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Abstract: We study the following quasilinear Schrodinger equation involving critical exponent
—Au+V(x)u—Au?)u = A(x)|ulP~tu + /\B(x)u%, u(x) > 0 for x € RN and u(x) — 0 as
|x| — o0. By using a monotonicity trick and global compactness lemma, we prove the existence of
positive ground state solutions of PohoZaev type. The nonlinear term |u|P~!u for the well-studied
case p € [3, 3@]—_*22 ), and the less-studied case p € [2,3), and for the latter case few existence results are
available in the literature. Our results generalize partial previous works.

Keywords: quasilinear Schrodinger equation; ground state solution; pohoZaev identity

1. Introduction and Main Results

In this paper, we consider the following quasilinear Schrédinger equation

{ —Au+V(x)u— AW u = A(x)|ulPlu+ AB(x)u?* "1, xeRN, )

u(x) — 0as|x| = oo, u(x) >0, x € RN,

where N > 3,22* :=2 x 2% = %, 1 < p<22*—1, A > 0. The solutions of Equation (1) are related
to the existence of standing waves of the following quasilinear elliptic equations

0z = —Az + V(x)z — 1(|z?)z — kAg(|z|*)¢' (]z*)z, x € RY, )

where V is a given potential, k € R, [ and g are real functions. Quasilinear Equation (2) has been
derived as models of several physical phenomena (see e.g., [1-3] and the references therein). In recent
years, extensive studies have been focused on the existence of solutions for quasilinear Schrodinger
equations of the form

—Au+V(x)u— %uA(uz) =g(x,u), x e RN, 3)

One of the main difficulties of Equation (3) is that there is no suitable space on which the energy
functional is well defined and belongs to Cl-class except for N = 1 (see [4]). In [5], for pure power
nonlinearities, Liu and Wang proved that Equation (3) has a ground state solution by using a change
of variables and treating the new problem in an Orlicz space when 3 < p < 22* — 1 and the potential
V(x) € C(RN,R) satisfies

(v1) inf V(x) >a >0 and foreach M >0, meas{x € RN | V(x) < M} < +co.

xRN
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Such kind of hypotheses was firstly introduced by Bartsch and Wang [6] to ensure the compactness
of embeddings of Eg := {u € H(RVN) | [pn V(x)u? < oo} < L¥(RN), where 2 < s < 2*. In [7],
for g(x,u) = |u|P~tu,3 < p < 22* —1, Liu and Wang established the existence of both one-sign
and nodal ground states of soliton type solutions for Equation (3) by the Nehari method under the
assumptions on V(x),

(v2) V(x) € C(RN,R), and 0 < ngV(x) < Vo 1= ‘l‘im V(x) < +oo,
X|—00
K

< Voo — —.
C 1+ xm

(v3) there are positive constants M, K and m such that for |x| > M, V(x)

Very recently, when A(x) = 1,p € [3,22* — 1), Equation (1) without AB(x)|u|?*"~!, Xu and
Chen [8] studied the existence of positive ground state solution with the help of global compactness
Lemma. See also related results obtained in [9-11]. All the ground state solutions obtained in [5,7,8]
are only valid for |u|P~1u, p € [3,22* — 1). In [12], under the assumption that

(04) 0< Vo < V(x) < Voo = lim V(x) < +oo, (VV(x),x) € L®(RN),

[x]—00

N+2 1
(vs) s+ sNFPHTV(sNHP¥1 x) is concave for any x € RN,

Ruiz and Siciliano showed Equation (3) with the subcritical growth has ground state solutions for
N >3,¢9(x,u)= ublu,1 < p < 22* — 1 via Nehari-PohoZaev manifold.

To the best of our knowledge, there is no result in the literature on the existence of positive ground
state solutions of Pohozaev type to the problem in Equation (1) with critical term. The first purpose
of the present paper is to prove the existence of positive ground state solutions of Pohozaev type to
the problem in Equation (1) with critical term. Since the approaches in [5,7,8,13], when applied to
the monomial nonlinearity f(u) = |u|P~'u, are only valid for p € [3,22* — 1), we want to provide
an argument which covers the case p € [2,3) and this is the second purpose of the present paper.
Moreover, our argument does not depend on existence of the Nehari manifold.

Before state our main results, we make the following assumptions.
Vi) V e C(RN,RY),0 < ian V(x) =V <V(x) < Vo = lim V(x) < +coand V(x) # Ve,
x€R o

|x|—
) (VV(x),x) € L®(RN), (VV(x),x) <0,x € RN,

(
(
(A) A € C(RN,R), ‘l‘ianA(x) = Ao € (0,00), A(X) > Aw,0 < (VA(x),x) € L°(RN),x € RN;
(B) B € C(RN,R), lim B(x) = Be € (0,00), B(x) > Beo,0 < (VB(x),x) € L®(RN),x € RV,

|x|—o00

B)

It is worth noting that the similar hypotheses on V(x) as above (V;) and (V3) are introduced
in [14-16] and have physical meaning Moreover, there are indeed many functions satisfying (V;) and
(V2). For instance, V(x) = Vo + 1 +\x\ Under conditions analogous to (A), (B), Zhao and Zhao [17]

obtained the positive solutions of Schrodinger-Maxwell equations with the case p € (2,2*).

Our main result reads as follows.

Theorem 1. Let V(x), A(x) abd B(x) be positive constants. If A > 0 is sufficiently large, then the problem in
Equation (1) has a positive ground state solution for N > 3,1 < p < 22* — 1.

Theorem 2. Under the assumptions (Vy), (Va), (A) and (B), the problem in Equation (1) has a positive
ground state solution for N > 3,2 < p < 22* — 1 and sufficiently large A > 0.
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Remark 1. As mentioned above, the results and methods in [5,7,8,18], when applied to the subcritical
nonlinearity f(u) ~ |u|P~tu, are only valid for p € [3,22* — 1); however, our result covers the case
p € [2,22* —1). Hence, our results extend those established in the literature.

Remark 2. The novelty of this works with respect to some recent results is that we treat the existence by using
PohoZaev manifold method in an Orlicz space. The idea of PohoZaev manifold has been used in [8,12], where
the authors studied problems with subcritical nonlinearity. It is worthy noting that their argument cannot be
applied to our problem due to the presence of the critical term.

The rest of the paper is organized as follows. In Section 2, we state the variational framework of
our problem and some preliminary results. The proof of Theorem 1 is contained in Section 3. Section 4
is devoted to establishing a global compactness lemma and proving Theorem 2.

2. Preliminaries and Functional Setting

Let L¥(RN)(1 < s < +o0) be the usual Lebesgue space with norm || - ||1s := [pn | - 5. HY(RN) :=
{u € L2(RN) | Vu € L*(RN)} is the standard Sobolev space with norm ||u[|3; := [ (|Vu|? 4 u?).
We formally formulate the problem in Equation (1) in a variational structure as follows

1 2 2, 1 » 1 pr1 A 2%
=5 [ a2 VuP+ 5 [ Vi T o AP = e [ B @

for u € H'(RVN). From a variational point of view, ] is not well defined in H'(RN), which prevents
us from applying variational methods directly. To overcome this difficulty, we employ an idea from
Colin and Jeanjean [19]. First, we make a change of variables v = f~!(u), where f(t) is defined by
fi(t) = m on [0, +o0) and f(—t) = —f(t) on (—o0,0]. By the following lemma, we collect

some properties of f.

Lemma 1. ([5]) The function f satisfies the following properties:
(f1) f is uniquely defined C* and invertible;
(L)0< fl(t) <1, teR;
(F)0<fBI < |t teR;

(fa lim £ ) =1

(fs

(fo <#T)fUJ>@

(f2) If (1) < 21 VIt teR;

(
(

fg) the function f2(t) is strictly convex;
f9) there exists a positive constant 6 such that

)
)
)
>t—>oo \ﬁ
) &
) If
)
)

o], [t <1,
)| =
0/ It It > 1;

(f10) there exist positive constant Cy and Cy such that
< ClfOl+CIf P teR;

() IFOF < 55, tER
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Thus, after the above change of variables, we can write the functional J(u) as

=3 fo IVeP 45 [ VL) - pil [ AP -2 [ @I, 6

Under the assumptions (V}), (V3), (A) and (B), I is well defined and Iy € C!(E,R) on the
Orlicz space ([20])

E = {UERN

[ Vo) < o

endowed with the norm

Joll = Vol + inf |1+ [ Vnfieo)]

and

Iy(@),w) = [ (ToVo+V@f@E)f (©)0w) - [ A@IFE) @) @
—A [ @) ) (0w

for any w € E. Moreover, if v is a critical point for the functional Iy, then v is a solution for the equation

— 8o = f(0)(=V(x)f(0) + A)|f (0) P71 f(0) + AB(x)|f (0) 2 72 f(0)) in RN, )

(6)

Therefore, u = f(v) is a solution of the problem in Equation (1) ([19]).

Lemma 2. ([7,21]) Under (V4), the map: v — f(v) from E into L5(RN) is continuous for 2 < s < 22%,
and E is continuously embedded into LS (RN) for 2 < s < 22*; If N > 2, V(x) is radially symmetric, i.e.,
V(x) = V(|x|), the above map is compact for 2 < s < 22*.

Next, we prove a Pohozaev identity with respect to the problem in Equation (7), which plays a
significant role in constructing a new manifold.

Lemma 3. Under the assumptions (V1), (Va), (A) and (B), if v € E is a weak solution of Equation (7), then
f (v) satisfies the following PohozZaev identity:

0= [ Vo4 [ Vlf@PR+ 2/ (VY (), )£ (o)

pfl AR =2 [ (TAG), DI ®

~ o o BOIF@R - 53 /RNWB(x),fo(v)IZZ*-

Proof. We only prove it formally. For any given positive constant R, B = {x € RN | |x| < R}.
Let u; := ax and n be the unit outer normal at dBg. By the divergence theorem, we have

div((x~Vu)Vu):/ Av(x~Vu)+./l.3 |Vu|? + / Zx,ax |Vu\2)

JBR JBg

. 2
- (a”) RdS.
9Bg \ On

(Lo 2 2 1 9 2
d1v(2|Vu| x) FIVeR g Y e (19P).

©)

Next, by using
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and the divergence theorem

v (Liwvupx) = X 2 1/ (1w
/BRd1V<2|Vu| x>— 2/BR|W| 3 ), Liag (1vui)

- 1/ |V u|RdS.
2 JaBg

(10)

By Equations (9) and (10), one has

/Au(x-Vu):E/ |Vu|2+/ <a”> dS——/ IVu|2RdS. (11)
Br 2 JBg 3Bg \ On

Note that u is a solution of Equation (1); it follows from integration by parts that

- 2
— [ Au(x-Vu) :—M/ \W|2—/ (a”> Rds+1/ |Vu[2RdS. (12)
Br 2 Br 0BR on 2 0BR

/B [V(x)u+A(u2)u+A(x)|up_1u+AB(x)u2(2*)_1} (x-Vu)
:f/BRV( x)u(x-Vu) +/ (2u?Au + 2u|Vu|?)u(x - Vu) +/ xX)|ulP~tu(x - Vu)

+ | AB(x)u?®) N (x - Vu)
Br

1
=3 ) V(x)|u?RdS + — / (2)|u|?dx + - / (VV(x),x)[uf?

+(N—2)/ lu| |Vu|2+2/ (aD RdS — / 12|Vu|?RdS

R PHIRAS — / p+1
o [ A S A

— = [ (VAG), Pt + / B(x)|u|® RdS — / B(x)|ul?
[ wA@ = 2 [ B o, Bl

A -
~ 55 /BR(VB(x),x>|u| .

We get by Equations (7) and (12) that

1\’2—2/BR|W|2+( )/ 2 Vul2 + 2/ x)[uf? + 2/ (VV(x), x)|ul?

N AN
- P+1_7 p+1 _ MY 22*
1 fy AP =T [ (VAR Pt = 5 [ Bl

A 29+
33 Jy (VB

(13)

(14)

2 _ 2
—R [|Vu| V(x)|u| _MZ‘vu|2+(2u2
3Br 2

u\?  A)|ulPtt AB(x)|ul*
—1)(an)+ 1 +—%s ds.
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Next, we show that the right hand side of Equation (14) converges to 0 for at least one suitably
chosen sequence R;, — +o0. Since

Vul>  V@)[ul* 5o 2 2 (AN A@)ulPtt | AB(x)u
+oo>/RN : . w2Vt + (22 - 1) ( 5 T T
teo [Vul>  V)lul® 5o 2 g\ | A(x)[ulPt!
_ _ _ oy (om) L AP 15
/0 (/aBR . ) 2|Vl + (2u 1)<an> DR (15)
AB(x)[ul?

there exists a sequence R, — 4o such that

Vul  V@)[uP 5o 2 2 u\? APt AB(x)u[*
Ry /BBR,Z 5 5 u”|Vul” + (2u” — 1) ) T 1 + S5% ds
— 0 asn — +oo.

Indeed, if
o Vul>  V)ul> 5o 2 2 du\*  A(x)|ulPt?
1 fR — — 2uc—1) | — —_—
iminfR | 13 y - wIVuP @ =150 ) =

AB(x)|ul??
L AB@)lu

or dS =ua >0,

then there exists 0 < &’ < & such thatif R >> 1,

o [Vul>  VE@uP 5o 2 gy (P, AQ)[ulPH
CIJ(R).f/aBR : : 2Ival + @2 1) (51) + 500
AB(x)|u|? b
BT G

therefore, ®(R) would not be in L!(0, +c0), which contradicts Equation (15), implying that

SR vt N =2) [ ulva+ S [ iR+ [ oV, oe

N 1 N
- p+l _ _ ~ p+1 _ N 22%
T Jo AW = [ (VA = o [ Bl
1

T2 /RNWB(X)/X)IuIZZ* =0,

ie.,

B2 Ve [ vlf@R+ 2/ (VV (), )| f(0)?

pfl AW~ [ (VA@ @ - 5 [ BEIfER

- 2;* /RNWB(X)IXHf(v)I”* =0.

The proof is finished. [
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In particular, if V(x), A(x), B(x) are positive constant V, A, B, the above-mentioned Pohozaev
identity can be rewritten as follows

AN *
Pe) =22 [ vel+ ) [ v S heAF@IT =38 [ BIf)® =0 q6)
Lemma 4. The functional I is not bounded from below on E.

Proof. Let v;(x) := v(t 'x),t > 0.Since N > 3, we have

N-2 ABEN

AN N
o fu 9ok T [P0 =2 [ - [ @R o s

I(vr) =
ast — 4oo forall v € E\{0} and large enough A. [J

Lemma 4 means that we can not obtain the boundedness of the (PS) sequence by usual method.
We need to consider a constrained minimization on a suitable manifold.
To give the definition of such a manifold, we need the following lemma.

Lemma 5. Let a; (i = 1,2,3,4) be positive constants. Define h(t) := ajtN=2 + axtN — agtN — agAtN for
t > 0. Then, h has a unique critical point which corresponds to its maximum.

Proof. For large enough A > 0 such that a4A — ay + a3 > 0, consider derivatives of h :
W (t) =a; (N —2)tN"3 4 a;NtN=1 — g N#N—1 — gy NAN-L,

Note that h'(t) — —co as t — +oo and is positive for t > 0 small since N > 3. Then, there
exists t > 0 such that //(t) = 0. The uniqueness of the critical point of / follows from the fact that
the equation

W (t) =a;(N—=2)N"3 4 g NN — ga NN — gy, NAN=1, £ >0

ay (N*Z)

has a unique positive solution N{ash—mpta3)

since a4\ — ap + az > 0. The proof is complete. [
Motivated by [8], we introduce the following PohoZave manifold
M= {v € E\{0} | P(v) = 0},
where P(v) is defined by Equation (16).
Lemma 6. For any v € E\{0}, there exists a unique t > 0, such that v; € M, where v;(x) = v(f~1x).

Moreover, I(v;) = max I(vy).
>0

Proof. For every v € E\{0} and t > 0, keeping the definition of v; in mind. Denote

- AP - [ Bl
22* JrN '

X(t) = I(Z)t) = T RN ‘VZ)|2 / fZ p+1 o

By Lemma 5, we have that x has a unique critical point f > 0 corresponding to its maximum, i.e.,
x(b) = I?aoxx(t), x'(F) = 0. Thus,
>

N—-2.,, / 2, / 2 NN 1 ANEN -
—t A Pl / B =Y,
5 [ Vol + 2 [ VA — T Jpn A 22 Jo BF@IZ =0
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which implies that P(v;) = 0and v; € M. [
Lemma 7. The M is a natural C' manifold and every critical point of 1|y is a critical point of I in H' (RN).

Proof. By Lemma 6, it is easy to check that M # @. The proof consists of four steps.

Step 1.0 & OM.

Set S(p) ={v € E| [pn V0> + [zn VF2(v) = p?}. Note that, for any v € M, using Lemma 1,
Sobolev embedding inequality and choosing a number p > 0, then there exist 7 > 0, C; and C; > 0
such that

N-2 N AN *
P =57 [ Vol 5 [ VAE) - o [ A - 58 [ BIe)
N 2,

> —5—p Ci1pPt — Cp® > 1 >0,

for p small enough and A > 0, so that M,dM C E\B,(0).

Step 2. The M is a C! manifold.

Since P(v) is a C! functional, to prove M is a C! manifold, it suffices to prove that P’ (v) # 0 for
all v € M. Indeed, suppose on the contrary that P’'(v) = 0 for some v € M. Let

wim [IVOR, pi= [ V@, 7= [ (AP, 0:=2 [ Bl

The equation P’'(v) = 0 can be written as

— (N =2)A0 + Nf'(0)(Vf(v) = Alf(0)["~" f(0) £ (0) = ABIf (0) 2 2f(0)) =0, (17)

and v satisfies the following Pohozaev identity

_ 92 » ) ) *
B vl v foarert - g [ s <o

p+1Jrs
We then obtain N—2 N N
vt ﬁ Tt =0
(N-2)2 N? N? N? 0—o.

2 b
From above system, we have
2(N—-2)a =0,

then a = 0 since N > 3, which is a contradiction. Thus, P’ (v) # 0 for any v € M. This completes the
proof of Step 2.

Step 3. Every critical point of I|) is a critical point of I in E.

If v is a critical point of I|s, i.e., v € M and (I]p)’'(v) = 0. Thanks to the Lagrange multiplier rule,
there exists p € R such that I'(v) = pP’(v). We prove that p = 0. Firstly, in a weak sense, the equation
I'(v) = pP'(v) can be written as

—(1=p(N =2))dv+ (1—pN)(Vf(2) = Alf ()7 f(v) = AB|f(0)|** ~2f (v))f'(v) = 0,

and v satisfies the following PohoZaev identity

(N—Z)(lgp(N—Z)) /RNW”'Z*M N sz(v)_W/RSAU(UWH
N(1—pN) .
B[ Bl =
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Using notations «, 8, ¥ and 6 as in Step 3, we obtain that

It is deduced from the above equations that
p(N —=2)a =0.
If p # 0, then @ = 0 since N > 3, which is impossible. Therefore, p = 0 and I'(u)=0. O

Lemma 8. Letr >0, g € [2,22%). If {v, } is bounded in E and

lim sup /l; , If(vn)]|T =0,

n—oo yERN -
then we have v, — 0 in LF(RN) for p € (2,22%).

Proof. We use an idea from [22]. Let g < s < 22*. Since {v,,} is bounded in E and E — H'(RY) is
continuous, {v, } is also bounded in H!(RN). It follows from the Holder and Sobolev inequalities that

1—pu u
‘f(vn”Ls(BR(y)) S |f(vn)|Lq(BR(y)) |f(vﬂ)’L22* (Br(v)
B
4
1-p 2, .2
< CU @) e </Bx(y)<|vvn| i U")) '
where % = # + o=, then j = 1 7 2% Choosing y = %, we obtain

s S (1—u)s 5 ”
/BR(y) f (o)l <€ |f<v”)‘m(BR(y>) (/BR(y)(|an| +v”)>'

Covering RN by a family of balls {Bg(y;)} such that each point is contained in at most k such
balls and summing up these inequalities over this family of balls we obtain

s

furenr < sup ([ istenr) T e o),

Under the assumption of the lemma, f(v,) — 0in L¥(RN). Since 2 < s < 22%, f(v,) — 0in
LP(RN) for 2 < p < 22%, by Sobolev and Hélder inequalities. []

Lemma 9. ([22], Lemma 1.32) Let Q) be an open subset of RN and let {u,} C LP(Q),1 < p < co. If {uy} is
bounded in LP(Q) and u,, — u a.e. on Q), then nlgn (|tnlfy — lun — ulf) = [u|f,-

3. Ground State of Equation (1) with Constant Coefficient

In this section, we study the existence of positive ground state solutions of Pohozaev type to
Equation (1) with constant coefficient.

Lemma 10. For N > 3, then there exists a minimizer v of i]r\l/lf I. Moreover, I'(v) = 0in E.

Proof. Inspired by [8], we divide the proof into three steps.
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Step 1. Let {v,} C M be a sequence such that I(v,) — iIr\}If I. We claim that {v, } is bounded.
Indeed, by using P(v,) = 0, one has that

1 _ N+2

—P(vy) = N e

1—|—i]r\1AfI > I(vy) = I(vy) — N

N |V0n|2/

for large enough n. Therefore, we conclude the boundedness of {|Vv,|;2}. In the following, we prove
{ Jan Vf?(vn)} is also bounded. Using the boundedness of {|Vv,|;»}, Holder inequality, Sobolev
inequality, and (f3) and (f7) of Lemma 1, we deduce that

Z(p+1) 1 c(p+1)

fovors (o)™ ()™

2*(17§<P+1>)
i , c(ptl) , , 2 (18)
<a(fr@r) ([ 1vReER)
&(p+1) 2% (2-¢(p+1))
SC2|f(0”)|L22 |VU”|L2 : 4
[f (o) = |F2(vn) |53 < Ca|Vf2(vn) |72 < C4| Va2, < Cs, (19)

where 1 = ¢ + % and ¢ = %. By v, € M, the boundedness of {|Vv,|;2} and (18)
we obtain that

N N

AN « N—=2
2 _ N p+1 , AN 22¢  IN—2 2
2 Jrn V< (vn) p+1 RNA‘f(UnH +22* /RNB|f(Un)| 5 /RN|VW‘

<2 (e freorc ([, |wn|2)2*) +Co

Choosing small enough ¢, we obtain { [pn Vf2(vs)} is bounded too. Therefore, { [pn |Voa|? +
Vf2(v,)} is bounded. From 0 < |f(t)| < |t|, t € RN, there holds

[ Vi@ <@ [ Vie? >0,

from which we obtain that

1 1
inf {1+ [V 2L <inf{ - +Lvel,
5206{ ¥ Jn VUG }_go{€+ g}
where L = [pn [04]?. Now, let us consider the function

1

8(g) = E+LVC, ¢>0.
A direct computation implies that g has a global minimum at ¢y = \/% >0, and
1
= VLV +LV— =2VLV.

It is now deduced that

Joull = [Voula + int = |1+ [ V(o))

<c( [ aver+vre)
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which implies that {v, } is bounded in E.

Step 2. Since {v,} is bounded in E, passing to a subsequence, we may assume v, — v in E,
vy — vin LS (RN) for 2 < s < 22*. We prove that v € M and v, — v in E. Thus, I| attains its
minimum at v. By Lemma 2, we get that

p+1 p+1 *
Ll = [ If@pt, 1< p <22 -1

Using the Ekeland’s Variational Principle in Ekeland [23], we can assume that I(v,,) — il\r}[f I and

I'(v,) — 0. Thus, by Fatou’s Lemma, we obtain

/]RN(IVUHI2 +Vf(vn)) < liminf (/RN(W””’Z + sz(vn))).

Arguing by a contradiction, supposing that
[0+ V7o) <timint ([ (VoP +vEED),

iﬁlgﬂm—%ﬂwmm>

= T [ VR T [ vPe - s [ Al
+ o [ ABF@P

< timint (222 [ Vo4 222 [ VPe) - B [ Aol
s 5 [ B )

:@g%mm;mew):%L

which is a contradiction. Then, [pn(|Vova|? + V2 (v,)) = lim inf (fRN(|an|2 + sz(vn))> and
P(v) = lirgian(vn) = 0. Therefore,v € Mand v, — vin E.
n—,oo
Step 3. We now show that I’(v) = 0. Thanks to the Lagrange multiplier rule, there exists T € R

so that I'(v) = tP/(v) = 0. As in the proof of Step 4 in Lemma 7, we can prove that T = 0. Thus,
I'(v)=0. O

Proof of Theorem 1. For N > 3 and large enough A > 0, it is deduced from Lemma 10 that there
exists v € M such that I(v) = infI|j; and I’(v) = 0. Then, v is a nontrivial critical point of I|. Hence,
by Lemma 7, the v is a nontrivial ground state solution of (7) with V(x) = V, A(x) = A and B(x) = B.
Thus, u = f(v) is nontrivial ground state solution of Equation (1) in the case of V(x) =V, A(x) = A
and B(x) = B. Furthermore, it is easy to see that |u| is also a ground state solution of Equation (1) since
the functional I(v) and P(v) are even. Therefore, we may assume that such a ground state solution
does not change sign, i.e. # > 0. The strong maximum principle and standard arguments [24] imply
that u(x) > 0 for all x € RN and the proof is completed. [

4. Ground State of Equation (1) with Nonconstant Coefficient

In this section, we investigate Equation (1) in the case that V' (x), A(x) and B(x) are nonconstant.
A starting point is the following lemma.
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Lemma 11. ([25]) Let (X, || - ||) be a Banach space and T € R* be an interval. Consider a family of C!
functionals on X of the form
®s(u) = C(u) —6D(u), forall 6 €T,

with D(u) > 0 and either C(u) — +o0 or D(u) — 400, as ||u|| — co. Assume that there are two points
01,02 € X such that

cs = inf max ®s(y(s)) > max{Ps(v1), Ps(v2)}, forany 6 €T,
v€T se(0,1]

where
I'={y e C([0,1],X)|7(0) = v1, 7(1) = v2}.

Then, for almost every § € T, there is a bounded (PS)c, sequences in X.

Ford € [%, 1], we consider the functional Iy 5 : E — R defined by

AS
Iys(0) = C0) =0D() 35 [ A@IFEIT - 7% [ B@F@F 0eE @
where C(v) = =3 fRN |VU‘2 +3 fRN fz( ), D(v) = ﬁ fRN A(x)|f(v)|p+l + 2)2\* fRN B(x)|f(v)|22*.
It is clear that this functional is of C1. Moreover, for everyv,w € E,
(Iy 5(v),w) = [ (VoVw+V(x)f(0v) 0) [P (v)w
T ol .
20 [ B |22" 2f (o).

We also need to consider the associated limit problem

—B0 + Voo f (v)f'(v) = 6Acol F(0) P f(0) ' (0) + 0ABoo| f(0) 2 T f(0)f'(0), v € E. (QS)eo

It is clear that (QS)e is the Euler-Lagrange equations of the functional

1) A x
Los®) = 5 [ Vol + 3 [ Vol = 5 [ Aslf@P = 25 [ Bl @)

The following lemma ensures that Iy, 5 has the mountain pass geometry with the corresponding
mountain pass level denoted by cy 5.

Lemma 12. If (V3), (V2), (A) and (B) hold. Then,
(1) there exists vy € E\{0} such that Iy s(vg) < 0, for 6 € [},1];
(2)cys = m? m{g)ﬁ Iy s(7(s)) > max{Iy 5(0), Iy 5(0v)} for 6 € [%,1], where
7€
I'={yeC([0,1], E)| 7(0) = 0, 7(1) = v}.
Proof. (1) Forany v € E\{0},0 € [4,1].

Iy 5(vt) < I 5(vt)

. N-2 N
= [ (90 4 v f20) = S Al )P = Bl )2 ) = —oo

p+l

as t — +oo. Taking v = v; for t large, this shows at once that Iy 5(v) < I 5(v) < 0.
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(2) Recalling Lemma 1 and Step 1 of Lemma 7, we get

5
p+1Jr

AR - 2 [ Bl )P

(@) = 5 [L(VoP+V)IF@P) -
> §C1PZ — CopPt! — Cop™,
for sufficiently small p > 0, there exists T > 0 such that Iy 5(v) > 7 > 0, thency s > 0. O

Lemma 12 means that, if Iy 5(v) satisfies the assumptions of Lemma 11 with X = E and ®5 = Iy 4,
we then obtain immediately, for a.e. § € [%, 1], there exists a bounded sequence {u,} C E such that
Ivl(s(un) — Cy,5, I{,,{s(vn) — 0 in E.

Lemma 13. ([25], Lemma 2.3) Under the assumptions of Lemma 11, the map 6 — c; is non-increasing and left
continuous.

Introduce the following manifold

Moo = {v € E\{0} | Peo5(0) = 0},

where
Paglo) = 2 [ VR4S [ Vef20) =N [ Aulf@P =N [ Balf()
Set
Moo 5 := vell\r/lli5 I 5(0).

According to Section 3, My, 5(v) has some similar properties to those of the manifold M, such as
containing all the nontrivial critical points of I, 5(v).

Lemma14. If N > 3andé € [%, 1], Moo 5 is obtained at some v 5 € Mo, 5. Moreover,
Ioo 5 (Veoys) = Mooy = Inf{Ig5(v) | v # 0, I, 5(v) = 0}.

Proof. The proof is similar to that of Theorem 1, and is omitted here. O

Lemma 15. Suppose that (V1), (Va), (A) and (B) hold. Then, cy s < e s for 6 € [3,1].

Proof. Let 0o, ; be a minimizer of 5. By Lemma 5, I, 5(0c0,5) = maxs=o leos(v(t1x)). Then, we see
that, for 6 € [%, 1],

Coo g < max Iy 5(0eo s (t1x)) < max Lo 5 (Vo0 (£ 1%)) = Lo (Voo s) = Moos.

O

Next, we need the following global compactness lemma, which is adopted to prove that the
functional I, s satisfies (PS )CWS condition for a.e. § € [%, 1].

Lemma 16. Suppose that (V1), (Va), (A) and (B) hold. For every § € [3,1], let {0, } be a bounded (PS)cy s
sequence for Iy 5 Then, there exist a subsequence of {vy}, still denote {v,}, vy and integer n € N U {0},
sequence {y},}, w;j C HY(RN) for 1 < j < 5 such that
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(i) oy — vo with Iy, 5(vo) = 0;
(i) |yh| — +oo, [yh — yh| — +ooifi # j,n — +oo;

(iii)  w # 0and Iéo,zs(wj) =0for1<j<u;

i . ;
(iv) ||vg—vo— ¥ w/(-—yh)| — 0;and
j=1
i .
@) Iys(on) = Iy s(v0) + X leos(w!).

j=1
Here, we agree that in the case 1 = 0 the above holds without w and {y]n}

Proof. We complete the proof in two steps.
Step 1. Since {v,, } is bounded in E, up to subsequence, there exists vy such that v, — vy in E,

Uy = vp in Llroc(RN)/ f(Un) — f(vg) in Llroc

(RN) (2 < r < 22%). (23)

Arguing as in [26], let ¢ € CP(RN) and Y := supp(¢). Then, v, — vg a.e. on Y and |v,(x)| <
wy(x) for every n € Nand a.e. on Y with w,(x) € L'(Y) (see Lemma A.1, [22]). Consequently,

V() f(0a)f (o) = V(x)f(00)f (00) ac.onY

A@)|f(n) [P f(on) f'(0n) = A()|f(20) [P~ f(v0)f'(v0) ae.on,
B(x)|f (0n) P2 "2 f (vn)f' (o) — B(x)|f (00) P 2 f(v0)f'(v0) aue.on Y.

Now, we show that I, 5(vg) = 0. In fact, it suffices to prove that (I}, 5(v0), ¢) = 0. It follows
from Equation (23) that for any fixed ¢ € C3°(RN)

lim [ Vo,Vg = /R VaVe. (24)

n—oo JRN

Using (f3) of Lemma 1 and (V;), we have that
V(©)f (0n)f (o)l < sup V(x)[wa]lg]
The Lebesgue dominated convergence theorem implies that

tim [ V@) g = [ VEFf @), 9)

n—oo JRN

Similarly, since B(x)|f(vn)|%2 ~2f (vy) f'(vn)@| < sup B(x)|wy_1|** ~1|¢|, we have
Y

fim Joy B(x)|f(vn)|22*—2f(vn)f’(vn)(p:/ B(x)f (v0) 22 f (o) f'(v0) .

n—co RN

If |v,(x)| <1, using (f2) and (f3) of Lemma 1, we have
AQ)|f ()P~ f(0n) f'(0n) gl < |f (0a) [Pl g] < Sg{PA(x)lqvl. (26)

If |v,(x)| > 1, using (f2), (f3) and (f7) of Lemma 1, we have

22%—1

7 gl (27)

[AIF @I @0 0] < sup ADIF @)1 lg] < 28wz
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Thus, combining Equation (26) with Equation (27), one deduces that
Jim f A@)|f(on)[P~ " f(0n) f'(0n) g = ./RN A(x)|f(20) [P £ (20) f' (v0) - (28)
It follows from Equations (24), (25) and (28) that
<1(/,5(Un) @) — <I{/5(UO) ®)
= [ V@ —w)Vo+ [ V(F(@0)f (o) = Fo0)f (20))g
(29)
-5 / ) (1 @)P 7 (o) ' (0n) = £ (00) P~ £ (20)f (20))
— A0B(x) (I (o) zf(vn)f’(vn) — £ (00) P 2 f (v0)f'(v0)) 9 — O.
Thus, Iy 5(vo) = 0.
Step 2. We prove that Iy 5(vg) > 0.
From (V;) and N > 3, we deduce that
1 N+2 , 1 5
= —_ — = —-— - <7 > .
1(00) = 1(00) ~ S Pe0) = 2 [ oo~ o [ TV, 00 20 60
Step 3. Set v}, = v, — vy, then we get w} — 0in E.
Let us define
_ 142
p= ,}gr;oysgv e
Vanishing: If 4 = 0, then it follows from Lemma 8 that
flwy) =0 31)
in LS(RN) for s € (2,22%). By Iy, s(v0) = 0 and Fatou’s Lemma, we have
L,
cvs < Ivs(00) = 55 (Iy 5(v0), v0)
-2 2 22 X
= Jo V0P 4 S [ V@ e0)
P+1—2*/ +1 1/ 2*
_prlzs [, P — B
ot o AN 5 [ 2B (o)
(25 =2 ) 252 ) (32)
< tmint (357 [, V0 + 252 [ v
_P+1—2*/ p+1 i/ 2*
s LA 3 [ B o)
. 1
—timin (Iys(00) = (6 s(00), 90} ) = cv s
which means that ||w}|| — 0.
Non-vanishing: If 4 > 0, we can find a sequence {y}} C RN such that
2( 2,1 i
w;,) > = >0, 33
Joo 2@ =[P > 33)
where @}, = w}(- +yh). Note that |@}|| = [[wl(- +yL)|, we see that {@}} is bounded. Going
if necessary to a subsequence, we have a v! € E such that @} — o' in E. Since | B, (0) L > >

fBl(O) |f(@})|? > &, we see that v! # 0. Moreover, w} — 0 in E implies that |y}| — +c0. Next, we
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prove that I, ;(v!) = 0. Similar to the proof of Step 1, for any fixed ¢ € CF(RYN), it suffices to show
that (I, 5(@ ) @) — 0. By (V1), (A), (B) and |y}| — +o0, as n — oo, we have that

L (VG +08) = Vo) fla@h) 1 (wh)g = 0, 4
L (A +8) = A F@ ! f@h) f (@h)e — 0, (35)
[ (Bl 3) = Bo) LF(@}) 22 (@] (wh)g — 0. (36)

Since w;, — 0 in E, one has that (Ij, ;(wy,), (- — yy)) = 0, i.e.

Lo VOie+ [ Ve f@l)f @he—6 [ Al f(@h) P f@h)f (@)

* (37)
Y / (x+ YD) IF (@) 2 2 (@) f (@h)g — 0

as n — 0. Thus, using Equations (34)~(37), one has (I, 5(@}), @) — 0. Therefore, I w, 5(01) = 0. Inthe
following, we prove that

Iy s(w}) = cy 5 — Iy 5(vo) +0(1) (38)
and

Iy 5(vn) — Iy 5(v0) — Lo s(wy,) — 0. (39)

Firstly, we claim that the relation below holds:

L@l = [ 1f@al = [ 1)l +o(1), 2<1 <22 (40)

We have by (f2) and (f3) of Lemma 1 that
L V@< [ 1w Pivelr < [ Ve, [P < [l @)

Thus, {f(w})} is bounded in E and f(w}) € L'(RN). Because of the local compactness of the
Sobolev embedding theorem, we have, up to a subsequence, f(w)) — f(vg) almost everywhere on
RN. Then, the conclusion follows from the Brrézis-Lieb Lemma. This implies that Equation (40) holds.
Using similar arguments above, for any ¢ € C3(RN), we also obtain

L @D @l f (wh)g
= [ @I f @ f e = [ 1£@0)" £ ) (o) +-o(1)

RN

(42)

In addition, by Lemma 9, we have

L IVwll = [ Vo= [ Vel +o(). @)
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Now, from Equations (40) and (43), we know that Equation (38) holds. We deduce from
Equations (20) and (22) that

Iy 5(vn) — Iy 5(v0) — Ioo,s(0n — v0)

=§/N<|wn|2 Vool -9 (o, — w0)?)
+3( [y - o) = [ Vs o o)) "
—pﬂ(/ AW(If(o )|p+1—|f(vo|p+l)—/RNAoo|f(Un—Uo)|p+l)
~ g (L B = F@n) ) = [ Bl f(ou—o0)).

It is deduced from Equatlons (40)—(44) that Equation (39) holds.
Step 4. Set w? = w}, — v!(- —y,), then w2 — 0in E. It follows from Equations (40)—(42) that

IVwills = [Voulfs = [Voolf2 — [VO! (- = ya)[f2 +0(1),

F@DI = @)k = @) T = [F0' =y +o(1),
L VU@
= [ V@I = [ VIR = [ VEIFEC=)P+o(),

Lo ADU @I @d)f (wh)g

= [ A @ e = [ A@IFE0)P f(@0)f ()
— [ A =3P =)@ =) +o(D),
[ ABE)IF) 22 (] f (e

= [ AB@I @)= 2 @)f (on)g = [ ABE)IF0) 2 (e0)f (w)e
— [ AB@IFE (=) 201 =) f (- = yn)g +0(1).

By similar argument, we can deduce that
Iy s(wy) = Iy,6(0n) = Iy,5(00) = leo,s(v") +0(1),

Iys(wy) = Iys(wy) = leo,s(0") +0(1),
(Iy 5 (@), @) = (I 5(0n), @) — (Iy 5(v0), @) — (I 5(01), @) +0(1) = 0(1)
and then

Iy 5(vn) = Iy 5(v0) + Lo s(wp) 4+ 0(1) = Iy 5(00) + Ieo s (wh) + Lo s(v") +0(1).

Similar to the proof in Step 2 of Lemma 16, we obtain that 100,5('01) > 0. Then, we get
from Equation (30) that

Iys(wh) = cvs — Iy 5(v0) — Lo s(0) +0(1) < cy .



Mathematics 2019, 7, 779 18 of 21

Repeating the same type of arguments explored in Step 3, set

pr = Jim sup [ 1f(w?).

—)ooy RN -

If vanishing occurs, then ||w2 || — 0in E. Thus, Lemma 16 holds with j = 1. If w2 is non Vanishing,
then there exists a sequence {y2} and v* € E such that @2 = w?(- + y3) — v*in E and I, 5(v?) = 0.
Furthermore, 2 — 0 in E means that |y2| — +oo and | yh — y2| — +oo. By iterating this techmque,

we obtain w), = w), ' — v/~1 with j > 1 such that w}, — v/, I/, 5(v/) = 0 and sequences y, C RN

such that |yn| — +coand |y, — yn| — +ooifi # jasn — +oo, and using the properties of the weak
convergence, we have

-1 2
[[0a]* = [[ool|* — Z [0*(- =y 1> = |jon —vo — Y- o (- —y)|| +o(1), (45)
k=1
j—1 )
Iy 5(0n) = Iy s(v0) + Y Lo (0F71) + Lo 5 (wh). (46)

k=1

Equation (46) implies that the iteration stops at some finite index # + 1. Therefore, wZH — 0in E.
We can verify that (iv) and (v) hold by Equations (45) and (46). This proves the lemma. [

Lemma 17. Assume that (V1), (V2), (A) and (B) hold; 2 < p < 22* — 1. Let {v, } be a bounded (PS),, ;
sequence of Iy s. Then, there exists a nontrivial vy 5 € E such that IV()(?JV 5) = 0and Iy 5(vy 5) = cy s for
almost all 6 € [3,1].

Proof. For ¢ € [},1], let v, ; be the minimizer of 1, 5. By Lemma 13, we have that
Coo,6 < Moo b (47)

It follows from Lemma 16 that there exists vy 5 € E, § € NU {0} and sequences {y{q} C RN,
v/l C Eforj€{1,2,---,n} such that

Ui .
Iy s(vy,s) =0, vy = vy, and Iy 5(vn) = Iy 5(vy5) + Y Leos(2)), (48)
=

where v/ is a critical point of I, 5(vy 5). Similar to the argument of Equation (30), by (V3) and
2 <p < 22" —1,wealso have I 5(vy ) > 0. If § # 0, and then, by Equation (48), one obtains that

1 .
cvs =lys(uys) + ) leos(W) > Mo s,
j=1

which contradicts Equation (47). Thus, 7 = 0, which implies v, — vy sin E and Iy 5(vy 5) = cy . O

Proof of Theorem 2. The proof contains two steps.

Step 1. From Lemmas 11 and 12, for almost every J € [4,1], there exists a bounded (PS)cy s
sequence for Iy 5. Then, Lemma 7 implies that there exists vy s € E\{0} such that I}, ;(vy,s) = 0 and
Iy 5(vv 5) = cy 5. Choose 6, — 1 such that Iy 5, has a critical point vy ;, still denoted by {v,, }. Now,
we show that {v, } is bounded in E. Denote



Mathematics 2019, 7, 779 19 of 21

o= [ 190, W:A VEOPE), s [TV,
cwi= [LADIEIITY,  a= [ (TAL DI @), di= [ AB@IF@)
R3 R3

- 22*

doi= [ MVB), )| f(on) 2, Aw]+%%”

Then,
11 S on
5 n + Ebn - ﬁcn - ﬁd'ﬂ = CV 8y
N-2 N, 1. N& & . No, 6y (49)

5 an + an—l-zbn p+1cn p+1c,1 o dy 22*01”—0,

Aya, + b, — 6,0 — 0pd, = 0.

From these relations, (V;), (A) and (B), one has that

5 1 1- 2 22* —3 1
<2 - An) an + Ebn - Ebn §+ 1571071 2o —n—Ondy + ——=0ulu +

P+ 1 20+ 5ndn - (N+3)CV§r

which implies that {a, + b,} is bounded since 2 < p < 22* —1and 0 < A, < 1. Therefore,
{ Jan ([V0n|? + V(x) f?(v,))} is bounded. Using Step 1 of Lemma 10, we deduce that {v, } is bounded
in E. Moreover, using Lemma 13, we deduce that

lim Iy (vy) = lim {Iv,gn('()n) +(0n — 1) {/RN p+1|f( )P4 %/RN |f(pn)|zz*} } (50)

Since the sequence {v,} is bounded in E, we have that {f(v,)} is bounded in L5(RN)
for 2 < s < 22* Then,

1 AT 5
. p+1 A 22
Hm, 0 —1) [/RN pra )" ./RN 1Fton) ] (51)
< lim C(dn = 1)(IloullP*! + foa]?) = 0.
It is deduced from Equations (50) and (51) that
nlgl’olo Iv(vn) = hm Cys, = Cv- (52)

Similar to the argument for Equation (52), we get that

im (1 (o), 112 )

n—00 f’(vn

)
)
= nlgrgo{ <1v5 (vn),]]:,((vn))> + (00— 1) {/R p)P —H\/ |22*]} (53)

=0.

Equations (52) and (53) show that {v,,} is a bounded (PS)., , sequence for Iy := Iy 1. Then, by
Lemma 17, there exists a nontrivial critical point vy € E for Iy and Iy (vg) = cy 1.
Step 2. Now, we prove the existence of a ground state solution for Equation (1). Set

my = inf{Iy(v) | v # 0, I{,(v) = 0}.
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As in the proof of Step 2 of Lemma 16, we can see that every critical point of Iy has nonnegative
energy. Thus, 0 < my < Iy(vg) < cy1 < +oo. Let {v,} be a sequence of nontrivial critical points of
Iy satisfying Iy (v,) — my. Since Iy (v,) is bounded, using the similar arguments as Equation (49),
we can conclude that {v,, } is bounded (PS);,, sequence of Iy. Similar arguments in Lemma 17, there
exists a positive and nontrivial v* € E such that Iy (v*) = my, which implies that u* = f(v*) is a
ground state solution for Equation (1). By strong maximum principle, u* = f(v*) is a positive ground
state solution for Equation (1). The proof is complete. [

5. Discussion

Our results generalize partial results in Xu and Chen [8] and Zhao and Zhao [16]. The case of
p € [1,2) is still unknown, which can be a problem for further study.
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