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Abstract: We study the following quasilinear Schrödinger equation involving critical exponent
−∆u + V(x)u − ∆(u2)u = A(x)|u|p−1u + λB(x)u

3N+2
N−2 , u(x) > 0 for x ∈ RN and u(x) → 0 as

|x| → ∞. By using a monotonicity trick and global compactness lemma, we prove the existence of
positive ground state solutions of Pohožaev type. The nonlinear term |u|p−1u for the well-studied
case p ∈ [3, 3N+2

N−2 ), and the less-studied case p ∈ [2, 3), and for the latter case few existence results are
available in the literature. Our results generalize partial previous works.

Keywords: quasilinear Schrödinger equation; ground state solution; pohožaev identity

1. Introduction and Main Results

In this paper, we consider the following quasilinear Schrödinger equation{
− ∆u + V(x)u− ∆(u2)u = A(x)|u|p−1u + λB(x)u22∗−1, x ∈ RN ,

u(x)→ 0 as |x| → ∞, u(x) > 0, x ∈ RN ,
(1)

where N ≥ 3, 22∗ := 2× 2∗ = 4N
N−2 , 1 < p < 22∗ − 1, λ > 0. The solutions of Equation (1) are related

to the existence of standing waves of the following quasilinear elliptic equations

i∂tz = −∆z + V(x)z− l(|z|2)z− k∆g(|z|2)g′(|z|2)z, x ∈ RN , (2)

where V is a given potential, k ∈ R, l and g are real functions. Quasilinear Equation (2) has been
derived as models of several physical phenomena (see e.g., [1–3] and the references therein). In recent
years, extensive studies have been focused on the existence of solutions for quasilinear Schrödinger
equations of the form

− ∆u + V(x)u− 1
2

u∆(u2) = g(x, u), x ∈ RN . (3)

One of the main difficulties of Equation (3) is that there is no suitable space on which the energy
functional is well defined and belongs to C1-class except for N = 1 (see [4]). In [5], for pure power
nonlinearities, Liu and Wang proved that Equation (3) has a ground state solution by using a change
of variables and treating the new problem in an Orlicz space when 3 ≤ p < 22∗ − 1 and the potential
V(x) ∈ C(RN ,R) satisfies

(v1) inf
x∈RN

V(x) ≥ a > 0 and for each M > 0, meas{x ∈ RN | V(x) ≤ M} < +∞.
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Such kind of hypotheses was firstly introduced by Bartsch and Wang [6] to ensure the compactness
of embeddings of E0 := {u ∈ H1(RN) |

∫
RN V(x)u2 < ∞} ↪→ Ls(RN), where 2 < s < 2∗. In [7],

for g(x, u) = |u|p−1u, 3 ≤ p < 22∗ − 1, Liu and Wang established the existence of both one-sign
and nodal ground states of soliton type solutions for Equation (3) by the Nehari method under the
assumptions on V(x),

(v2) V(x) ∈ C(RN ,R), and 0 < inf
RN

V(x) ≤ V∞ := lim
|x|→∞

V(x) < +∞,

(v3) there are positive constants M, K and m such that for |x| ≥ M, V(x) ≤ V∞ −
K

1 + |x|m .

Very recently, when A(x) ≡ 1, p ∈ [3, 22∗ − 1), Equation (1) without λB(x)|u|22∗−1, Xu and
Chen [8] studied the existence of positive ground state solution with the help of global compactness
Lemma. See also related results obtained in [9–11]. All the ground state solutions obtained in [5,7,8]
are only valid for |u|p−1u, p ∈ [3, 22∗ − 1). In [12], under the assumption that

(v4) 0 < V0 ≤ V(x) ≤ V∞ = lim
|x|→∞

V(x) < +∞, (∇V(x), x) ∈ L∞(RN),

(v5) s 7→ s
N+2

N+p+1 V(s
1

N+p+1 x) is concave for any x ∈ RN .

Ruiz and Siciliano showed Equation (3) with the subcritical growth has ground state solutions for
N ≥ 3, g(x, u) = up−1u, 1 < p < 22∗ − 1 via Nehari-Pohožaev manifold.

To the best of our knowledge, there is no result in the literature on the existence of positive ground
state solutions of Pohožaev type to the problem in Equation (1) with critical term. The first purpose
of the present paper is to prove the existence of positive ground state solutions of Pohožaev type to
the problem in Equation (1) with critical term. Since the approaches in [5,7,8,13], when applied to
the monomial nonlinearity f (u) = |u|p−1u, are only valid for p ∈ [3, 22∗ − 1), we want to provide
an argument which covers the case p ∈ [2, 3) and this is the second purpose of the present paper.
Moreover, our argument does not depend on existence of the Nehari manifold.

Before state our main results, we make the following assumptions.

(V1) V ∈ C(RN ,R+), 0 < inf
x∈RN

V(x) =: V0 ≤ V(x) ≤ V∞ = lim
|x|→∞

V(x) < +∞ and V(x) 6≡ V∞;

(V2) 〈∇V(x), x〉 ∈ L∞(RN), 〈∇V(x), x〉 ≤ 0, x ∈ RN ;
(A) A ∈ C(RN ,R), lim

|x|→∞
A(x) = A∞ ∈ (0, ∞), A(x) ≥ A∞, 0 ≤ 〈∇A(x), x〉 ∈ L∞(RN), x ∈ RN ;

(B) B ∈ C(RN ,R), lim
|x|→∞

B(x) = B∞ ∈ (0, ∞), B(x) ≥ B∞, 0 ≤ 〈∇B(x), x〉 ∈ L∞(RN), x ∈ RN .

It is worth noting that the similar hypotheses on V(x) as above (V1) and (V2) are introduced
in [14–16] and have physical meaning. Moreover, there are indeed many functions satisfying (V1) and
(V2). For instance, V(x) = V0 +

1
1+|x| . Under conditions analogous to (A), (B), Zhao and Zhao [17]

obtained the positive solutions of Schrödinger-Maxwell equations with the case p ∈ (2, 2∗).

Our main result reads as follows.

Theorem 1. Let V(x), A(x) abd B(x) be positive constants. If λ > 0 is sufficiently large, then the problem in
Equation (1) has a positive ground state solution for N ≥ 3, 1 < p < 22∗ − 1.

Theorem 2. Under the assumptions (V1), (V2), (A) and (B), the problem in Equation (1) has a positive
ground state solution for N ≥ 3, 2 ≤ p < 22∗ − 1 and sufficiently large λ > 0.
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Remark 1. As mentioned above, the results and methods in [5,7,8,18], when applied to the subcritical
nonlinearity f (u) ∼ |u|p−1u, are only valid for p ∈ [3, 22∗ − 1); however, our result covers the case
p ∈ [2, 22∗ − 1). Hence, our results extend those established in the literature.

Remark 2. The novelty of this works with respect to some recent results is that we treat the existence by using
Pohožaev manifold method in an Orlicz space. The idea of Pohožaev manifold has been used in [8,12], where
the authors studied problems with subcritical nonlinearity. It is worthy noting that their argument cannot be
applied to our problem due to the presence of the critical term.

The rest of the paper is organized as follows. In Section 2, we state the variational framework of
our problem and some preliminary results. The proof of Theorem 1 is contained in Section 3. Section 4
is devoted to establishing a global compactness lemma and proving Theorem 2.

2. Preliminaries and Functional Setting

Let Ls(RN)(1 ≤ s < +∞) be the usual Lebesgue space with norm ‖ · ‖Ls :=
∫
RN | · |s. H1(RN) :=

{u ∈ L2(RN) | ∇u ∈ L2(RN)} is the standard Sobolev space with norm ‖u‖2
H :=

∫
RN (|∇u|2 + u2).

We formally formulate the problem in Equation (1) in a variational structure as follows

J(u) =
1
2

∫
RN

(1 + 2u2)|∇u|2 + 1
2

∫
RN

V(x)u2 − 1
p + 1

∫
RN

A(x)|u|p+1 − λ

22∗

∫
RN

B(x)|u|22∗ (4)

for u ∈ H1(RN). From a variational point of view, J is not well defined in H1(RN), which prevents
us from applying variational methods directly. To overcome this difficulty, we employ an idea from
Colin and Jeanjean [19]. First, we make a change of variables v = f−1(u), where f (t) is defined by
f ′(t) = 1√

1+2 f 2(t)
on [0,+∞) and f (−t) = − f (t) on (−∞, 0]. By the following lemma, we collect

some properties of f .

Lemma 1. ([5]) The function f satisfies the following properties:
( f1) f is uniquely defined C∞ and invertible;
( f2) 0 < f ′(t) ≤ 1, t ∈ R;
( f3) 0 < | f (t)| ≤ |t|, t ∈ R;
( f4) lim

t→0

f (t)
t = 1;

( f5) lim
t→∞

f (t)√
t
= 2

1
4 ;

( f6)
f (t)
2 ≤ t f ′(t) ≤ f (t), t ≥ 0;

( f7) | f (t)| ≤ 2
1
4
√
|t|, t ∈ R;

( f8) the function f 2(t) is strictly convex;
( f9) there exists a positive constant θ such that

| f (t)| ≥

θ|t|, |t| ≤ 1,

θ
√
|t|, |t| ≥ 1;

( f10) there exist positive constant C1 and C2 such that

|t| ≤ C1| f (t)|+ C2| f (t)|2, t ∈ R;

( f11) | f (t) f ′(t)| ≤ 1√
2

, t ∈ R.
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Thus, after the above change of variables, we can write the functional J(u) as

IV(v) =
1
2

∫
RN
|∇v|2 + 1

2

∫
RN

V(x) f 2(v)− 1
p + 1

∫
RN

A(x)| f (v)|p+1 − λ

22∗

∫
RN

B(x)| f (v)|22∗ . (5)

Under the assumptions (V1), (V2), (A) and (B), IV is well defined and IV ∈ C1(E,R) on the
Orlicz space ([20])

E :=
{

v ∈ RN
∣∣∣∣ ∫RN

V(x) f 2(v) < +∞
}

endowed with the norm

‖v‖ = |∇v|L2 + inf
ξ>0

[
1 +

∫
RN

V(x) f 2(ξv)
]

and
〈I′V(v), w〉 =

∫
RN

(∇v∇w + V(x) f (v) f ′(v)w)−
∫
RN

A(x)| f (v)|p−1 f (v) f ′(v)w

− λ
∫
RN

B(x)| f (v)|22∗−2 f (v) f ′(v)w
(6)

for any w ∈ E. Moreover, if v is a critical point for the functional IV , then v is a solution for the equation

− ∆v = f ′(v)(−V(x) f (v) + A(x)| f (v)|p−1 f (v) + λB(x)| f (v)|22∗−2 f (v)) in RN . (7)

Therefore, u = f (v) is a solution of the problem in Equation (1) ([19]).

Lemma 2. ([7,21]) Under (V1), the map: v → f (v) from E into Ls(RN) is continuous for 2 ≤ s ≤ 22∗,
and E is continuously embedded into Ls(RN) for 2 ≤ s < 22∗; If N ≥ 2, V(x) is radially symmetric, i.e.,
V(x) = V(|x|), the above map is compact for 2 < s < 22∗.

Next, we prove a Pohožaev identity with respect to the problem in Equation (7), which plays a
significant role in constructing a new manifold.

Lemma 3. Under the assumptions (V1), (V2), (A) and (B), if v ∈ E is a weak solution of Equation (7), then
f (v) satisfies the following Pohožaev identity:

0 =
N − 2

2

∫
RN
|∇v|2 + N

2

∫
RN

V(x)| f (v)|2 + 1
2

∫
RN
〈∇V(x), x〉| f (v)|2

− N
p + 1

∫
RN

A(x)| f (v)|p+1 − 1
p + 1

∫
RN
〈∇A(x), x〉| f (v)|p+1

− λN
22∗

∫
RN

B(x)| f (v)|22∗ − λ

22∗

∫
RN
〈∇B(x), x〉| f (v)|22∗ .

(8)

Proof. We only prove it formally. For any given positive constant R, BR = {x ∈ RN | |x| < R}.
Let ui := ∂u

∂xi
and n be the unit outer normal at ∂BR. By the divergence theorem, we have

∫
BR

div ((x · ∇u)∇u) =
∫

BR

∆v(x · ∇u) +
∫

BR

|∇u|2 + 1
2

∫
BR

N

∑
i=1

xi
∂

∂xi

(
|∇u|2

)
=
∫

∂BR

(
∂u
∂n

)2
RdS.

(9)

Next, by using

div
(

1
2
|∇u|2x

)
=

N
2
|∇u|2 + 1

2

N

∑
k=1

xi
∂

∂xi

(
|∇u|2

)
,



Mathematics 2019, 7, 779 5 of 21

and the divergence theorem

∫
BR

div
(

1
2
|∇u|2x

)
=

N
2

∫
BR

|∇u|2 + 1
2

∫
BR

N

∑
k=1

xi
∂

∂xi

(
|∇u|2

)
=

1
2

∫
∂BR

|∇u|2RdS.

(10)

By Equations (9) and (10), one has

∫
BR

∆u(x · ∇u) =
N − 2

2

∫
BR

|∇u|2 +
∫

∂BR

(
∂u
∂n

)2
RdS− 1

2

∫
∂BR

|∇u|2RdS. (11)

Note that u is a solution of Equation (1); it follows from integration by parts that

−
∫

BR

∆u(x · ∇u) = −N − 2
2

∫
BR

|∇u|2 −
∫

∂BR

(
∂u
∂n

)2
RdS +

1
2

∫
∂BR

|∇u|2RdS. (12)

∫
BR

[
−V(x)u + ∆(u2)u + A(x)|u|p−1u + λB(x)u2(2∗)−1

]
(x · ∇u)

=−
∫

BR

V(x)u(x · ∇u) +
∫

BR

(2u2∆u + 2u|∇u|2)u(x · ∇u) +
∫

BR

A(x)|u|p−1u(x · ∇u)

+
∫

BR

λB(x)u2(2∗)−1(x · ∇u)

=− 1
2

∫
∂BR

V(x)|u|2RdS +
N
2

∫
BR

V(x)|u|2dx +
1
2

∫
BR

〈∇V(x), x〉|u|2

+ (N − 2)
∫

BR

|u|2|∇u|2 + 2
∫

∂BR

u2
(

∂u
∂n

)2
RdS−

∫
∂BR

u2|∇u|2RdS

+
1

p + 1

∫
∂BR

A(x)|u|p+1RdS− N
p + 1

∫
BR

A(x)|u|p+1

− 1
p + 1

∫
BR

〈∇A(x), x〉|u|p+1 +
λ

22∗

∫
∂BR

B(x)|u|22∗RdS− λN
22∗

∫
BR

B(x)|u|22∗

− λ

22∗

∫
BR

〈∇B(x), x〉|u|22∗ .

(13)

We get by Equations (7) and (12) that

N − 2
2

∫
BR

|∇u|2 + (N − 2)
∫

BR

|u|2|∇u|2 + N
2

∫
BR

V(x)|u|2 + 1
2

∫
BR

〈∇V(x), x〉|u|2

− N
p + 1

∫
BR

A(x)|u|p+1 − λ

p + 1

∫
BR

〈∇A(x), x〉|u|p+1 − λN
22∗

∫
BR

B(x)|u|22∗

− λ

22∗

∫
BR

〈∇B(x), x〉|u|22∗

= R
∫

∂BR

[
|∇u|2 −V(x)|u|2

2
− u2|∇u|2 + (2u2 − 1)

(
∂u
∂n

)2
+

A(x)|u|p+1

p + 1
+

λB(x)|u|22∗

22∗

]
dS.

(14)
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Next, we show that the right hand side of Equation (14) converges to 0 for at least one suitably
chosen sequence Rn → +∞. Since

+∞ >
∫
RN

∣∣∣∣ |∇u|2
2
− V(x)|u|2

2
− u2|∇u|2 + (2u2 − 1)

(
∂u
∂n

)2
+

A(x)|u|p+1

p + 1
+

λB(x)|u|22∗

22∗

∣∣∣∣
=
∫ +∞

0

( ∫
∂BR

∣∣∣∣ |∇u|2
2
− V(x)|u|2

2
− u2|∇u|2 + (2u2 − 1)

(
∂u
∂n

)2
+

A(x)|u|p+1

p + 1

+
λB(x)|u|22∗

22∗

∣∣∣∣dS
)

dR,

(15)

there exists a sequence Rn → +∞ such that

Rn

∫
∂BRn

∣∣∣∣ |∇u|2
2
− V(x)|u|2

2
− u2|∇u|2 + (2u2 − 1)

(
∂u
∂n

)2
+

A(x)|u|p+1

p + 1
+

λB(x)|u|22∗

22∗

∣∣∣∣dS

→ 0 as n→ +∞.

Indeed, if

lim inf
R→+∞

R
∫

∂BR

∣∣∣∣ |∇u|2
2
− V(x)|u|2

2
− u2|∇u|2 + (2u2 − 1)

(
∂u
∂n

)2
+

A(x)|u|p+1

p + 1

+
λB(x)|u|22∗

22∗

∣∣∣∣dS = α > 0,

then there exists 0 < α′ < α such that if R >> 1,

Φ(R) : =
∫

∂BR

∣∣∣∣ |∇u|2
2
− V(x)|u|2

2
− u2|∇u|2 + (2u2 − 1)

(
∂u
∂n

)2
+

A(x)|u|p+1

p + 1

+
λB(x)|u|22∗

22∗

∣∣∣∣dS >
α′

R
,

therefore, Φ(R) would not be in L1(0,+∞), which contradicts Equation (15), implying that

N − 2
2

∫
RN
|∇u|2 + (N − 2)

∫
RN
|u|2|∇u|2 + N

2

∫
RN

V(x)|u|2 + 1
2

∫
RN
〈∇V(x), x〉|u|2

− N
p + 1

∫
RN

A(x)|u|p+1 − 1
p + 1

∫
RN
〈∇A(x), x〉|u|p+1 − N

22∗

∫
RN

B(x)|u|22∗

− 1
22∗

∫
RN
〈∇B(x), x〉|u|22∗ = 0,

i.e.,

N − 2
2

∫
RN
|∇v|2 + N

2

∫
RN

V(x)| f (v)|2 + 1
2

∫
RN
〈∇V(x), x〉| f (v)|2

− N
p + 1

∫
RN

A(x)| f (v)|p+1 − 1
p + 1

∫
RN
〈∇A(x), x〉| f (v)|p+1 − N

22∗

∫
RN

B(x)| f (v)|22∗

− 1
22∗

∫
RN
〈∇B(x), x〉| f (v)|22∗ = 0.

The proof is finished.
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In particular, if V(x), A(x), B(x) are positive constant V, A, B, the above-mentioned Pohožaev
identity can be rewritten as follows

P(v) =
N − 2

2

∫
RN
|∇v|2 + N

2

∫
RN

V| f (v)|2 − N
p + 1

∫
RN

A| f (v)|p+1 − λN
22∗

∫
RN

B| f (v)|22∗ = 0. (16)

Lemma 4. The functional I is not bounded from below on E.

Proof. Let vt(x) := v(t−1x), t > 0. Since N ≥ 3, we have

I(vt) =
tN−2

2

∫
RN
|∇v|2 + VtN

2

∫
RN

f 2(v)− AtN

p + 1

∫
RN
| f (v)|p+1 − λBtN

22∗

∫
RN
| f (v)|22∗ → −∞

as t→ +∞ for all v ∈ E\{0} and large enough λ.

Lemma 4 means that we can not obtain the boundedness of the (PS) sequence by usual method.
We need to consider a constrained minimization on a suitable manifold.

To give the definition of such a manifold, we need the following lemma.

Lemma 5. Let ai (i = 1, 2, 3, 4) be positive constants. Define h(t) := a1tN−2 + a2tN − a3tN − a4λtN for
t ≥ 0. Then, h has a unique critical point which corresponds to its maximum.

Proof. For large enough λ > 0 such that a4λ− a2 + a3 > 0, consider derivatives of h :

h′(t) = a1(N − 2)tN−3 + a2NtN−1 − a3NtN−1 − a4NλtN−1.

Note that h′(t) → −∞ as t → +∞ and is positive for t > 0 small since N ≥ 3. Then, there
exists t > 0 such that h′(t) = 0. The uniqueness of the critical point of h follows from the fact that
the equation

h′(t) = a1(N − 2)tN−3 + a2NtN−1 − a3NtN−1 − a4NλtN−1, t > 0

has a unique positive solution
√

a1(N−2)
N(a4λ−a2+a3)

since a4λ− a2 + a3 > 0. The proof is complete.

Motivated by [8], we introduce the following Pohožave manifold

M = {v ∈ E\{0} | P(v) = 0},

where P(v) is defined by Equation (16).

Lemma 6. For any v ∈ E\{0}, there exists a unique t̂ > 0, such that vt̂ ∈ M, where vt̂(x) = v(t̂−1x).
Moreover, I(vt̂) = max

t>0
I(vt).

Proof. For every v ∈ E\{0} and t > 0, keeping the definition of vt in mind. Denote

χ(t) := I(vt) =
tN−2

2

∫
RN
|∇v|2 + tN

2

∫
RN

V f 2(v)− tN

p + 1

∫
RN

A| f (v)|p+1 − λtN

22∗

∫
RN

B| f (v)|22∗ .

By Lemma 5, we have that χ has a unique critical point t̂ > 0 corresponding to its maximum, i.e.,
χ(t̂) = max

t>0
χ(t), χ′(t̂) = 0. Thus,

N − 2
2

t̂N−2
∫
RN
|∇v|2 + Nt̂N

2

∫
RN

V f 2(v)− Nt̂N

p + 1

∫
RN

A| f (v)|p+1 − λNt̂N

22∗

∫
RN

B| f (v)|22∗ = 0,
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which implies that P(vt̂) = 0 and vt̂ ∈ M.

Lemma 7. The M is a natural C1 manifold and every critical point of I|M is a critical point of I in H1(RN).

Proof. By Lemma 6, it is easy to check that M 6= ∅. The proof consists of four steps.
Step 1. 0 6∈ ∂M.
Set S(ρ) = {v ∈ E |

∫
RN |∇v|2 +

∫
RN V f 2(v) = ρ2}. Note that, for any v ∈ M, using Lemma 1,

Sobolev embedding inequality and choosing a number ρ > 0, then there exist r > 0, C1 and C2 > 0
such that

P(v) =
N − 2

2

∫
RN
|∇v|2 + N

2

∫
RN

V f 2(v)− N
p + 1

∫
RN

A| f (v)|p+1 − λN
22∗

∫
RN

B| f (v)|22∗

≥ N − 2
2

ρ2 − C1ρp+1 − C2ρ22∗ > r > 0,

for ρ small enough and λ > 0, so that M, ∂M ⊂ E\Bρ(0).
Step 2. The M is a C1 manifold.
Since P(v) is a C1 functional, to prove M is a C1 manifold, it suffices to prove that P′(v) 6= 0 for

all v ∈ M. Indeed, suppose on the contrary that P′(v) = 0 for some v ∈ M. Let

α :=
∫
RN
|∇v|2, β :=

∫
RN

V f 2(v), γ :=
∫
R3

A| f (v)|p+1, θ := λ
∫
R3

B| f (v)|22∗ .

The equation P′(v) = 0 can be written as

− (N − 2)∆v + N f ′(v)(V f (v)− A| f (v)|p−1 f (v) f ′(v)− λB| f (v)|22∗−2 f (v)) = 0, (17)

and v satisfies the following Pohožaev identity

(N − 2)2

2

∫
RN
|∇v|2 + N2

2

∫
R3

V f 2(v)− N2

p + 1

∫
R3

A| f (v)|p+1 − λN2

22∗

∫
RN

B| f (v)|22∗ = 0.

We then obtain 
N − 2

2
α +

N
2

β− N
p + 1

γ− N
22∗

θ = 0,

(N − 2)2

2
α +

N2

2
β− N2

p + 1
γ− N2

22∗
θ = 0.

From above system, we have
2(N − 2)α = 0,

then α = 0 since N ≥ 3, which is a contradiction. Thus, P′(v) 6= 0 for any v ∈ M. This completes the
proof of Step 2.

Step 3. Every critical point of I|M is a critical point of I in E.
If v is a critical point of I|M, i.e., v ∈ M and (I|M)′(v) = 0. Thanks to the Lagrange multiplier rule,

there exists ρ ∈ R such that I′(v) = ρP′(v). We prove that ρ = 0. Firstly, in a weak sense, the equation
I′(v) = ρP′(v) can be written as

−(1− ρ(N − 2))∆v + (1− ρN)(V f (v)− A| f (v)|p−1 f (v)− λB| f (v)|22∗−2 f (v)) f ′(v) = 0,

and v satisfies the following Pohožaev identity

(N − 2)(1− ρ(N − 2))
2

∫
RN
|∇v|2 + N(1− ρN)

2

∫
RN

V f 2(v)− N(1− ρN)

p + 1

∫
R3

A| f (v)|p+1

− N(1− ρN)

22∗
λ
∫
R3

B| f (v)|22∗ = 0.
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Using notations α, β, γ and θ as in Step 3, we obtain that
N − 2

2
α +

N
2

β− Nγ

p + 1
− N

22∗
θ = 0,

(N − 2)(1− ρ(N − 2))
2

α +
N(1− ρN)

2
β− N(1− ρN)

p + 1
γ− N(1− ρN)

22∗
θ = 0.

It is deduced from the above equations that

ρ(N − 2)α = 0.

If ρ 6= 0, then α = 0 since N ≥ 3, which is impossible. Therefore, ρ = 0 and I′(u) = 0.

Lemma 8. Let r > 0, q ∈ [2, 22∗). If {vn} is bounded in E and

lim
n→∞

sup
y∈RN

∫
Br(y)
| f (vn)|q = 0,

then we have vn → 0 in Lp(RN) for p ∈ (2, 22∗).

Proof. We use an idea from [22]. Let q < s < 22∗. Since {vn} is bounded in E and E ↪→ H1(RN) is
continuous, {vn} is also bounded in H1(RN). It follows from the Hölder and Sobolev inequalities that

| f (vn)|Ls(BR(y)) ≤ | f (vn)|1−µ
Lq(BR(y))

| f (vn)|µ
L22∗ (BR(y))

≤ C| f (vn)|1−µ
Lq(BR(y))

( ∫
BR(y)

(|∇vn|2 + v2
n)

) µ
4

,

where 1
s = 1−µ

q + µ
22∗ , then µ = s−q

22∗−q
22∗

s . Choosing µ = 4
s , we obtain

∫
BR(y)

| f (vn)|s ≤ Cs| f (vn)|(1−µ)s
Lq(BR(y))

( ∫
BR(y)

(|∇vn|2 + v2
n)

)
.

Covering RN by a family of balls {BR(yi)} such that each point is contained in at most k such
balls and summing up these inequalities over this family of balls we obtain

∫
RN
| f (vn)|s ≤ kCs sup

y∈RN

( ∫
BR(y)

| f (vn)|q
)(1−µ) s

q
( ∫

RN
(|∇vn|2 + v2

n)

)
.

Under the assumption of the lemma, f (vn) → 0 in Ls(RN). Since 2 < s < 22∗, f (vn) → 0 in
Lp(RN) for 2 < p < 22∗, by Sobolev and Hölder inequalities.

Lemma 9. ([22], Lemma 1.32) Let Ω be an open subset of RN and let {un} ⊂ Lp(Ω), 1 ≤ p < ∞. If {un} is
bounded in Lp(Ω) and un → u a.e. on Ω, then lim

n→∞
(|un|pLp − |un − u|pLp) = |u|pLp .

3. Ground State of Equation (1) with Constant Coefficient

In this section, we study the existence of positive ground state solutions of Pohožaev type to
Equation (1) with constant coefficient.

Lemma 10. For N ≥ 3, then there exists a minimizer v of inf
M

I. Moreover, I′(v) = 0 in E.

Proof. Inspired by [8], we divide the proof into three steps.
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Step 1. Let {vn} ⊂ M be a sequence such that I(vn) → inf
M

I. We claim that {vn} is bounded.

Indeed, by using P(vn) = 0, one has that

1 + inf
M

I > I(vn) = I(vn)−
1
N

P(vn) =
N + 2

2N

∫
RN
|∇vn|2,

for large enough n. Therefore, we conclude the boundedness of {|∇vn|L2}. In the following, we prove
{
∫
RN V f 2(vn)} is also bounded. Using the boundedness of {|∇vn|L2}, Hölder inequality, Sobolev

inequality, and ( f3) and ( f7) of Lemma 1, we deduce that

∫
RN
| f (vn)|p+1 ≤

(∫
RN
| f (vn)|2

) ξ(p+1)
2
( ∫

RN
| f 2(vn)|2

∗
)1− ξ(p+1)

2

≤ C1

(∫
RN
| f (vn)|2

) ξ(p+1)
2
( ∫

RN
|∇ f 2(vn)|2

) 2∗(1− ξ(p+1)
2 )

2

≤ C2| f (vn)|
ξ(p+1)

2
L2 |∇vn|

2∗(2−ξ(p+1))
2

L2 ,

(18)

| f (vn)|22∗
L22∗ = | f 2(vn)|22∗

L2∗ ≤ C3|∇ f 2(vn)|2
∗

L2 ≤ C4|∇vn|2
∗

L2 ≤ C5, (19)

where 1 = ξ + 2∗(2−ξ(p+1))
p+1 and ξ = 22∗−(p+1)

(p+1)(2∗−1) . By vn ∈ M, the boundedness of {|∇vn|L2} and (18)
we obtain that

N
2

∫
RN

V f 2(vn) =
N

p + 1

∫
RN

A| f (vn)|p+1 +
λN
22∗

∫
RN

B| f (vn)|22∗ − N − 2
2

∫
RN
|∇vn|2

≤ AN
p + 1

(
ε
∫
RN
| f (vn)|2 + Cε

(∫
RN
|∇vn|2

)2∗ )
+ C6.

Choosing small enough ε, we obtain {
∫
RN V f 2(vn)} is bounded too. Therefore, {

∫
RN |∇vn|2 +

V f 2(vn)} is bounded. From 0 ≤ | f (t)| ≤ |t|, t ∈ RN , there holds∫
RN

V| f (ξvn)|2 ≤ ξ2
∫
RN

V|vn|2, ξ ≥ 0,

from which we obtain that

inf
ξ>0

1
ξ

{
1 +

∫
RN

V| f (ξvn)|2
}
≤ inf

ξ>0

{
1
ξ
+ LVξ

}
,

where L =
∫
RN |vn|2. Now, let us consider the function

g(ξ) =
1
ξ
+ LVξ, ξ > 0.

A direct computation implies that g has a global minimum at ξ0 = 1√
LV

> 0, and

g(ξ0) =
√

LV + LV
1√
LV

= 2
√

LV.

It is now deduced that

‖vn‖ = |∇vn|2 + inf
ξ>0

1
ξ

[
1 +

∫
RN

V f 2(ξvn)

]

≤ C
( ∫

RN
(|∇vn|2 + V f 2(vn))

) 1
2

,
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which implies that {vn} is bounded in E.
Step 2. Since {vn} is bounded in E, passing to a subsequence, we may assume vn ⇀ v in E,

vn ⇀ v in Ls(RN) for 2 ≤ s ≤ 22∗. We prove that v ∈ M and vn → v in E. Thus, I|M attains its
minimum at v. By Lemma 2, we get that∫

RN
| f (vn)|p+1 →

∫
RN
| f (v)|p+1, 1 < p < 22∗ − 1.

Using the Ekeland’s Variational Principle in Ekeland [23], we can assume that I(vn)→ inf
M

I and

I′(vn)→ 0. Thus, by Fatou’s Lemma, we obtain

∫
RN

(|∇vn|2 + V f 2(vn)) ≤ lim inf
n→∞

( ∫
RN

(|∇vn|2 + V f 2(vn))

)
.

Arguing by a contradiction, supposing that

∫
RN

(|∇vn|2 + V f 2(vn)) < lim inf
n→∞

( ∫
RN

(|∇v|2 + V f 2(v))
)

,

inf
M

I ≤ I(v)− 1
2∗
〈I′(v), v〉

=
2∗ − 2

22∗

∫
RN
|∇v|2 + 2∗ − 2

22∗

∫
RN

V f 2(v)− p + 1− 2∗

2∗(p + 1)

∫
RN

A| f (v)|p+1

+
1
2∗

∫
RN

λB| f (v)|22∗

< lim inf
n→∞

(
2∗ − 2

22∗

∫
RN
|∇vn|2 +

2∗ − 2
22∗

∫
RN

V f 2(vn)−
p + 1− 2∗

2∗(p + 1)

∫
RN

A| f (vn)|p+1

+
1
2∗

∫
RN

λB| f (vn)|22∗
)

= lim inf
n→∞

(
I(vn)−

1
2∗
〈I′(vn), vn〉

)
= inf

M
I,

which is a contradiction. Then,
∫
RN (|∇vn|2 + V f 2(vn)) = lim inf

n→∞

( ∫
RN (|∇vn|2 + V f 2(vn))

)
and

P(v) = lim inf
n→∞

P(vn) = 0. Therefore, v ∈ M and vn → v in E.

Step 3. We now show that I′(v) = 0. Thanks to the Lagrange multiplier rule, there exists τ ∈ R
so that I′(v) = τP′(v) = 0. As in the proof of Step 4 in Lemma 7, we can prove that τ = 0. Thus,
I′(v) = 0.

Proof of Theorem 1. For N ≥ 3 and large enough λ > 0, it is deduced from Lemma 10 that there
exists v ∈ M such that I(v) = inf I|M and I′(v) = 0. Then, v is a nontrivial critical point of I|M. Hence,
by Lemma 7, the v is a nontrivial ground state solution of (7) with V(x) = V, A(x) = A and B(x) = B.
Thus, u = f (v) is nontrivial ground state solution of Equation (1) in the case of V(x) = V, A(x) = A
and B(x) = B. Furthermore, it is easy to see that |u| is also a ground state solution of Equation (1) since
the functional I(v) and P(v) are even. Therefore, we may assume that such a ground state solution
does not change sign, i.e. u ≥ 0. The strong maximum principle and standard arguments [24] imply
that u(x) > 0 for all x ∈ RN and the proof is completed.

4. Ground State of Equation (1) with Nonconstant Coefficient

In this section, we investigate Equation (1) in the case that V(x), A(x) and B(x) are nonconstant.
A starting point is the following lemma.
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Lemma 11. ([25]) Let (X, ‖ · ‖) be a Banach space and T ∈ R+ be an interval. Consider a family of C1

functionals on X of the form
Φδ(u) = C(u)− δD(u), for all δ ∈ T,

with D(u) ≥ 0 and either C(u) → +∞ or D(u) → +∞, as ‖u‖ → ∞. Assume that there are two points
v1, v2 ∈ X such that

cδ = inf
γ∈Γ

max
s∈[0,1]

Φδ(γ(s)) > max{Φδ(v1), Φδ(v2)}, for any δ ∈ T,

where
Γ = {γ ∈ C([0, 1], X)| γ(0) = v1, γ(1) = v2}.

Then, for almost every δ ∈ T, there is a bounded (PS)cδ
sequences in X.

For δ ∈ [ 1
2 , 1], we consider the functional IV,δ : E→ R defined by

IV,δ(v) = C(v)− δD(v)
δ

p + 1

∫
RN

A(x)| f (v)|p+1 − λδ

22∗

∫
RN

B(x)| f (v)|22∗ , v ∈ E, (20)

where C(v) = 1
2

∫
RN |∇v|2 + 1

2

∫
RN V(x) f 2(v), D(v) = 1

p+1

∫
RN A(x)| f (v)|p+1 + λ

22∗
∫
RN B(x)| f (v)|22∗ .

It is clear that this functional is of C1. Moreover, for every v, w ∈ E,

〈I′V,δ(v), w〉 =
∫
RN

(∇v∇w + V(x) f (v) f ′(v)w)− δ
∫
RN

A(x)| f (v)|p−1 f ′(v)w

− λδ
∫
RN

B(x)| f (v)|22∗−2 f ′(v)w.
(21)

We also need to consider the associated limit problem

−∆v + V∞ f (v) f ′(v) = δA∞| f (v)|p−1 f (v) f ′(v) + δλB∞| f (v)|22∗−1 f (v) f ′(v), v ∈ E. (QS)∞

It is clear that (QS)∞ is the Euler–Lagrange equations of the functional

I∞,δ(v) =
1
2

∫
RN
|∇v|2 + 1

2

∫
RN

V∞ f 2(v)− δ

p + 1

∫
RN

A∞| f (v)|p+1 − δλ

22∗

∫
RN

B∞| f (v)|22∗ . (22)

The following lemma ensures that IV,δ has the mountain pass geometry with the corresponding
mountain pass level denoted by cV,δ.

Lemma 12. If (V1), (V2), (A) and (B) hold. Then,
(1) there exists v0 ∈ E\{0} such that IV,δ(v0) < 0, for δ ∈ [ 1

2 , 1];
(2) cV,δ := inf

γ∈Γ
max
s∈[0,1]

IV,δ(γ(s)) > max{IV,δ(0), IV,δ(v)} for δ ∈ [ 1
2 , 1], where

Γ = {γ ∈ C([0, 1], E)| γ(0) = 0, γ(1) = v}.

Proof. (1) For any v ∈ E\{0}, δ ∈ [δ, 1].

IV,δ(vt) ≤ I∞,δ(vt)

=
∫
RN

(
tN−2

2
|∇v|2 + tN

2
V∞ f 2(v)− δtN

p + 1
A∞| f (v)|p+1 − δλtN

22∗
B∞| f (v)|22∗

)
→ −∞

as t→ +∞. Taking v = vt for t large, this shows at once that IV,δ(v) ≤ I∞,δ(v) < 0.
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(2) Recalling Lemma 1 and Step 1 of Lemma 7, we get

IV,δ(v) =
1
2

∫
R3
(|∇v|2 + V(x)| f (v)|2)− δ

p + 1

∫
R3

A(x)| f (v)|p+1 − δλ

22∗

∫
R3

B(x)| f (v)|22∗

≥ 1
2

C1ρ2 − C2ρp+1 − C3ρ22∗ ,

for sufficiently small ρ > 0, there exists τ > 0 such that IV,δ(v) ≥ τ > 0, then cV,δ > 0.

Lemma 12 means that, if IV,δ(v) satisfies the assumptions of Lemma 11 with X = E and Φδ = IV,δ,
we then obtain immediately, for a.e. δ ∈ [ 1

2 , 1], there exists a bounded sequence {un} ⊂ E such that
IV,δ(un)→ cV,δ, I′V,δ(vn)→ 0 in E.

Lemma 13. ([25], Lemma 2.3) Under the assumptions of Lemma 11, the map δ→ cδ is non-increasing and left
continuous.

Introduce the following manifold

M∞,δ = {v ∈ E\{0} | P∞,δ(v) = 0},

where

P∞,δ(v) =
N − 2

2

∫
RN
|∇v|2 + N

2

∫
RN

V∞ f 2(v)− δN
∫
RN

A∞| f (v)|p+1 − δλN
∫
RN

B∞| f (v)|22∗ .

Set
m∞,δ := inf

v∈M∞,δ
I∞,δ(v).

According to Section 3, M∞,δ(v) has some similar properties to those of the manifold M, such as
containing all the nontrivial critical points of I∞,δ(v).

Lemma 14. If N ≥ 3 and δ ∈ [ 1
2 , 1], m∞,δ is obtained at some v∞,δ ∈ M∞,δ. Moreover,

I∞,δ(v∞,δ) = m∞,δ = inf{I∞,δ(v) | v 6= 0, I′∞,δ(v) = 0}.

Proof. The proof is similar to that of Theorem 1, and is omitted here.

Lemma 15. Suppose that (V1), (V2), (A) and (B) hold. Then, cV,δ < m∞,δ for δ ∈ [ 1
2 , 1].

Proof. Let v∞,δ be a minimizer of m∞,δ. By Lemma 5, I∞,δ(v∞,δ) = maxt>0 I∞,δ(v(t−1x)). Then, we see
that, for δ ∈ [ 1

2 , 1],

c∞,δ ≤ max
t>0

IV,δ(v∞,δ(t−1x)) < max
t>0

I∞,δ(v∞,δ(t−1x)) = I∞,δ(v∞,δ) = m∞,δ.

Next, we need the following global compactness lemma, which is adopted to prove that the
functional I∞,δ satisfies (PS)cV,δ condition for a.e. δ ∈ [ 1

2 , 1].

Lemma 16. Suppose that (V1), (V2), (A) and (B) hold. For every δ ∈ [ 1
2 , 1], let {vn} be a bounded (PS)cV,δ

sequence for IV,δ Then, there exist a subsequence of {vn}, still denote {vn}, v0 and integer η ∈ N ∪ {0},
sequence {yj

n}, wj ⊂ H1(RN) for 1 ≤ j ≤ η such that
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(i) vn ⇀ v0 with I′V,δ(v0) = 0;

(ii) |yj
n| → +∞, |yj

n − yi
n| → +∞ if i 6= j, n→ +∞;

(iii) wj 6= 0 and I′∞,δ(w
j) = 0 for 1 ≤ j ≤ η;

(iv)

∥∥∥∥∥vn − v0 −
η

∑
j=1

wj(· − yj
n)

∥∥∥∥∥→ 0; and

(v) IV,δ(vn)→ IV,δ(v0) +
η

∑
j=1

I∞,δ(wj).

Here, we agree that in the case η = 0 the above holds without wj and {yj
n}.

Proof. We complete the proof in two steps.
Step 1. Since {vn} is bounded in E, up to subsequence, there exists v0 such that vn ⇀ v0 in E,

vn → v0 in Lr
loc(R

N), f (vn)→ f (v0) in Lr
loc(R

N) (2 ≤ r < 22∗). (23)

Arguing as in [26], let ϕ ∈ C∞
0 (RN) and Υ := supp(ϕ). Then, vn → v0 a.e. on Υ and |vn(x)| ≤

wr(x) for every n ∈ N and a.e. on Υ with wr(x) ∈ Lr(Υ) (see Lemma A.1, [22]). Consequently,

V(x) f (vn) f ′(vn)→ V(x) f (v0) f ′(v0) a.e. on Υ

A(x)| f (vn)|p−1 f (vn) f ′(vn)→ A(x)| f (v0)|p−1 f (v0) f ′(v0) a.e. on Υ,

B(x)| f (vn)|22∗−2 f (vn) f ′(vn)→ B(x)| f (v0)|22∗−2 f (v0) f ′(v0) a.e. on Υ.

Now, we show that I′V,δ(v0) = 0. In fact, it suffices to prove that 〈I′V,δ(v0), ϕ〉 = 0. It follows
from Equation (23) that for any fixed ϕ ∈ C∞

0 (RN)

lim
n→∞

∫
RN
∇vn∇ϕ =

∫
RN
∇v0∇ϕ. (24)

Using ( f3) of Lemma 1 and (V1), we have that

|V(x) f (vn) f ′(vn)ϕ| ≤ sup
Υ

V(x)|w2||ϕ|.

The Lebesgue dominated convergence theorem implies that

lim
n→∞

∫
RN

V(x) f (vn) f ′(vn)ϕ =
∫
RN

V(x) f (v0) f ′(v0)ϕ. (25)

Similarly, since B(x)| f (vn)|22∗−2 f (vn) f ′(vn)ϕ| ≤ sup
Υ

B(x)|w22∗−1|22∗−1|ϕ|, we have

lim
n→∞

∫
RN

B(x)| f (vn)|22∗−2 f (vn) f ′(vn)ϕ =
∫
RN

B(x)| f (v0)|22∗−2 f (v0) f ′(v0)ϕ.

If |vn(x)| ≤ 1, using ( f2) and ( f3) of Lemma 1, we have

A(x)| f (vn)|p−1 f (vn) f ′(vn)ϕ| ≤ | f (vn)|p|ϕ| ≤ sup
Υ

A(x)|ϕ|. (26)

If |vn(x)| > 1, using ( f2), ( f3) and ( f7) of Lemma 1, we have∣∣∣A(x)| f (vn)|p−1 f (vn) f ′(vn)ϕ
∣∣∣ ≤ sup

Υ
A(x)| f (vn)|p|ϕ| < 2

p
4 |w 22∗−1

2
|

22∗−1
2 |ϕ|. (27)
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Thus, combining Equation (26) with Equation (27), one deduces that

lim
n→∞

∫
RN

A(x)| f (vn)|p−1 f (vn) f ′(vn)ϕ =
∫
RN

A(x)| f (v0)|p−1 f (v0) f ′(v0)ϕ. (28)

It follows from Equations (24), (25) and (28) that

〈I′V,δ(vn), ϕ〉 − 〈I′V,δ(v0), ϕ〉

=
∫
RN
∇(vn − v0)∇ϕ +

∫
RN

V(x)( f (vn) f ′(vn)− f (v0) f ′(v0))ϕ

− δ
∫
RN

A(x)(| f (vn)|p−1 f (vn) f ′(vn)− | f (v0)|p−1 f (v0) f ′(v0))

− λδB(x)(| f (vn)|22∗−2 f (vn) f ′(vn)− | f (v0)|22∗−2 f (v0) f ′(v0))ϕ→ 0.

(29)

Thus, I′V,δ(v0) = 0.
Step 2. We prove that IV,δ(v0) ≥ 0.
From (V2) and N ≥ 3, we deduce that

I(v0) = I(v0)−
1
N

P(v0) =
N + 2

2N

∫
RN
|∇v0|2 −

1
2N

∫
RN
〈∇V(x), x〉 f 2(v0) ≥ 0. (30)

Step 3. Set w1
n = vn − v0, then we get w1

n ⇀ 0 in E.
Let us define

µ = lim
n→∞

sup
y∈RN

∫
RN
| f (w1

n)|2.

Vanishing: If µ = 0, then it follows from Lemma 8 that

f (w1
n)→ 0 (31)

in Ls(RN) for s ∈ (2, 22∗). By I′V,δ(v0) = 0 and Fatou’s Lemma, we have

cV,δ ≤ IV,δ(v0)−
1
2∗
〈I′V,δ(v0), v0〉

=
2∗ − 2

22∗

∫
RN
|∇v0|2 +

2∗ − 2
22∗

∫
RN

V(x) f 2(v0)

− p + 1− 2∗

2∗(p + 1)

∫
RN

A(x)| f (v0)|p+1 +
1
2∗

∫
RN

λB(x)| f (v0)|22∗

≤ lim inf
n→∞

(
2∗ − 2

22∗

∫
RN
|∇vn|2 +

2∗ − 2
22∗

∫
RN

V(x) f 2(vn)

− p + 1− 2∗

2∗(p + 1)

∫
RN

A(x)| f (vn)|p+1 +
1
2∗

∫
RN

λB(x)| f (vn)|22∗
)

= lim inf
n→∞

(
IV,δ(vn)−

1
2∗
〈I′V,δ(vn), vn〉

)
= cV,δ,

(32)

which means that ‖w1
n‖ → 0.

Non-vanishing: If µ > 0, we can find a sequence {y1
n} ⊂ RN such that∫

B1(0)
f 2(w̃1

n) =
∫

B1(yn)
f 2(w1

n) >
µ

2
> 0, (33)

where w̃1
n = w1

n(· + y1
n). Note that ‖w̃1

n‖ = ‖w1
n(· + y1

n)‖, we see that {w̃1
n} is bounded. Going

if necessary to a subsequence, we have a v1 ∈ E such that w̃1
n ⇀ v1 in E. Since

∫
B1(0)
|w̃1

n|2 ≥∫
B1(0)
| f (w̃1

n)|2 > µ
2 , we see that v1 6= 0. Moreover, w1

n ⇀ 0 in E implies that |y1
n| → +∞. Next, we
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prove that I′∞,δ(v
1) = 0. Similar to the proof of Step 1, for any fixed ϕ ∈ C∞

0 (RN), it suffices to show
that 〈I′∞,δ(w̃

1
n), ϕ〉 → 0. By (V1), (A), (B) and |y1

n| → +∞, as n→ ∞, we have that

∫
RN

(V(x + y1
n)−V∞) f (w̃1

n) f ′(w̃1
n)ϕ→ 0, (34)

∫
RN

(A(x + y1
n)− A∞)| f (w̃1

n)|p−1 f (w̃1
n) f ′(w̃1

n)ϕ→ 0, (35)∫
RN

(B(x + y1
n)− B∞)| f (w̃1

n)|22∗−2 f (w̃1
n) f ′(w̃1

n)ϕ→ 0. (36)

Since w1
n ⇀ 0 in E, one has that 〈I′V,δ(w

1
n), ϕ(· − y1

n)〉 → 0, i.e.

∫
RN
∇w̃1

n∇ϕ +
∫
RN

V(x + y1
n) f (w̃1

n) f ′(w̃1
n)ϕ− δ

∫
RN

A(x + y1
n)| f (w̃1

n)|p−1 f (w̃1
n) f ′(w̃1

n)ϕ

− λδ
∫
RN

B(x + y1
n)| f (w̃1

n)|22∗−2 f (w̃1
n) f ′(w̃1

n)ϕ→ 0
(37)

as n→ ∞. Thus, using Equations (34)–(37), one has 〈I′∞,δ(w̃
1
n), ϕ〉 → 0. Therefore, I′∞,δ(v

1) = 0. In the
following, we prove that

IV,δ(w1
n) = cV,δ − IV,δ(v0) + o(1) (38)

and
IV,δ(vn)− IV,δ(v0)− I∞,δ(w1

n)→ 0. (39)

Firstly, we claim that the relation below holds:∫
RN
| f (w1

n)|l =
∫
RN
| f (vn)|l −

∫
RN
| f (v0)|l + o(1), 2 ≤ l ≤ 22∗. (40)

We have by ( f2) and ( f3) of Lemma 1 that∫
RN
|∇ f (w1

n)|2 ≤
∫
RN
| f ′(w1

n)|2|∇w1
n|2 ≤

∫
RN
|∇w1

n|2,
∫
RN
| f (w1

n)|2 ≤
∫
RN
|w1

n|2. (41)

Thus, { f (w1
n)} is bounded in E and f (w1

n) ∈ Ll(RN). Because of the local compactness of the
Sobolev embedding theorem, we have, up to a subsequence, f (w1

n) → f (v0) almost everywhere on
RN . Then, the conclusion follows from the Brrézis-Lieb Lemma. This implies that Equation (40) holds.
Using similar arguments above, for any ϕ ∈ C∞

0 (RN), we also obtain∫
RN
| f (w1

n)|p−1 f (w1
n) f ′(w1

n)ϕ

=
∫
RN
| f (vn)|p−1 f (vn) f ′(vn)ϕ−

∫
RN
| f (v0)|p−1 f (v0) f ′(v0)ϕ + o(1).

(42)

In addition, by Lemma 9, we have∫
RN
|∇w1

n|2 =
∫
RN
|∇vn|2 −

∫
RN
|∇v0|2 + o(1). (43)
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Now, from Equations (40) and (43), we know that Equation (38) holds. We deduce from
Equations (20) and (22) that

IV,δ(vn)− IV,δ(v0)− I∞,δ(vn − v0)

=
1
2

∫
RN

(|∇vn|2 − |∇v0|2 − |∇(vn − v0)|2)

+
1
2

(∫
RN

V(x)( f 2(vn)− f 2(v0))−
∫
RN

V∞ f 2(vn − v0)

)
− δ

p + 1

( ∫
RN

A(x)(| f (vn)|p+1 − | f (v0|p+1)−
∫
RN

A∞| f (vn − v0)|p+1
)

− λδ

22∗

( ∫
RN

B(x)(| f (vn)|22∗ − | f (v0)|22∗)−
∫
RN

B∞| f (vn − v0)|22∗
)

.

(44)

It is deduced from Equations (40)–(44) that Equation (39) holds.
Step 4. Set w2

n = w1
n − v1(· − yn), then w2

n ⇀ 0 in E. It follows from Equations (40)–(42) that

|∇w2
n|2L2 = |∇vn|2L2 − |∇v0|2L2 − |∇v1(· − yn)|2L2 + o(1),

| f (w2
n)|

p+1
Lp+1 = | f (vn)|p+1

Lp+1 − | f (v0)|
p+1
Lp+1 − | f (v1(· − yn))|p+1

Lp+1 + o(1),∫
RN

V(x)| f (w2
n)|2

=
∫
RN

V(x)| f (vn)|2 −
∫
RN

V(x)| f (v0)|2 −
∫
RN

V(x)| f (v1(· − yn))|2 + o(1),∫
RN

A(x)| f (w2
n)|p−1 f (w2

n) f ′(w2
n)ϕ

=
∫
RN

A(x)| f (vn)
p−1 f (vn) f ′(vn)ϕ−

∫
RN

A(x)| f (v0)|p−1 f (v0) f ′(v0)ϕ

−
∫
RN

A(x)| f (v1(· − yn))
p−1 f (v1(· − yn)) f ′(v1(· − yn))ϕ + o(1),∫

RN
λB(x)| f (w2

n)|22∗−2 f (w2
n) f ′(w2

n)ϕ

=
∫
RN

λB(x)| f (vn)|22∗−2 f (vn) f ′(vn)ϕ−
∫
RN

λB(x)| f (v0)|22∗−2 f (v0) f ′(v0)ϕ

−
∫
RN

λB(x)| f (v1(· − yn))|22∗−2 f (v1(· − yn)) f ′(v1(· − yn))ϕ + o(1).

By similar argument, we can deduce that

IV,δ(w2
n) = IV,δ(vn)− IV,δ(v0)− I∞,δ(v1) + o(1),

IV,δ(w2
n) = IV,δ(w1

n)− I∞,δ(v1) + o(1),

〈I′V,δ(w
2
n), ϕ〉 = 〈I′V,δ(vn), ϕ〉 − 〈I′V,δ(v0), ϕ〉 − 〈I′∞,δ(v

1), ϕ〉+ o(1) = o(1)

and then

IV,δ(vn) = IV,δ(v0) + I∞,δ(w1
n) + o(1) = IV,δ(v0) + I∞,δ(w2

n) + I∞,δ(v1) + o(1).

Similar to the proof in Step 2 of Lemma 16, we obtain that I∞,δ(v1) ≥ 0. Then, we get
from Equation (30) that

IV,δ(w2
n) = cV,δ − IV,δ(v0)− I∞,δ(v1) + o(1) ≤ cV,δ.
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Repeating the same type of arguments explored in Step 3, set

µ1 = lim
n→∞

sup
y∈RN

∫
RN
| f (w2

n)|2.

If vanishing occurs, then ‖w2
n‖ → 0 in E. Thus, Lemma 16 holds with j = 1. If w2

n is non vanishing,
then there exists a sequence {y2

n} and v2 ∈ E such that w̃2
n = w2

n(·+ y2
n) ⇀ v2 in E and I′∞,δ(v

2) = 0.
Furthermore, v2

n ⇀ 0 in E means that |y2
n| → +∞ and |y1

n − y2
n| → +∞. By iterating this technique,

we obtain wj
n = wj−1

n − vj−1 with j ≥ 1 such that wj
n → vj, I′∞,δ(v

j) = 0 and sequences yj
n ⊂ RN

such that |yj
n| → +∞ and |yi

n − yj
n| → +∞ if i 6= j as n→ +∞, and using the properties of the weak

convergence, we have

‖vn‖2 − ‖v0‖2 −
j−1

∑
k=1
‖vk(· − yk

n)‖2 =

∥∥∥∥vn − v0 −
j−1

∑
k=1

vk(· − yk
n)

∥∥∥∥2

+ o(1), (45)

IV,δ(vn)→ IV,δ(v0) +
j−1

∑
k=1

I∞,δ(vk−1) + I∞,δ(w
j
n). (46)

Equation (46) implies that the iteration stops at some finite index η + 1. Therefore, wη+1
n → 0 in E.

We can verify that (iv) and (v) hold by Equations (45) and (46). This proves the lemma.

Lemma 17. Assume that (V1), (V2), (A) and (B) hold; 2 ≤ p < 22∗ − 1. Let {vn} be a bounded (PS)cV,δ

sequence of IV,δ. Then, there exists a nontrivial vV,δ ∈ E such that I′V,δ(vV,δ) = 0 and IV,δ(vV,δ) = cV,δ for
almost all δ ∈ [ 1

2 , 1].

Proof. For δ ∈ [ 1
2 , 1], let v∞,δ be the minimizer of m∞,δ. By Lemma 13, we have that

c∞,δ < m∞,δ. (47)

It follows from Lemma 16 that there exists vV,δ ∈ E, η ∈ N ∪ {0} and sequences {yj
n} ⊂ RN ,

vj ⊂ E for j ∈ {1, 2, · · · , η} such that

I′V,δ(vV,δ) = 0, vn ⇀ vV,δ, and IV,δ(vn)→ IV,δ(vV,δ) +
η

∑
j=1

I∞,δ(vj), (48)

where vj is a critical point of I∞,δ(vV,δ). Similar to the argument of Equation (30), by (V2) and
2 ≤ p < 22∗ − 1, we also have I∞,δ(vV,δ) ≥ 0. If η 6= 0, and then, by Equation (48), one obtains that

cV,δ = IV,δ(uV,δ) +
η

∑
j=1

I∞,δ(wj) ≥ m∞,δ,

which contradicts Equation (47). Thus, η = 0, which implies vn → vV,δ in E and IV,δ(vV,δ) = cV,δ.

Proof of Theorem 2. The proof contains two steps.
Step 1. From Lemmas 11 and 12, for almost every δ ∈ [ 1

2 , 1], there exists a bounded (PS)cV,δ

sequence for IV,δ. Then, Lemma 7 implies that there exists vV,δ ∈ E\{0} such that I′V,δ(vV,δ) = 0 and
IV,δ(vV,δ) = cV,δ. Choose δn → 1 such that IV,δn has a critical point vV,δn still denoted by {vn}. Now,
we show that {vn} is bounded in E. Denote
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an :=
∫
R3
|∇vn|2, bn :=

∫
R3

V(x) f 2(vn), b̄n :=
∫
R3
(∇V(x), x) f 2(vn),

cn :=
∫
R3

A(x)| f (vn)|p+1, c̄n :=
∫
R3
(∇A(x), x)| f (vn)|p+1, dn :=

∫
R3

λB(x)| f (vn)|22∗ ,

d̄n :=
∫
R3

λ(∇B(x), x)| f (vn)|22∗ , An :=
1

1 + 2 f 2(vn)
.

Then, 

1
2

an +
1
2

bn −
δn

p + 1
cn −

δn

22∗
dn = cV,δn ,

N − 2
2

an +
N
2

bn +
1
2

b̄n −
Nδn

p + 1
cn −

δn

p + 1
c̄n −

Nδn

22∗
dn −

δn

22∗
d̄n = 0,

Anan + bn − δncn − δndn = 0.

(49)

From these relations, (V2), (A) and (B), one has that(
5
2
− An

)
an +

1
2

bn −
1
2

b̄n +
p− 2
p + 1

δncn +
22∗ − 3

22∗
δndn +

1
p + 1

δn c̄n +
1

22∗
δnd̄n = (N + 3)cV,δ,

which implies that {an + bn} is bounded since 2 ≤ p < 22∗ − 1 and 0 < An ≤ 1. Therefore,
{
∫
RN (|∇vn|2 +V(x) f 2(vn))} is bounded. Using Step 1 of Lemma 10, we deduce that {vn} is bounded

in E. Moreover, using Lemma 13, we deduce that

lim
n→∞

IV(vn) = lim
n→∞

{
IV,δn(vn) + (δn − 1)

[ ∫
RN

1
p + 1

| f (vn)
p+1 +

λ

22∗

∫
RN
| f (vn)|22∗

]}
. (50)

Since the sequence {vn} is bounded in E, we have that { f (vn)} is bounded in Ls(RN)

for 2 ≤ s ≤ 22∗. Then,

lim
n→∞

(δn − 1)
[ ∫

RN

1
p + 1

| f (vn)
p+1 +

λ

22∗

∫
RN
| f (vn)|22∗

]
≤ lim

n→∞
C(δn − 1)(‖vn‖p+1 + ‖vn‖22∗) = 0.

(51)

It is deduced from Equations (50) and (51) that

lim
n→∞

IV(vn) = lim
n→∞

cV,δn = cV,1. (52)

Similar to the argument for Equation (52), we get that

lim
n→∞

〈
I′V(vn),

f (vn)

f ′(vn)

〉
= lim

n→∞

{〈
I′V,δn

(vn),
f (vn)

f ′(vn)

〉
+ (δn − 1)

[ ∫
RN
| f (vn)

p+1 + λ
∫
RN
| f (vn)|22∗

]}
= 0.

(53)

Equations (52) and (53) show that {vn} is a bounded (PS)cV,1 sequence for IV := IV,1. Then, by
Lemma 17, there exists a nontrivial critical point v0 ∈ E for IV and IV(v0) = cV,1.

Step 2. Now, we prove the existence of a ground state solution for Equation (1). Set

mV := inf{IV(v) | v 6= 0, I′V(v) = 0}.
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As in the proof of Step 2 of Lemma 16, we can see that every critical point of IV has nonnegative
energy. Thus, 0 ≤ mV ≤ IV(v0) < cV,1 < +∞. Let {vn} be a sequence of nontrivial critical points of
IV satisfying IV(vn) → mV . Since IV(vn) is bounded, using the similar arguments as Equation (49),
we can conclude that {vn} is bounded (PS)mV sequence of IV . Similar arguments in Lemma 17, there
exists a positive and nontrivial v∗ ∈ E such that IV(v∗) = mV , which implies that u∗ = f (v∗) is a
ground state solution for Equation (1). By strong maximum principle, u∗ = f (v∗) is a positive ground
state solution for Equation (1). The proof is complete.

5. Discussion

Our results generalize partial results in Xu and Chen [8] and Zhao and Zhao [16]. The case of
p ∈ [1, 2) is still unknown, which can be a problem for further study.
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