in supersonic flow. We provide a supplementary explanation for the
proof process of a theorem, and analytical expressions of flutter dynamic pressure and panel vibration
frequencies are derived. The conclusion is that the algebraic criterion of Hopf bifurcation can be
applied in high-dimensional problems with many parameters. Moreover, the computational intensity
of the method established in this work is less than that of conventional eigenvalue computation
methods using parameter variation.
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1. Introduction

Aircraft siding and skin, which are surrounded and fixed on a skeletal structure by an adhesive
or rivet, form the dimensional member of an aerodynamic shape. The panel and skin of the airfoil
structure have good strength and stiffness. Thus, they can withstand and transmit aerodynamic loads
while maintaining flight stability. The flight stability of high-speed aircraft is related to structural
fatigue life and flight safety, and this relationship has attracted increasing attention from aircraft
designers [1,2]. Therefore, research on the stability and instability mechanism of the panels is important
in overall aircraft design. Panel flutter is a self-excited vibration phenomenon, which is caused by
the coupling effect of the elastic force of aircraft surface skin, aerodynamic load and inertia force in
supersonic air flow. Xue and Mei incorporated thermal stress into the dynamic equation of the flutter
structure, and applied the finite element frequency domain method to study the flutter problem and
the fatigue life of two-dimensional panels at any temperature in supersonic airflow [3,4]. Cheng and
Mei et al. studied all of the possible types of panel behavior by means of finite time-domain model
formulation. In addition, they investigated the effects of airflow declination, temperature change and
aerodynamic damping on the stable boundary of panel flutter [5,6]. Azzouz and Mei provided new
insights of curved panels flutter, and Newton-Raphson iteration and eigenvalue solutions were used
to determine the panel deflection and flutter critical dynamic pressure, respectively[7]. Li and Song
investigated the aerothermoelastic characteristics of laminated panels, and a method for the thermal
flutter control of composite laminated panels in supersonic air flow [8,9].

Panel flutter is usually interpreted as a limit cycle oscillation. Once Hopf bifurcation occurs,
the panel will oscillate for ever, which is known as panel flutter. Zhang et al. investigated both the
local and global bifurcations of a rectangular, thin plate [10]. Ye studied the nonlinear aeroelastic flutter
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and stability of the panel [11].Yang et al. also provided a study on the nonlinear thermal flutter of
heated curved panels in supersonic air flow using the Newton iterative approach and Runge-Kutta
method [12]. In Hopf bifurcation, the equilibrium point changes from stable to unstable, and grows out
of the limit cycle when the nonlinear system parameter changes by a critical value. Li et al. studied the
dynamic behaviors of panel structures on supersonic aircrafts, by seeking the eigenvalus of the Jacobi
matrix of the dynamic system at bifurcation points [13]. Monfared Z. devoted to study the partial
differential equation governing panel motion from the Hopf bifurcation point of view by the fourth
and fifth-order Runge-Kutta method [14]. Zhang investigated the stability and bifurcation behaviors
of a two-dimensional, nonlinear, viscoelastic panel in supersonic flow, using analytical and numerical
methods [15]. Avramov et al. analyzed the dynamic instability of the parabolic shells in a supersonic
gas flow numerically [16]. Chen et al. studied the coefficients of the characteristic equation of the
first approximation system and its corresponding Hurwitz determinant, which is used to derive the
algebraic criterion of Hopf bifurcation. This method transforms the problem of searching for the system
bifurcation point into the problem of solving the root of the nonlinear equation [17,18]. Zhang et al.
developed the analytic expression of critical speed for the serpentine movement of a nonlinear vehicle
wheelset system on the basis of this method [19].

In this study, a differential equation of panel vibration in supersonic flow is established on the
basis of the thin-plate large deflection theory. The equation is dimensionless, and is transformed into
a four-dimensional ordinary differential equation system by second-order Galerkin discretization
derivation. The flutter dynamic pressure happens to correspond to the Hopf bifurcation point.
The traditional method of finding this Hopf bifurcation point is by means of solving the characteristic
equation, and judging when a pair of complex conjugate eigenvalues of the Jacobi matrix pass through
the imaginary axis, while all the others have negative real parts. Even though a numerical computation
of eigenvalues is feasible, the method mentioned above is difficult and tedious. Moreover, computation
is expensive. Therefore, it is more ideal to have a method stated in terms of the coefficients of the
characteristic equations, which is called as the algebraic criterion of Hopf bifurcation. The main
objective of this paper is to study the motion stability of heated panels in supersonic flow by the
algebraic criterion. The Hopf bifurcation point is found by solving an algebraic equation of the
bifurcation parameter, and thus analytical expressions of flutter dynamic pressure and panel vibration
frequencies are derived. Furthermore, we provide a supplementary explanation for the proof process
of a theorem.

2. Differential Equation of Heated Panel Flutter in Supersonic Flow

Figure 1 shows a two-dimensional panel with infinitely extended sides (see [11,20]), where L is
length, h is thickness, and ρ is density. The upper surface of the panel is subject to supersonic airflow
along the x-direction with density ρ∞, speed U∞, and match number M∞.

By using the thin-plate large deflection theory, assuming that the temperature field is quasi-steady,
and considering only lateral panel vibration, then the differential equations for the oscillation of
two-dimensional heated panels with infinitely elongated supersonic flow can be obtained as (see [20]):

Dw(4)
−

[
Eh

2(1− µ2)L

∫ L

0
(w′)2dx−NTh

]
w′′ + ρh

..
w− qa = 0 (1)

where D = Eh3

12(1−µ2)
is the bending stiffness of the panel, and E and µ stand for the modulus of elasticity

and Poisson’s ratio of the panel material, respectively.
In addition, w is the displacement along the z-direction. w(4), w′′ and

..
w correspond to the

fourth-order partial derivative of w to x, second-order partial derivative of w to x, and second-order
partial derivative of w to t, respectively. NT = E

1−µα∆T represents the temperature stress caused by the
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temperature variation ∆T, and α is the coefficient of linear thermal expansion. qa is aerodynamic force.
The expansion of aerodynamic force qa based on the first-order piston theory can be given as follows:

qa = −
2q∞
β

(
∂w
∂x

+
M2
∞ − 2

M2
∞ − 1

1
U∞

∂w
∂t

)
(2)

where q∞ =
ρ∞U2

∞

2 is flow pressure, β =
√

M2
∞ − 1 is the Prandtl–Glauert factor.
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Figure 1. Mechanical model of heated panels in supersonic flow.

For convenient analysis, the dimensionless parameter is incorporated and given by

w =
w
h

, x =
x
L

, τ =
t
T

(3)

where w = hw, x = Lx, t = Tτ. Then the dimensionless differential equations for the oscillation of
two-dimensional heated panels in supersonic flow can be derived as follows:

w(4)
−

[
6
∫ 1

0

(
w′

)2
dx−RT

]
w′′ +

..
w + p1w′ + p2

.
w = 0 (4)

>where p1 and p2 stand for the aerodynamic stiffness coefficient and aerodynamic damping coefficient,

respectively. RT = NThL2

D is a dimensionless parameter. The corresponding expressions are given by

p1 =
L3ρ∞U2

∞

D
√

M2
∞−1

= L3a
D , a =

ρ∞U2
∞√

M2
∞−1

p2 =
L2ρ∞U∞(M2

∞−2)
√
ρhD(M2

∞−1)
3
2
= L2b√

ρhD
, b =

ρ∞U∞(M2
∞−2)

(M2
∞−1)

3
2

(5)

where the two-dimensional panel is simply supported on the opposite side, and the boundary condition
is given by

w(0, τ) = w(1, τ) = 0,
∂2w(0, τ)

∂x2 =
∂2w(1, τ)

∂x2 = 0 (6)

ϕi(x) = sin iπx is set as the trial function that satisfies boundary condition (6), and qi(τ) is the
generalized coordinates. Then the displacement variable of the two dimensional panel is expressed
as follows:

w(x, τ) =
N∑

i=1

qi(τ) sin(iπx) =
N∑

i=1

qi(τ)ϕi(x) (7)
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where N is the Galerkin truncated order. q =

[
q1(τ)

q2(τ)

]
andϕ =

[
ϕ1(x)
ϕ2(x)

]
are set. Then, Equation (4)

is given by: [
ϕ(4)

]T
q−

[
6
∫ 1

0

(
ϕ
′T

q
)2

dx−RT

]
ϕ”T

q +ϕT ¨
q + p1ϕ

′T
q + p2ϕ

T .
q = 0 (8)

Equation (8) is multiplied at both ends and integrated upon the interval [0,1] on the basis of the
Galerkin method and the orthogonality of main mode. Then, it can be expressed as follows:[ ..

q1..
q2

]
+ p2

[ .
q1.
q2

]
+

[
π4
−RTπ2

−
8
3 p1

8
3 p1 16π4

− 4RTπ2

][
q1

q2

]
+

[
F1

F2

]
= 0 (9)

where
[

F1

F2

]
=

[
3π4q3

1 + 12π4q1q2
2

12π4q2
1q2 + 48π4q3

2

]
.

If we set
.
q1 = q3,

.
q2 = q4, then

..
q1 =

.
q3,

..
q2 =

.
q4. Thus, the controlling equation of the

two-dimensional panel system is transformed into a four-dimensional first-order nonlinear ordinary
differential equation


.
q1.
q2.
q3.
q4

 =


0 0 1 0
0 0 0 1

−

(
π4
−RTπ2

)
8
3 p1 −p2 0

−
8
3 p1 −

(
16π4

− 4RTπ2
)

0 −p2




q1

q2

q3

q4

−


0
0
F1

F2

 (10)

3. Algebraic Criterion of the Hopf Bifurcation

For a system with parameters
.
x = f(x,µ) (11)

where x ∈ Rn is the state variable, and µ ∈ R is bifurcation parameter. The isolated balance point of
system (11) is x = x0(µ) ( f (x0(µ),µ) = 0), which can consistently be transformed to the coordinate
origin. f(x,µ) is assumed to be analyzed to x and µ in the neighborhood of (0, 0) ∈ Rn×1, and f(x,µ) ≡ 0.
The Jacobi matrix of system (11) at balance point x = 0 is given by

A(µ) = Dx(0,µ) (12)

The classical Hopf theorem [19] is expressed as follows:

Theorem 1. (1) A(µ) = Dx(0,µ) has a pair of complex roots λ and λ, λ(µ) = α(µ)+iω(µ), where
ω(µ0) = ω0 > 0,α(µ0) = 0,α′(µ0) , 0; (2) The remaining n-2 roots of A(µ0) have negative real parts. Then,
the system (11) will obtain a Hopf branch at parameter µ = µ0. Thus, periodic motion solution exists at µ = µ0.

The characteristic equation det[A(µ) − λE] = 0 of the Jacobi matrix A(µ) can be expressed
as follows:

λn + a1(µ)λ
n−1 + a2(µ)λ

n−2 + · · ·+ an−1(µ)λ+ an(µ) = 0 (13)

Theorem 2. The necessary and sufficient condition for the real coefficient algebraic Equation (13) to have a pair
of pure imaginary zeros and the remaining n-2 roots have negative real parts is

(1) a1 > 0, a2 > 0, · · · , an > 0;

(2) ∆n−1 = 0, ∆i > 0(i = n− 3, n− 5, · · ·)
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where ai(i = 1, 2, · · · , n) is the coefficient of Equation (13), and ∆i(i = 1, 2, · · · , n) is the Hurwitz determinant
derived from ai(i = 1, 2, · · · , n), which is given by:

∆m =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 0 · · · 0
a3 a2 a1 1 · · · 0
a5 a4 a3 a2 · · · 0
...

...
...

... · · ·
...

a2m−1 a2m−2 a2m−3 a2m−4 · · · a2m

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(m = 1, 2, · · · , n) (14)

If i > n, then ai = 0.

Theorem 3. If the real coefficient algebraic Equation (13) has a pair of pure virtual roots and the remaining n-2
roots have negative real parts, then

ω2 =
∆n−3

∆n−2
an (15)

Proof. The real coefficient algebraic Equation (13) has a pair of pure imaginary zeros. Then Equation (13)
can be written as (

λ2 +ω2
)(
λn−2 + b1λ

n−3 + b2λ
n−4 + · · ·+ bn−3λ+ bn−2

)
= 0 (16)

Following the title, all the roots of the equation given by

λn−2 + b1λ
n−3 + b2λ

n−4 + · · ·+ bn−3λ+ bn−2 = 0 (17)

have negative real parts. The Equation (16) is expanded and compared with the coefficient of
Equation (13), which can be derived as:

a1 = b1, a2 = b2 +ω2

ai = bi +ω2bi−2, i = 3, 4, · · · , n− 2
an−1 = ω2bn−3, an = ω2bn−2

(18)

according to the definition of Equation (14), the Hurwitz determinant derived from Equation (17) is
∆i(i = 1, 2, · · · , n− 2). The highest-order Hurwitz determinant of Equation (17) with n−2 order is the
main determinant∆n−2, which has the following relationship with (n−2)-1 order diagonal determinant
∆n−3, and is given by

∆n−2 = bn−2∆n−3 (19)

No relationship similar to that of Equation (19) exists between the other n-4 adjacent two Hurwitz
determinants of Equation (17).

By contrast, Equation (18) is incorporated into Equation (14) to derive the following Equation (20),
which is based on the determinant characteristic.

∆i = ∆i(i = 1, 2, · · · , n− 2) (20)

Thus

bn−2 =
∆n−2

∆n−3
=

∆n−2

∆n−3
(21)

Substitute Equation (21) into an = ω2bn−2 in Equation (18), noting that ∆0 = ∆−1 = 1, then Equation (15)
is derived. �



Mathematics 2019, 7, 787 6 of 10

The above proof process, with respect to the literature [18], provides the appropriate explanations
and supplements.

Theorem 4. The feature Equation (13) of the Jacobi matrix A(µ) of system (11) is assumed to have feature roots
with negative real parts at µ = µ0, and the Hurwitz determinant satisfies the following equation:

∆n−3(µc) > 0

where the definition of µc is the same that in Equation (18). Then Equation (13) has a pair of pure virtual roots
±iωc at µ = µc, and the remaining n−2 roots have negative real parts. Assumptions W and V are the left and
right eigenvectors of the Jacobi matrix A(µc) that belong to the eigenvalue iωc, respectively, and WV = 1. If

Re(WBV) , 0

where B =
dA(µ)

dµ

∣∣∣∣
µ=µc

, µc = min
{∣∣∣µ− µ0

∣∣∣ : ∆n−1(µ) = 0
}
, then system (11) will present Hopf bifurcation at

µ = µc.

4. Hopf Bifurcation and Flutter of Heated Panels in Supersonic Flow

4.1. Panel Flutter in Supersonic Flowobtained by Hopf Bifurcation Criterion

First, the Hopf bifurcation point of heated panels in supersonic flow will be identified.
The balance point of system (10) is X0(0, 0, 0, 0), and the corresponding Jacobi matrix of the balance

point is

A =


0 0 1 0
0 0 0 1

−

(
π4
−RTπ2

)
8
3 p1 −p2 0

−
8
3 p1 −

(
16π4

− 4RTπ2
)

0 −p2

 (22)

The corresponding characteristic equation is

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 (23)

where the coefficient of each term is

a0 = 1
a1 = 2p2

a2 = 17π4
− 5π2RT + p2

2
a3 =

(
17π4

− 5π2RT
)
p2

a4 = 16π8
− 20π6RT + 4π4R2

T + 64
9 p2

1

(24)

Owing to the aerodynamic damping coefficient p2 = L2b√
ρhD

> 0, we only need to set RT <
17
5 π

2.

Then the first condition (14a) of theorem 2 will be satisfied, that is, the coefficients ai >
0(i = 0, 1, 2, 3, 4) of all terms of Equation (24) established. Second, the corresponding Hurwitz
determinants of each order are computed as follows:

∆1 = a1 = 2p2

∆2 = p2
(
17π4

− 5π2RT
)
+ 2p3

2
∆3 = p2

2

(
225π8

− 90π6RT + 9π4R2
T + 34π4p2

2 − 10π2RTp2
2 −

256
9 p2

1

) (25)
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∆1 > 0 and ∆2 > 0, then the critical flow speed could be computed as follows when ∆3 = 0:

U2
cr =

9
256

D
ρhL2

(
17π4

− 5π2RT
)
+

9
256

π2DM∞
ρ∞L3

√

N (26)

where N =
ρ2
∞L2

(ρh)2M2
∞

(
17π2

− 5RT
)2
+

(
80π2

− 16RT
)2

.

When p1 = p1cr =
L3ρ∞
M∞ U2

cr, Equation (23) will have a pair of pure imaginary zeros ±iω. On the
basis of Theorem 3, we can derive the following result

ω2 =
∆1

∆2
a4 =

2
(
16π8

− 20π6RT + 4π4R2
T + 64

9 p2
1cr

)
17π4 − 5π2RT + 2p2

2

(27)

where Q = 17π4
− 5π2RT. Vector W = (x1, x2, x3, x4) and V = (y1, y2, y3, y4)

T are assumed to be the
normalized left and right eigenvectors of matrix A that belong to eigenvalues ±iω. On the basis of
WA = iωW, AV = iωV, WV = 1, W and V can be given by

W = u

 3
8p1

[(
16π4

− 4RTπ2
)
(p2 + iω) + iω(p2 + iω)2

]
, p2 + iω,

3
8p1

[(
16π4

− 4RTπ2
)
+ iω(p2 + iω)

]
, 1

 (28)

V =

(
1,

3
8p1

[(
π4
−RTπ

2
)
−

(
ω2
− iωp2

)]
, iω,

3
8p1

[
iω

(
π4
−RTπ

2
)
−

(
iω3 +ω2p2

)])T

(29)

where u =
8p1

3p2(Q−6ω2)+6iω(Q−2ω2+p2
2)

On the basis of theorem 4, B =
dA(p1)

dp1

∣∣∣∣
µ=p1cr

=


0 0 0 0
0 0 0 0
0 8

3 0 0
−

8
3 0 0 0

,
the pure virtual roots ±iω at the neighborhood of parameter p1 = p1cr =

L3ρ∞
M∞ U2

cr can be expressed as

ζ1,2(p1) = α(p1) ± iω(p1) (30)

where α(p1) = 0, ω(p1) > 0. Then

W(p1)A(p1)V(p1) = α(p1) + iω(p1) (31)

when p1 = p1cr =
L3ρ∞
M∞ U2

cr

α′(p1cr) = Re(W(p1cr)B(p1cr)V(p1cr))

= ã+b̃

9p1

[
p2

2S2+4ω2(Q−2ω2+p2
2)

2
] > 0 (32)

where S = Q − 6ω2, ã = 18
(
Q− 2ω2 + p2

2

)
ω2

(
Qp2 − 2ω2p2

)
, b̃ = p2S

[
9
(
S1 −Qω2 +ω4

− p2
2ω

2
)
− 64p2

1

]
,

S1 =
(
16π4

− 4RTπ2
)(
π4
−RTπ2

)
. Therefore, the system (10) will present a Hopf bifurcation at

p1 = p1cr =
L3ρ∞
M∞ U2

cr. Thus, the panel system will undergo flutter in supersonic flow at U = Ucr.

4.2. Numerical Example

Take the mechanical properties of aluminum alloy, for example [12]. The mechanical properties
are shown in Table 1.
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Table 1. The mechanical properties of aluminum alloy.

Young’s
Modulus

E/GPa

Poisson’s
Ratio
µ

Mass
Density
ρ/(kg·m−3)

Thermal Expression
Coefficient
α/(10−6K−1)

78.55 0.3 2710 22.68

The geometry of the panel is defined by length L = 0.5m, and thickness h = 0.002m. Suppose
the flight height of a certain aircraft is 11 km.Therefore, the parameters of air flow are defined by
mass density, sound velocity a∞ = 295.065m/s, and Mach number M∞ = 5. According to the analysis
mentioned above, the bending stiffness D = 57.546N ·m can be obtained. Further, the values of the
parameters of the characteristic polynomical of the Jacobi matrix, which is showed in Equation (24),
and that of Hurwitz determinant in Equation (25) are computed as follows:

a0 = 1, a1 = 2.51248, a2 = 1308.34, a3 = 1641.61, a4 = 427937.36∆1 = 2.51248, ∆2 = 1645.57

As is seen, the coefficients of Equation (23), ∆1 and ∆2 are all positive numbers.
The critical speed value Ucr = 1219.0157m/s is done by means of making ∆3 = 0. The flutter

frequencyω = 25.5613Hz and α′(p1cr) = 1.01735 > 0 are obtained. In this case, the panel undergoes its
Hopf bifurcation at the equilibrium X0(0, 0, 0, 0). In other words, the heated panel flutter in supersonic
flow occurred at dynamic pressure p1cr = 234.99. Its Hopf bifurcation point is found by Equation (26),
which is the analytical expression of the flutter dynamic pressure. The analytical expressions of panel
vibration frequencies are derived by Equation (27) at the same time. When the dimensionless vibration
dynamic pressure p1 < p1cr is satisfied, the heated panel in supersonic flow is stable at the equilibrium
point. While the dimensionless vibration dynamic pressure p1 > p1cr is satisfied, the heated panel in
supersonic flow is unstable.

On the other hand, eigenvalues of the Jacobi matrix for different parameters are calculated by the
aid of software. Suppose that the dimensionless vibration dynamic pressures are 200, 234.99 and 260.

The eigenvalues of the Jacobi matrix for different pressures are shown in Table 2.

Table 2. Eigenvalues of the Jacobi matrix for different pressures.

Dimensionless Vibration Dynamic Pressure p1 Eigenvalues of Jacobi Matrix

200 −0.579477± 31.3121i
−0.579477± 18.0455i

234.99 −1.25624± 25.5613i
±25.5613i

260 −6.36051± 26.1808i
5.0391± 26.1808i

The calculation results show that there exists a pair of pure imaginary zeros, while the other
eigenvalues have negative parts for the matrix, where the dimensionless vibration dynamic pressure is
234.99. This has verified the results obtained from the the algebraic criterion of the Hopf bifurcation.
Moreover, the function of eigenvalues for the Jacobi matrix, with the flutter dynamic pressure as an
independent variable, is hard to get. Difficult and tedious numerical simulation must be carried out,
and then a numerical solution is obtained. Just as in Table 2, when the dimensionless vibration dynamic
pressure is 200 < p1cr, all the eigenvalues have negative parts. That is to say, any disturbance at the
equilibrium point will converge the equilibrium position by passing the time. When the dimensionless
vibration dynamic pressure is 260 > p1cr, the eigenvalues have positive parts. The equilibrium point is
unstable, and is surrounded by a stable limit cycle. That means the amplitude of panel vibration will
increase and finally vibrate forever.



Mathematics 2019, 7, 787 9 of 10

5. Conclusions

In this study, we established a differential equation for the vibration of heated panels in supersonic
flow on the basis of the thin-plate large deflection theory under the assumption of a quasi-steady
temperature field. According to the Galerkin method, the equation was applied to a second-order
Galerkin discretization, that yielded a four-dimensional ordinary differential system. We provided a
supplementary explanation for the proof process of a theorem. Different from the traditional method of
finding the Hopf bifurcation point, the analytic expressions of critical speed (or flutter critical dynamic
pressure) and flutter frequency under panel flutter, are obtained by means of the algebraic criterion of
the Hopf bifurcation, which need not calculate all eigenvalues of our Jacobi matrix for any parameter,
thus saving large amounts of computer time. A numerical example is taken to verify the results.
The eigenvalues of the Jacobi matrix for different pressures are calculated, which are in accordance
with the above results. It is hard to get the analytic relationship between eigenvalues of this Jacobi
matrix and the flutter dynamic pressure. Thus, difficult and tedious numerical simulation must be
carried out. Our method shows that the algebraic criterion of Hopf bifurcation can be effectively
applied in high-dimensional problems with many parameters. The computational intensity of the
method present in this paper will be greatly reduced relative to that of traditional methods, in which
we should calculate the eigenvalues of different parameters and judge their real parts as negative.
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