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Abstract: A test suite plays a key role in software testing. Mutation testing is a powerful approach
to measure the fault-detection ability of a test suite. The mutation testing process requires a large
number of mutants to be generated and executed. Hence, mutation testing is also computationally
expensive. To solve this problem, predictive mutation testing builds a classification model to predict
the test result of each mutant. However, the existing predictive mutation testing methods only
can be used to estimate the overall mutation scores of object-oriented programs. To overcome the
shortcomings of the existing methods, we propose a new method to directly predict the mutation
score for each statement in process-oriented programs. Compared with the existing predictive
mutation testing methods, our method uses more dynamic program execution features, which more
adequately reflect dynamic dependency relationships among the statements and more accurately
reflects information propagation during the execution of test cases. By comparing the prediction
effects of logistic regression, artificial neural network, random forest, support vector machine, and
symbolic regression, we finally decide to use a single hidden layer feedforward neural network as
the predictive model to predict the statement mutation scores. In our two experiments, the mean
absolute errors between the statement mutation scores predicted by the neural network and the real
statement mutation scores both approximately reach 0.12.

Keywords: software testing; machine learning; mutation testing

1. Introduction

When a programmer writes a program, a mistake may occur in the code. For example,
a programmer may incorrectly write x=x-1 as x=x+1, x=x*1, x=x%1, etc. This mistake is referred
to as a software fault (i.e., a software bug). When this fault is executed, an incorrect execution result
may appear on the corresponding statement. This incorrect execution result often is referred to as a
software error and cannot be directly observed. When this software error propagates to an observable
program output, a software failure occurs.

A strong-power test suite may detect more software faults than a weak-power one, thus measuring
the fault detection capability of a test suite is an important question in software testing. Mutation testing
is an approach to determine the effectiveness of a test suite [1–3].

The programs with software faults are called mutants. In mutation testing, mutants are generated
through automatically changing the original program with mutation operators, where each mutation
operator is a rule and can be applied to program statements to produce the program version with a
software fault. A mutant is said to be identified by a test suite if at least one test case from the test
suite has different execution results on the mutant and the original program. Mutation score, which is
the ratio of all identified mutants to all mutants, has been widely used to assess the adequacy of a
test suite.

Although mutation testing is obviously useful, it is extremely expensive [4,5]. For example, using
108 mutation operators, Proteum [6] generates 4937 mutants for tcas, which is the smallest program
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among the Siemens programs and contains only 137 non-commenting and non-whitespace lines of
code. Thus, testing a large number of mutants can be a big burden.

For solving this problem, researchers have proposed some optimization methods to reduce the cost
of mutation testing, such as random mutation [7,8], mutant clustering [9] and selective mutation [10,11].
For quickly calculating the mutation score of the whole program, these methods attempt to use a
mutant sample to represent all mutants. Random mutation randomly chooses some mutants from all
mutants to construct mutation samples. A mutant clustering algorithm first classifies all mutants into
different clusters so that the mutants in a cluster have similar identification difficulties, and then selects
a small number of mutants from each cluster to construct the mutant sample. Selective mutation uses
only a subset of mutation operators to generate a mutant sample.

Different from the above mutant reduction methods, the predictive mutation testing
methods [12,13] have been proposed in recent years. The predictive mutation testing methods extract
some features related to program structures and testing processes and apply machine learning to
predict each mutant’s test result (i.e., the identification result). Moreover, these predictive methods’
execution time is short. However, the existing predictive mutation testing methods are all designed
for object-oriented programs. The same as other methods, the existing predictive mutation testing
methods are also mainly used for estimating the mutation score of the whole program. The main
differences among the above mutant reduction methods can be shown in Table 1.

Table 1. Main differences among mutation reduction methods.

Method Key Technology Time Cost Target

random mutation simple random sampling low estimating program mutation score

mutant clustering stratified sampling low estimating program mutation score

selective mutation non-probability sampling high estimating program mutation score

predictive mutation supervised learning low
estimating program mutation score
classifying mutants

To make up for the shortcomings of existing predictive mutation testing methods, based on the
execution impact map [14] Goradia uses, we suggest a new predictive method. This new method is
not only suitable for procedure-oriented programs but also can use a single hidden layer feedforward
neural network and seven statement features to predict the mutation score of each program statement.

The prediction of the statement mutation scores includes two major phases: extracting the
statement features and determining the mathematical form of predictive model. In the feature
extraction phase, we obtain the following seven features to express the effect of a statement on
the program outputs: number of executions, path impact factor, value impact factor, generalized
path impact factor, generalized value impact factor, latent impact factor, and information hidden
factor. In fact, among the above seven features, only a number of executions are adopted by existing
predictive mutation testing methods. Compared with the existing predictive mutation testing methods,
our method more accurately expresses information propagation among the statements. For a statement,
except for the number of executions, its six other features are extracted from the following six
aspects respectively:

When a test case executes on the statement containing a software fault , an error may be generated.
This error either propagates along the original execution path or changes the original execution path.

(1) The fault in the statement may change the program output by generating the errors that
propagate along the original execution paths. From this aspect, we extract the statement’s value
impact factor.

(2) The fault in the statement may change the program outputs by generating the errors altering
the original execution paths. From this aspect, we extract the statement’s path impact factor.
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However, in a few cases, the change of execution path does not result in a change of program
output. Therefore, we need to analyze further the features of the changed program branch in order to
more accurately predict how likely the program output will be changed.

(3) The no longer executed branches lose their ability to pass their information along the original
execution path to the program outputs. The loss of this capability may cause the program output to be
changed. From this aspect, we extract the statement’s generalized value impact factor.

(4) The no longer executed program branch is no longer able to influence the selection of
subsequent program branches. Loss of this ability may also impact the program output. From this
aspect, we extract the statement’s generalized path impact factor.

(5) The fault in a statement may cause some program branches, which has not been executed,
will be executed. Executing these new branches may cause the program output to change. From this
aspect, we extract the statement’s latent impact factor.

(6) Sometimes, the program under testing has multiple output statements, some of which happen
to have the same output values. In this case, even if the software fault changes the execution path of
the test case, the program outputs could still be the same. From this aspect, we extract a statement’s
information hidden factor.

Among these six factors, the first five factors facilitate program output changes, and the last one
prevents program output from changing.

In the phase of determining mathematical form of the predictive model, we compared the
following five machine learning models based on Brier scores: artificial neural network (ANN),
logical regression (LR), random forest (RF), support vector machine (SVM) and symbolic regression
(SR). From the experiment results, the artificial neural networks were identified as the most suitable
predictive model.

With the methods in this article, we analyzed the two programs. In the two experiments, the mean
absolute errors between the real statement mutation scores and predictive statement mutation scores
are 0.1205 and 0.1198, respectively.

The remainder of this paper is organized as below: in Section 2, we introduce some basic terms
used throughout the entire paper. In Section 3, we define seven statement features. In Section 4, we
propose a method for quickly calculating statement features. In Section 5, we compare the prediction
accuracy of five machine learning models. In Section 6, we introduce the structure of our automated
prediction tool. In Section 7, we describe the work to be performed.

2. Basic Terms

Definition 1. Original program and mutation score.

In this paper, a program without any software fault is also called an original program. For example,
Program 1 is an original program. It first outputs the factorial of the absolute value of the difference
between m and n, and then classifies the factorial. Based on the relationships among m, n and the
factorial, the execution results of the program are divided into three areas, the first and third of which
belong to the first class, and the second of which belongs to the second class.

A program with software faults is called a mutant. In mutation testing, mutants are generated
through automatically changing the original program with mutation operators. For example, in terms
of Program 1, if the statement dist=m-n is changed into dist=m%n, then the mutant m1 is generated
as shown in Program 2. If a test suite (i.e., a collection of test cases ) can identify the mutant m1, it
must satisfy the following conditions: there must be at least one test case in the test suite to execute the
statement dist=m%n in m1, the execution result of dist=m%n must be different from that of dist=m-n,
and the difference must be propagated to the program output.

Program mutation score is the proportion of identified mutants in a program, which is used to
assess how well the program is tested by the test suite. Statement mutation score is the the proportion
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of identified mutants in a statement, which is used to assess how well the statement is tested by the
test suite.

Definition 2. Program statement and branch.

In this article, we predict the ability of a test suite to test each line program code. A statement in
the program under testing usually occupies one line. Because a control expression usually occupies a
line in the program, in this paper, we also think of a controlling expression as a statement. As shown in
Program 1, we denote gth statement as sg. According to C programming language standard—C99 [15],
a controlling expression can occur in “if”, “switch”, “while”, “do while” and “for” statements and
decides which of the program branches is executed.

In terms of if-else statement, if its controlling expression appears in the rth line, then we denoted
its controlling expression as sr, and use Br,t and Br, f to denote the true branch and false branch of sr,
respectively. In terms of a loop statement (such as while loop, do-while loop and for loop), we regard
it as the combination of the controlling expression and the corresponding program branch. If a loop
statement’s controlling expression appears in the rth line, then its controlling expression is denoted as
sr, and the corresponding loop body is considered as the true branch of sr, so that this loop body can
also be denoted as Br,t. According to this representation method, the program branch whose function
is to exit the loop is denoted as Br, f .

Program 1: An original program.

#include <stdio.h>

typedef int bool ;

void fun(int m, int n) {

int dist, fac ;

s1 if(m>n)

s2 dist=m-n ;

else

s3 dist=n-m;

s4 fac=1;

s5 while (dist>1) { // Loop for factorial

s6 fac=fac ∗ dist ;

s7 dist = dist -1 ;

}

s8 printf (“fac=%d \n”, fac);

s9 if ( m<n ) // classify the factorial

s10 printf (“class 1 \n” ) ;

s11 else if (fac<5)

s12 printf (“class 2 \n” ) ;

else

s13 printf (“class 1 \n” ) ;

}
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Program 2: The mutant m1 of Program 1.

#include <stdio.h>

typedef int bool ;

void fun(int m, int n) {

int dist, fac ;

s1 if(m>n)

s2 dist=m%n ;

else

s3 dist=n-m;

s4 fac=1;

s5 while (dist>1) { // Loop for factorial

s6 fac=fac ∗ dist ;

s7 dist = dist -1 ;

}

s8 printf (“fac=%d \n”, fac);

s9 if ( m<n ) // classify the factorial

s10 printf (“class 1 \n” ) ;

s11 else if (fac<5)

s12 printf (“class 2 \n” ) ;

else

s13 printf (“class 1 \n” ) ;

}

For example, in Program 1, s9 is the controlling expression, the statement s10 constitutes its true
branch B9,t, and the statements s11, s12 and s13 constitute its false branch B9, f . The statements s6 and s7

constitute the loop body of the while loop, and, in this situation, the loop body is also considered as
the true branch B5,t of the controlling expression s5.

Definition 3. Statement instance and branch instance.

A statement may be executed multiple times by a test suite, so that multiple execution instances
are generated. The statement’s each execution instance is called its a statement instance. The hth
execution instance of test case tk on statement sg is denoted as sh

g,tk
. In this paper, the execution instance

of a program output statement is called an output statement instance. In addition, the execution instance
of a controlling expression is also considered as a special statement instance, and is called a controlling
expression instance.

For example, when Program 1 is executed by test case t1(m = 4, n = 1), the assignment statement
s4, controlling expression s5, controlling expression s9, controlling expression s11 and output statement
s13 are executed once, three times, once, once and once. This allows them to produce one, three, one,
one and one execution instance, respectively, during the execution of the test case t1. Among them,
the controlling expression instances s1

5,t1
, s2

5,t1
and s3

5,t1
, respectively, represent the first, second and

third executions of the test case t1 on the statement s5.
A program branch may also be executed multiple times, so that many execution instances are

generated. Each execution instance of the program branch is called a branch instance. Just as a
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program branch consists of many statements, a branch instance consists of many statement instances.
These statement instances are called the statement instances in the branch instance. A bit similar to the
symbols of statement instances, we use Bl

r,z,tk
to represent the lth execution instance of the test case

tk on the program branch Br,z, where z represents the true or the false branch, and its value is t or f .
Whether Br,z is executed depends on the execution result of the controlling expression sr.

For example, the branch instance B1
9,t,t1

consists of s1
10,t1

, and the branch instance B1
9, f ,t1

consists

of s1
11,t1

, s1
12,t1

and s1
13,t1

. In terms of the while statement in Program 1, s5 is a controlling expression
and generates three execution instances s1

5,t1
, s2

5,t1
and s3

5,t1
during the execution of the test case t1.

Because the execution of B1
5,t,t1

is the necessary condition for B2
5,t,t1

to be executed, B2
5,t,t1

is contained in
B1

5,t,t1
. As shown in Table 2, Figures 1 and 2, the first branch instance B1

5,t,t1
of the while loop consists of

the statement instances s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

and s3
5,t1

, and the second branch instance B2
5,t,t1

consists
of the statement instances s2

6,t1
, s2

7,t1
and s3

5,t1
.

Table 2. The execution history of the test cases.

Test Case Program Output Execution History Branch Instances in Loop

m = 4, n = 1 fac = 6, class 1 (s13) H1 :
s1

1,t1
, s1

2,t1
, s1

4,t1
, s1

5,t1
, s1

6,t1
, s1

7,t1
, s2

5,t1
,

s2
6,t1

, s2
7,t1

, s3
5,t1

, s1
8,t1

, s1
9,t1

, s1
11,t1

, s1
13,t1

B1
5,t,t1

= {s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

,
s3

5,t1
}, B2

5,t,t1
= {s2

6,t1
, s2

7,t1
, s3

5,t1
}

m = 2, n = 2 fac = 1,class 2 (s12) H2 : s1
1,t2

, s1
3,t2

, s1
4,t2

, s1
5,t2

, s1
8,t2

, s1
9,t2

, s1
11,t2

, s1
12,t2

m = 1, n = 4 fac = 6, class 1 (s10) H3 :
s1

1,t3
, s1

3,t3
, s1

4,t3
, s1

5,t3
, s1

6,t3
, s1

7,t3
, s2

5,t3
,

s2
6,t3

, s2
7,t3

, s3
5,t3

, s1
8,t3

, s1
9,t3

, s1
10,t3

B1
5,t,t1

= {s1
6,t1

, s1
7,t3

, s2
5,t3

, s2
6,t3

, s2
7,t3

,
s3

5,t3
}, B2

5,t,t3
= {s2

6,t3
, s2

7,t3
, s3

5,t3
}

Definition 4. Original execution path of the test case.

The execution history Hk of the test case tk is formed when the test case tk executes on an original
program. The execution history Hk is an execution trace, each element of which is a statement instance.
These statement instances are ordered by time until the last program output. In this paper, the execution
history Hk of the test case tk is also called the original execution path of tk.

For example, consider the Program 1, where test case t1 (m = 4, n = 1), test case t2 (m = 2, n = 2),
and test case t3 (m = 1, n = 4) constitutes the test suite T. As shown in Table 2, when t1 is executed,
H1 is generated, and the program outputs fac = 6 and class 1. When t2 is executed, H2 is generated,
and the program outputs fac = 1 and class 2. When t3 is executed, H3 is generated and the program
outputs fac = 6 and class 1.
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Figure 1. The execution impact graph G1 formed when Program 1 is executed by test case 1.
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Figure 2. The execution impact graph G2 formed when Program 1 is executed by test case 2.

Definition 5. Execution impact graph

An execution impact graph Gk is formed when the test case tk executes. The execution impact
graph Gk consists of multiple impact arcs generally, and each impact arc expresses the information
propagation between the statement instances. In terms of an impact arc, the arc tail sj

i,tk
is called a

direct impact predecessor, and the arc head sh
g,tk

is called a direct impact successor. In the practical

application, if a variable is assigned in the statement instance sj
i,tk

and is directly used at the statement

instance sh
g,tk

, then sj
i,tk

is a direct impact predecessor of sh
g,tk

, and sh
g,tk

is a direct impact successor of sj
i,tk

.

In the execution impact graph Gk, each node is expressed in the form of sj
i,tk

or s∗i,tk
, where sj

i,tk
denotes

a statement instance and the symbol ∗ indicates that the statement si is not executed by test case tk.
For example, when program 1 is executed by test cases 1, 2, and 3, the corresponding execution

impact graphs are generated respectively, as shown in Figures 1, 2, and 3. In Program 1, the variable
dist is defined in the statement s2 and is directly used in the statements s5, s6 and s7. Hence, when the
test case t1 is executed, s1

2,t1
becomes the direct impact predecessor of s1

5,t1
, s1

6,t1
and s1

7,t1
, respectively.

In this situation, s1
5,t1

, s1
6,t1

and s1
7,t1

become the direct impact successors of s1
2,t1

.
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Figure 3. The execution impact graph G3 formed when Program 1 is executed by test case 3.

Each direct impact successor of a statement instance may have its own direct impact successor.
Thus, the impact successor is transitive. If a statement instance is the impact successor of the statement
instance sh

g,tk
but it is not the direct impact successor of sh

g,tk
, then this statement instance is called the

indirect impact successor of sh
g,tk

. Thus, the impact successor can be divided into two types: the direct
impact successor and the indirect successor.



Mathematics 2019, 7, 778 8 of 39

For example, s1
5,t1

, s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

, s3
5,t1

, s1
8,t1

and s1
11,t1

are all the impact successors of s1
2,t1

.
However, s1

5,t1
, s1

6,t1
and s1

7,t1
are the direct impact successors of s1

2,t1
, and s2

5,t1
, s2

6,t1
, s2

7,t1
, s3

5,t1
, s1

8,t1
and

s1
11,t1

are the indirect impact successors of s1
2,t1

.
If there is a fault fg in statement sg, and sh

g,tk
is an execution instance of statement sg, then fg may

change the execution result of sh
g,tk

during the execution of the test case tk. If this change happens,
we say that a error eh

g,tk
is generated from the statement instance sh

g,tk
. In this paper, an error is different

from a fault . Errors are dynamic and are generated in the process of the test case execution. However,
faults are static. Whether the program under testing is executed or not, they may exist in the program
under testing.

3. Formal Definitions of Statement Features

In this section, we propose the seven features of a statement. The most of them are related to
execution paths of test cases. When the statement containing a software fault is executed by a test case,
an error may generate. After this error generates, it either propagates along the original execution path
of the test case or changes the original execution path. The value impact factor describes the ability of
the fault existing in a statement to affect the program output under the condition that the execution path
is unchanged. The path impact factor, the generalized value impact factor, the generalized path impact
factor and the latent impact factor describe the abilities of the fault existing in a statement to affect the
program output under the condition that the execution path is changed by the generated error.

3.1. Value Impact Factor

The value impact factor of a statement expresses its ability to directly impact the program outputs
along the execution paths of the test cases.

3.1.1. Value Impact Factor of Statement

The errors generated from the statement instance sh
g,tk

may propagate along the original execution
path Hk to some execution instances of the output statements. Each of these output statement instances
is called the value impact element of the statement instance sh

g,tk
. The collection consisting of all value

impact elements of sh
g,tk

is called value impact set of the statement instance sh
g,tk

, and denoted as Vh
g,tk

.
A statement sg has multiple execution instances generally and each execution instance has its

own value impact set. The union of these value impact sets is called the value impact set of sg, and is
denoted as Vg. The element in Vg is called the value impact element of sg. The number of value impact
elements of sg is called the value impact factor of sg, and is denoted as xvi(sg). Therefore, the following
formula holds:

Vg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Vh
g,tk

, (1)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk.

Example 1. From Table 2, we know that the statement s6 has four execution instances s1
6,t1

, s2
6,t1

, s1
6,t3

and s2
6,t3

.
If s6 includes a fault, then each execution instance of s6 may generate an error. The errors generated from s1

6,t1

and s2
6,t1

may propagate along the original execution path H1 to the output statement instance s1
8,t1

. Therefore,
V1

6,t1
= V2

6,t1
= {s1

8,t1
}. The errors generated from s1

6,t3
and s2

6,t3
may propagate along the original execution

path H3 to the output statement instance s1
8,t3

. Therefore, V1
6,t3

= V2
6,t3

= {s1
8,t3
}. According to Formula (1),

we have V6 = V1
6,t1

⋃
V2

6,t1

⋃
V1

6,t3

⋃
V2

6,t3
= {s1

8,t1
, s1

8,t3
}.
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3.1.2. The Value Impact Relationship between Statement Instance and Its Direct Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then we get

Vh
g,tk

=
⋃

c=1,2,··· ,n
Vqc

pc ,tk
. (2)

Example 2. From Figure 1, we can know that the direct impact successors of the statement instance s1
7,t1

consist
of s2

5,t1
, s2

6,t1
and s2

7,t1
. Under the condition that we know V2

5,t1
= ∅, V2

6,t1
= {s1

8,t1
} and V2

7,t1
= ∅, we have

V1
7,t1

= V2
5,t1

⋃
V2

6,t1

⋃
V2

7,t1
= {s1

8,t1
}.

This formula indicates that the errors generated from the statement instance s1
7,t1

can reach up to one output
statement instance s1

8,t1
when it propagates along the original execution path of the test case t1. Using the same

method, we also know V1
6,t1

= {s1
8,t1
}, V2

6,t1
= {s1

8,t1
}, V2

5,t1
= ∅ and V3

5,t1
= ∅.

3.1.3. Value Impact Set of Branch Instance

The information expressed by the statement instances in the branch instance Bl
r,z,tk

can propagate
along the original execution path Hk to some execution instances of the program output statements.
These affected output statement instances constitute the value impact set V l

r,z,tk
of the branch instance

Bl
r,z,tk

. We can get the following formula:

V l
r,z,tk

=
⋃

d=1,2,··· ,n
Vhd

gd ,tk
, (3)

where sh1
g1,tk

, sh2
g2,tk

, · · · , shn
gn ,tk

are all the statement instances in the branch instance Bl
r,z,tk

.

Example 3. We can use formula (3) to calculate the value impact set of the branch instance B1
5,t,t1

. From Example
2, we know both V1

6,t1
= {s1

8,t1
}, V1

7,t1
= {s1

8,t1
}, V2

5,t1
= ∅, V2

6,t1
= {s1

8,t1
} V2

7,t1
= ∅, V3

5,t1
= ∅. Because

the branch instance B1
5,t,t1

consists of the six statement instances s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

s2
7,t1

, and s3
5,t1

, we get
V1

5,t,t1
= V1

6,t1

⋃
V1

7,t1

⋃
V2

5,t1

⋃
V2

6,t1

⋃
V2

7,t1

⋃
V3

5,t1
= {s1

8,t1
}.

3.1.4. Value Impact Set of the Special Statement Instance

If a statement instance is an output statement instance, it usually does not have any impact
successors. We set its value impact set to itself because the change of its execution result is precisely
the change of program output. If a statement instance is not an output statement instance and does not
have any impact successors, then we set its value impact set to an empty set.

3.2. Path Impact Factor

The path impact factor of a statement expresses its ability to directly impact the execution paths
of the test cases.

3.2.1. Path Impact Factor of Statement

The more controlling expression instances a statement impact, the more easily the fault in the
statement changes the execution paths of the test cases. The more likely the execution path is changed,
the more likely the program output will be changed. Therefore, we take the number of the control
expression instances impacted by a statement during the test suite execution as a feature to describe
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the effect of this statement on program output. For this purpose, we defined a statement’s path
impact factor.

The errors generated from the statement instance sh
g,tk

may propagate along the original execution
path Hk to some controlling expression instances. The collection of these controlling expression
instances is called the path impact set Ph

g,tk
of the statement instance sh

g,tk
. The element in Ph

g,tk
is called

the path impact element of sh
g,tk

. The path impact set of statement sg is the union of path impact sets of
execution instances of sg, and denoted as Pg. In other words,

Pg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Ph
g,tk

. (4)

K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk.

Example 4. From Table 2, we know that the statement s6 has four execution instances s1
6,t1

, s2
6,t1

, s1
6,t3

and s2
6,t3

.
If s6 includes a fault, then when s6 is executed by the test suite, each execution instance may generate an error.
The errors generated from first two statement instances s1

6,t1
and s2

6,t1
may propagate along the original execution

path H1 to the controlling expression instance s1
11,t1

. Along the original execution path H3, the errors generated
from the last two statement instances s1

6,t3
and s2

6,t3
cannot be propagated to any controlling expression instance.

Therefore, P1
6,t1

= P2
6,t1

= {s1
11,t1
} and P1

6,t3
= P2

6,t3
= ∅. Using Formula (4), we get

P6 = P1
6,t1

⋃
P2

6,t1

⋃
P1

6,t3

⋃
P2

6,t3
= {s1

11,t1
}.

3.2.2. The Path Impact Relationship of the Statement Instance and Its Direct Impact Successor

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Ph
g,tk

=
⋃

c=1,2,··· ,n
Pqc

pc ,tk
. (5)

Example 5. From Figure 1, we can know the the direct impact successors of the statement instance s1
7,t1

consist
of s2

5,t1
, s2

6,t1
and s2

7,t1
. Under the condition that we know P2

5,t1
= {s2

5,t1
}, P2

6,t1
= {s1

11,t1
} and P2

7,t1
= {s3

5,t1
},

according to Formula (5), we have

P1
7,t1

= P2
5,t1

⋃
P2

6,t1

⋃
P2

7,t1
= {s2

5,t1
, s1

11,t1
, s3

5,t1
}.

Therefore, the errors generated from the statement instance s1
7,t1

can change up to three controlling
expression instances s2

5,t1
, s1

11,t1
and s3

5,t1
along the original execution path H1. Using the same method, we can

also get P1
6,t1

= {s1
11,t1
}, P3

5,t1
= {s3

5,t1
}, and so on.

3.2.3. Path Impact Set of Branch Instance

The statement instances in the branch instance Bl
r,z,tk

may propagate their information along
the original execution path Hk to some of the controlling expression instances outside of Bl

r,z,tk
.

These controlling expression instances constitute the path impact set Pl
r,z,tk

of the branch instance Bl
r,z,tk

.
The path impact set of Bl

r,z,tk
express the impact of Bl

r,z,tk
on the controlling expression instances outside

of Bl
r,z,tk

. If sh1
g1,tk

, sh2
g2,tk

, · · · , shn
gn ,tk

are all the statement instances in the branch instance Bl
r,z,tk

, then the
following mathematical formula holds

Pl
r,z,tk

=
( ⋃

d=1,2,··· ,n
Phd

gd ,tk

)∖
Bl

r,z,tk
. (6)
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Example 6. We illustrate the formula above by calculating the path impact set of the branch instance B1
5,t,t1

.
From Example 5, we know that P1

6,t1
= {s1

11,t1
}, P1

7,t1
= {s2

5,t1
, s3

5,t1
, s1

11,t1
}, P2

5,t1
= {s2

5,t1
}, P2

6,t1
= {s1

11,t1
},

P2
7,t1

= {s3
5,t1
}, and P3

5,t1
= {s3

5,t1
}. Because the branch instance B1

5,t,t1
consists of the six statement instances

s1
6,t1

, s1
7,t1

, s2
5,t1

, s2
6,t1

, s2
7,t1

and s3
5,t1

, we get

P1
5,t,t1

= (P1
6,t1

⋃
P1

7,t1

⋃
P2

5,t1

⋃
P2

6,t1

⋃
P2

7,t1

⋃
P3

5,t1
) \ B1

5,t,t1
= {s1

11,t1
}.

3.2.4. Path Impact Set of the Special Statement Instance

If a statement instance is a controlling expression instance, it usually does not have any impact
successors. We set its path impact set to itself because the change of its execution result is precisely the
change of the program execution path. If a statement instance is not a controlling expression instance
and does not have any impact successors, then we set its path impact set to an empty set.

3.3. Generalized Value Impact Factor

The generalized value impact factor of a statement expresses its ability to indirectly impact the
program outputs.

3.3.1. Generalized Value Impact Factor of Statement

The error generated from the statement instance sh
g,tk

may propagate to some controlling
expression instances along the original execution path of test case tk, so that the execution results of
these controlling expression instances may be changed. As long as the execution result of the control
expression instance sl

r,tk
is changed, the branch instance Bl

r,z,tk
, which appears in the original execution

path Hk, will no longer be executed. This makes the statement instances in Bl
r,z,tk

no longer pass their
information to some output statement instances. Thus, the execution results of these output statement
instances may be changed. Therefore, the errors generated from the statement instance sh

g,tk
may

indirectly affect some output statement instances through the above error propagation process. These
output statement instances that may be indirectly influenced by sh

g,tk
form the generalized value impact set

of the statement instance sh
g,tk

. The generalized value impact set of the statement instance sh
g,tk

is denoted
as Vh

g,tk
. The element in Vh

g,tk
is called the generalized value impact element of sh

g,tk
. The number of

generalized value impact element of sh
g,tk

is called the generalized value impact factor of sh
g,tk

, and is
denoted as xgvi(sh

g,tk
).

A statement sg has multiple execution instances generally and each execution instance has its own
generalized value impact set. In order to describe this indirect effect of sg on program output, the union
of these generalized value impact sets is called the generalized value impact set of sg. The generalized
value impact set of sg is denoted as Vg, the element in Vg is called the generalized value impact element
of sg, and the number of the generalized value impact element of sg is called the generalized value
impact factor of sg. In summary,

Vg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Vh
g,tk

, (7)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk.

Example 7. In Program 1, the statement s7 has four execution instances s1
7,t1

, s2
7,t1

s1
7,t3

,and s2
7,t3

. Given that
V1

7,t1
= {s1

8,t1
, s1

13,t1
}, V2

7,t1
= ∅, V1

7,t3
= {s1

8,t3
}, and V2

7,t3
= ∅, we can use Formula (7) to calculate the

generalized value impact set of the statement s7:

V7 = V1
7,t1

⋃
V2

7,t1

⋃
V1

7,t3

⋃
V2

7,t3
= {s1

8,t1
, s1

13,t1
, s1

8,t3
}.
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3.3.2. Generalized Value Impact Set of the Special Statement Instance

A controlling expression instance sl
r,tk

usually does not have any impact successors.
Corresponding to sl

r,tk
, there is usually a branch instance Bl

r,z,tk
that appears in the original execution

path Hk. In this situation, the generalized value impact set of sl
r,tk

is equal to the value impact set of
the branch instance Bl

r,z,tk
. This conclusion can be interpreted as follows: If an error is generated from

the controlling expression instance sl
r,tk

, then the branch instance Bl
r,z,tk

will no longer be executed,
so that the statement instances in Bl

r,z,tk
can no longer propagate their information along the original

execution path Hk to some output statement instances. This error propagation process also exactly
reflects the impact of branch instance Bl

r,z,tk
on program output. Hence, the above conclusion is proved.

For example, the generalized value impact set of the controlling expression instance s1
5,t1

is equal to the
value impact set of the branch instance B1

5,t,t1
.

If a statement instance is not a controlling expression instance and does not have any impact
successors, then we set its generalized value impact set to an empty set.

3.3.3. The Generalized Value Impact Relationship between a Statement and Its Direct Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Vh
g,tk

=
⋃

c=1,2,··· ,n
V qc

pc ,tk
. (8)

Example 8. In Program 1, s2
5,t1

, s2
6,t1

and s2
7,t1

are all direct impact successors of the statement instance s1
7,t1

.
Given that V2

5,t1
= {s1

8,t1
}, V2

6,t1
= {s1

13,t1
}, and V2

7,t1
= ∅, according to formula (8), we can get

V1
7,t1

= V2
5,t1

⋃
V2

6,t1

⋃
V2

7,t1
= {s1

8,t1
, s1

13,t1
}.

In the same way, given that V3
5,t1

= ∅, we can get V2
7,t1

= V3
5,t1

= ∅. Given that V2
5,t3

= {s1
8,t3
},

V2
6,t3

= ∅, and V2
7,t3

= ∅,we can get V1
7,t3

= V2
5,t3

⋃ V2
6,t3

⋃ V2
7,t3

= {s1
8,t3
}

3.4. Generalized Path Impact Factor

The generalized path impact factor of a statement expresses its ability to indirectly change the
program execution path.

3.4.1. Generalized Path Impact Factor of Statement

The error generated from the statement instance sh
g,tk

may propagate to some controlling
expression instances along the original execution path of test case tk. As long as the execution
result of the control expression instance sl

r,tk
is changed, the branch instance Bl

r,z,tk
that appears in the

original execution path Hk will no longer be executed. The statement instances in Bl
r,z,tk

will no longer
pass their information to the controlling expression instances appearing after Bl

r,z,tk
. In this situation,

the execution results of the controlling expression instances appearing after Bl
r,z,tk

may be changed
because they are no longer influenced by the statement instances in Bl

r,z,tk
. Therefore, the errors

generated from the statement instance sh
g,tk

may indirectly affect some controlling expression instances
appearing after Bl

r,z,tk
through the above error propagation process. These controlling expression

instances that may be indirectly affected by sh
g,tk

through the above error propagation process form the
generalized path impact set of the statement instance sh

g,tk
. This set is denoted as Ph

g,tk
, the element of which

is called the generalized path impact element of sh
g,tk

. The number of generalized path impact elements
of sh

g,tk
is called the generalized path impact factor of sh

g,tk
, and is denoted as xgpi(sh

g,tk
).
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A statement sg has one or more execution instances generally. Therefore, the generalized path
impact set of sg is defined as the union of generalized path impact sets of the execution instances of sg,
and is denoted as Pg. In other words,

Pg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Ph
g,tk

, (9)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk. The element in Pg is called the generalized path impact
element of sg. The number of generalized path impact element of sg is called the generalized path
impact factor of sg, and denoted as xgpi(sg).

Example 9. We explain the above definitions by calculating the generalized path impact set of the statement s7.
In Program 1, the statement s7 has four execution instances s1

7,t1
, s2

7,t1
, s1

7,t3
and s2

7,t3
. Given thatP1

7,t1
= {s1

11,t1
},

P2
7,t1

= ∅, P1
7,t3

= ∅ and P2
7,t3

= ∅, we can use Formula (9) to calculate the generalized value impact set of
the statement s7.

P7 = P1
7,t1

⋃
P2

7,t1

⋃
P1

7,t3

⋃
P2

7,t3
= {s1

11,t1
}.

3.4.2. Generalized Path Impact Set of the Special Statement Instance

If a statement instance sl
r,tk

is a controlling expression instance, then it usually does not have any
impact successors. Corresponding to sl

r,tk
, there is usually a branch instance Bl

r,z,tk
, which exists in the

original execution path Hk. In this situation, the generalized path impact set of sl
r,tk

is precisely the
path impact set of Bl

r,z,tk
. This conclusion can be interpreted as follows: Assume there is a software

fault in statement sr. If an error is generated from the controlling expression instance sl
r,tk

, then the
branch instance Bl

r,z,tk
will no longer be executed, the information expressed by the statement instances

in Bl
r,z,tk

can no longer propagate along the original execution path Hk to some controlling expression
instances outside of Bl

r,z,tk
. This error propagation process also exactly reflects the impact of branch

instance Bl
r,z,tk

on the execution path of the test case tk. Therefore, the generalized path impact set
of sl

r,tk
is equal to the path impact set of Bl

r,z,tk
. For example, the generalized path impact set of the

controlling expression instance s1
5,t1

is equal to the path impact set of the branch instance B1
5,t,t1

. In other
words, P1

5,t1
= P1

5,t,t1
= {s1

11,t1
}. Otherwise, if a statement instance is not a controlling expression

instance and does not have any impact successors, then we set its generalized path impact set to an
empty set.

3.4.3. The Generalized Path Impact Relationship between a Statement Instance and Its Direct
Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Ph
g,tk

=
⋃

c=1,2,··· ,n
P qc

pc ,tk
. (10)

Example 10. In Program 1, s2
5,t1

, s2
6,t1

and s2
7,t1

are all direct impact successors of the statement instance s1
7,t1

.
Given that P2

5,t1
= {s1

11,t1
}, P2

6,t1
= ∅, and P2

7,t1
= ∅, according to formula (10), we can get

P1
7,t1

= P2
5,t1

⋃
P2

6,t1

⋃
P2

7,t1
= {s1

11,t1
}.
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3.5. Latent Impact Factor

The fault in a statement may cause some program branches that have not yet been executed to
be executed. The latent impact factor expresses the impact of these branches to be executed on the
program output.

3.5.1. Latent Impact Factor of the Program Statement

Contrary to the branch instances that will no longer be executed, some branch instances may
be going to be executed due to the error generated from the statement instance sh

g,tk
. These branches

to be executed may change the program outputs. For an example, in Program 1, if the assignment
statement s2 is mutated into dist=m%n, then the remainder dist becomes zero when test case t1 runs.
In this situation, the true branch B11,t of s11, which consists of s12 and does not appear in the original
execution path H1, will be executed and change the program output.

These branch instances to be executed are divided into two classes. In the first class, each branch
instance contains statement instances. In the second class, each branch instance does not. The first
class branch instances constitute the latent impact set of statement instance sh

g,tk
, and denotes as Lh

g,tk
.

The element in Lh
g,tk

is called the latent impact element of the statement instance sh
g,tk

. The number of latent
impact elements of sh

g,tk
is called the latent impact factor of sh

g,tk
and denoted as xli(sh

g,tk
).

A statement sg has multiple execution instances generally, and each of them has its own latent
impact set. Therefore, the union of these latent impact sets is defined as the latent impact set of the
statement sg, and denoted as Lg. In other words,

Lg =
⋃

k=1,2,··· ,K

⋃
h=1,2,··· ,Hgk

Lh
g,tk

, (11)

where K is the total number of test cases in the test suite, and Hgk is the total number of times the
statement sg is executed by the test case tk. The element in Lg is called the latent impact element of
sg. The number of latent impact element of sg is called the latent impact factor of the statement sg, and
denoted as xli(sg).

Example 11. We are going to calculate the latent impact factor of the statement s7. As shown in Table 2, s7 has
the four execution instances s1

7,t1
, s2

7,t1
, s1

7,t3
and s2

7,t3
. Assume four errors e1

7,t1
, e2

7,t1
, e1

7,t3
and e2

7,t3
are generated

from the statement instances s1
7,t1

, s2
7,t1

, s1
7,t3

and s2
7,t3

, respectively. In this situation, e1
7,t1

may propagate along
the original execution path H1 to the controlling expression instances s2

5,t1
, s3

5,t1
and s1

11,t1
. When e1

7,t1
propagates

to s2
5,t1

, the branch instances B2
5, f ,t1

that do not appear in the original execution path H1 will be executed.
However, the role of B5, f is to exit the loop, so that it does not contain any statements. Thus, B2

5, f ,t1
itself does

not affect program output. This makes B2
5, f ,t1

not a latent impact element of s1
7,t1

. When e1
7,t1

propagates along
the original execution path H1 to s3

5,t1
, the branch instance B3

5,t,t1
that does not appear in the original execution

path H1 will be executed. The B5,t contains some statements so that the execution of B3
5,t,t1

in itself may change
the program outputs. Thus, B3

5,t,t1
is a latent impact element of s1

7,t1
. When e1

7,t1
propagates along the original

execution path H1 to s1
11,t1

, the branch instance B1
11,t,t1

that does not appear in the original execution path H1

will be executed. The program branch B11,t contains some statements so that the execution of B1
11,t,t1

in itself
may change the program outputs. Thus, the branch instance B1

11,t,t1
is a latent impact element of s1

7,t1
. From the

above analysis, we can know that the latent impact set of s1
7,t1

consists of B3
5,t,t1

and B1
11,t,t1

. In the similar way,
we can know that the latent impact set of the statement instance s2

7,t1
consists of B3

5,t,t1
. The latent impact set of

s1
7,t3

consists of B3
5,t,t3

, and that of s2
7,t3

also consists of B3
5,t,t3

. With Formula (11), we can get the latent impact
set of the statement s7:

L7 = L1
7,t1

⋃
L2

7,t1

⋃
L1

7,t3

⋃
L2

7,t3
= {B3

5,t,t1
, B1

11,t,t1
, B3

5,t,t3
}.



Mathematics 2019, 7, 778 15 of 39

3.5.2. The Latent Impact Relationship between a Statement Instance and its Direct Impact Successors

According to the relationship between the impact precursor and the impact successor, we get the
following conclusion: If the statement instances sq1

p1,tk
, sq2

p2,tk
, · · · , sqn

pn ,tk
are all direct impact successors

of the statement instance sh
g,tk

, then

Lh
g,tk

=
⋃

c=1,2,··· ,n
Lqc

pc ,tk
. (12)

Example 12. From Figure 1, we can know the the direct impact successors of the statement instance s1
7,t1

consist
of s2

5,t1
, s2

6,t1
and s2

7,t1
. Given that L2

5,t1
= ∅, L2

6,t1
= {B1

11,t,t1
} and L2

7,t1
= {B3

5,t,t1
}, according to Formula (12),

we have

L1
7,t1

= L2
5,t1

⋃
L2

6,t1

⋃
L2

7,t1
= {B1

11,t,t1
, B3

5,t,t1
}.

In addition, under the condition that we know L2
5,t3

= ∅, L2
6,t3

= ∅ and L2
7,t3

= {B3
5,t,t3
}, using the same

method, we can still get

L1
7,t3

= L2
5,t3

⋃
L2

6,t3

⋃
L2

7,t3
= {B3

5,t,t3
}.

Furthermore, we can get

L7 = L1
7,t1

⋃
L2

7,t1

⋃
L1

7,t3

⋃
L2

7,t3
= {B1

11,t,t1
, B3

5,t,t1
, B3

5,t,t3
}.

3.5.3. Latent Impact Set of the Special Statement Instance

If a statement instance sl
r,tk

is a controlling expression instance and the branch instance Bl
r,z,tk

does
not appear in the original execution path Hk; then, in the condition that Bl

r,z,tk
is not empty, we set

Bl
r,z,tk

as the only element in the latent impact set of sl
r,tk

. If a statement instance is not a controlling
expression instance and does not have any impact successors, then we set the latent impact set of sl

r,tk
to an empty set.

For example, as far as the controlling expression instance s2
5,t1

is concerned, although the branch
instance B2

5, f ,t1
does not appear in the original execution path H1, B2

5, f ,t1
does not include any statement

instance. Hence, B2
5, f ,t1

is not a latent impact element of s2
5,t1

, and we set the latent impact set of s3
5,t1

to an empty set. As far as the controlling expression instance s3
5,t1

is concerned, because the branch
instance B3

5,t,t1
not only does not appear in the original execution path H1 but also is not empty, we set

s3
5,t1

as the only element in the latent impact set of B3
5,t,t1

.

3.6. Information Hidden Factor

The last feature of a statement is its information hiding feature. Sometimes, the program has
multiple output statements, and some of them happen to generate same outputs. In this case, even if
the software fault in a statement changes the execution path of the test case, the output of the program
may still not be changed.

This phenomenon make the faults in statements difficult to identify. For a statement sg, we
use the information hiding factor to express this feature. The information hiding factor of sg can be
calculated in the following way. We use the test cases that execute sg to construct sub test suite Tg.
When we execute Tg, the program under testing generates some outputs. The information entropy of
the output distribute is called the information hidden factor of statement sg, and denoted as xih(sg).
In other words,

xih(sg) = −∑
i

pi log2 pi, (13)
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where pi is the probability that the test cases executing the statement sg generate the ith program
output class.

Example 13. We calculate the information hidden factors of the statements s9 and s11, respectively.
In Program 1, the test suite consists of the test cases t1, t2 and t3. These three test cases all execute statement
s9. Their executions generate three program outputs (fac = 6, class 1), (fac = 1 class 2) and (fac = 6 class 1),
respectively. Hence, the probability that the program output (fac = 6, class 1) is 0.67, and the probability that the
program output (fac = 1 class 2) is 0.33. According to Formula (13), the information hidden factor of statement
s9 is 0.9182 bit. The test cases t1 and t2 execute the statement s11. Their executions generate two program
outputs (fac = 6, class 1) and (fac = 1 class 2), respectively. Hence, the probabilities that the program output
(fac = 6, class 1) and (fac = 6, class 1) are both 0.5. According to Formula (13), the information hidden factor of
statement s11 is 1.0 bit.

4. Calculation of Statement Features

First, we propose an iterative method to compute statement features, and then compare the time
cost of this method with that of direct mutant testing.

4.1. Calculation Process

We divide the calculation of all the statement features into two parts. The first part calculation
includes the first five statement features: the value impact factor, the path impact factor, the generalized
value impact factor, the generalized path impact factor, and the latent impact factor. The second part
calculation includes includes the last two statement features: the number of times a statement is
executed, and information hidden factor.

The first part of the calculation takes much more time than the second one. For reducing the
computational complexity, we propose an iterative method. Generally, if a statement instance has at
least one impact successor, then we can calculate its first five features according to the formulas (2), (5),
(8), (10), and (12). Otherwise, we use the methods mentioned in Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and
3.5.3 to calculate its first five features.

The computation of the statement features is divided into two corresponding stages. The first
stage, including steps 1–6, calculate the first part of statement features. The second stage including
steps 7 and 8, calculate the second part of statement features. The overall computation steps are
as follows:

Step 1 Set test case serial number k = 1.
Step 2 Construct the execution impact graph Gk of the test case tk.
Step 3 First, from the original execution path of the test case tk, find all statement instances that

have not been analyzed. From these unanalyzed statement instances, find the last executed statement
instance. We might as well denote this statement instance as sh

g,tk
.

(1) If sh
g,tk

has one or more impact successors, then we construct the impact sets of its first five
features according to the formulas (2), (5), (8), (10) and (12).

(2) If sh
g,tk

does not have any impact successors, then we construct the impact sets of its first five
features according to the methods mentioned in Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.

Step 4 If there are some statement instances which appear in the original execution path of test
case tk but have not yet been analyzed, go to step 3, else go to step 5.

Step 5 If test case tk is not the last test case in test suite, then k = k + 1, and go to step 2, else go to
step 6.

Step 6 First, construct each program statement’s value impact set, path impact set, generalized
value impact set, generalized path impact set and latent impact set by formulas (1), (4), (7), (9) and (11).
Next, for each program statement , calculate its value impact factor, path impact factor, generalized
value impact factor, generalized path impact factor factor and the latent impact factor.
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Step 7 For each statement in program under testing, compute the total number of times it is
executed by the test cases in the test suite.

Step 8 For each statement in the program under testing, compute its information hidden factor by
formula (13).

Example 14. We illustrate the above process by extracting the features of each statement in Program 1. In terms
of the first stage of extracting the statement features, whether the statement instances are generated during the
execution of test case 1, test case 2 or test case 3, the methods for calculating features of the statement instance
are the same. Therefore, with regard to steps 1 to 5, we only explain in detail how to calculate the features of the
statement instances generated during test case t1 execution. The detailed calculation process is as follows.

We first set k = 1, execute test case t1, and construct the execution impact graph G1 of test case t1

as shown in Figure 1.
The first analyzed statement instance is the last executed statement instance in original execution

path H1. Thus, we first analyze the output statement instance s1
13,t1

. According to Sections 3.1.4, 3.2.4,
3.3.2, 3.4.2 and 3.5.3, we get V1

13,t1
= {s1

13,t1
}, P1

13,t1
= ∅, V1

13,t1
= ∅, P1

13,t1
= ∅ and Ł1

13,t1
= ∅.

The second analyzed statement instance s1
11,t1

is the penultimate element in original execution
path H1. Because it is a controlling expression, we get V1

11,t1
= ∅, P1

11,t1
= {s1

11,t1
}, V1

11,t1
= V1

11,t,t1
=

V1
13,t1

= {s1
13,t1
}, P1

11,t1
= ∅ and L1

11,t1
= {B1

11,t,t1
} according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.

The third analyzed statement instance s1
9,t1

is the antepenultimate element in H1. Because s1
9,t1

is a
controlling expression instance, we get V1

9,t1
= ∅, P1

9,t1
= {s1

9,t1
}, V1

9,t1
= V1

9,t,t1
= V1

11,t1

⋃
V1

13,t1
=

{s1
13,t1
}, P1

9,t1
= P1

9,t,t1
= (P1

11,t1

⋃
P13,t1) \ B1

9,t,t1
= (s1

11,t1

⋃
∅) \ B1

9,t,t1
= ∅ and Ł1

9,t1
= {B1

9,t,t1
}

according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The fourth analyzed statement instant s1

8,t1
is the fourth element from the end of H1. Because s1

8,t1

is an output statement instance, V1
8,t1

= {s1
8,t1
}, P1

8,t1
= ∅, V1

8,t1
= ∅, P1

8,t1
= ∅ and Ł1

8,t1
= ∅ according

to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The fifth analyzed statement instant s3

5,t1
is the fifth element from the end of H1. Because s3

5,t1

is a controlling expression instance of zero length, V3
5,t1

= ∅, P3
5,t1

= {s3
5,t1
}, V3

5,t1
= V3

5, f ,t1
= ∅,

P3
5,t1

= P1
5,t,t1

= ∅ and Ł3
5,t1

= {B3
5,t,t1
} according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.

The sixth analyzed statement instance s2
7,t1

is the sixth statement instance from the end of H1.
Because the direct impact successors of s2

7,t1
consist of s3

5,t1
, we get V2

7,t1
= V3

5,t1
= ∅, P2

7,t1
= P3

5,t1
=

{s3
5,t1
}, V2

7,t1
= V3

5,t1
= ∅, P2

7,t1
= P3

5,t1
= ∅, Ł2

7,t1
= Ł3

5,t1
= {B3

5,t,t1
} according to formulas (2), (5), (8),

(10) and (12).
The seventh analyzed statement instance s2

6,t1
is the seventh element from the end of H1.

Becasue the direct impact successors of s2
6,t1

consist of s1
8,t1

and s1
11,t1

, we get V2
6,t1

= V1
8,t1

⋃
V1

11,t1
=

{s1
8,t1
}, P2

6,t1
= P1

8,t1

⋃
P1

11,t1
= {s1

11,t1
}, V2

6,t1
= V1

8,t1

⋃ V1
11,t1

= {s1
13,t1
}, P2

6,t1
= P1

8,t1

⋃P1
11,t1

= ∅ and
L2

6,t1
= L1

8,t1

⋃
L1

11,t1
= {B1

11,t,t1
} according to formulas (2), (5), (8), (10) and (12).

The eighth analyzed statement instance s2
5,t1

is the eighth element from the end of H1.
Because s2

5,t1
is a controlling expression instance, we get V2

5,t1
= ∅, P2

5,t1
= {s2

5,t1
}, V2

5,t1
= V2

5,t,t1
=

V2
6,t1

⋃
V2

7,t1

⋃
V3

5,t1
= {s1

8,t1
}, P2

5,t1
= P2

5,t,t1
= (P2

6,t1

⋃
P2

7,t1

⋃
P3

5,t1
) \ P2

5,t,t1
= {s1

11,t1
} and Ł2

5,t1
= ∅

according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
The ninth analyzed statement instance s1

7,t1
is the ninth element from the end of H1. Because the

direct impact successors of s1
7,t1

consist of s2
5,t1

, s2
6,t1

and s2
7,t1

, we get V1
7,t1

= V2
5,t1

⋃
V2

6,t1

⋃
V2

7,t1
= {s1

8,t1
},

P1
7,t1

= P2
5,t1

⋃
P2

6,t1

⋃
P2

7,t1
= {s2

5,t1
, s3

5,t1
, s1

11,t1
}, V1

7,t1
= V2

5,t1

⋃ V2
6,t1

⋃ V2
7,t1

= {s1
8,t1

, s1
13,t1
}, P1

7,t1
=

P2
5,t1

⋃P2
6,t1

⋃P2
7,t1

= {s1
11,t1
} and L1

7,t1
= L2

5,t1

⋃
L2

6,t1

⋃
L2

7,t1
= {B3

5,t,t1
, B1

11,t,t1
} according to formulas

(2), (5), (8), (10) and (12).
The tenth analyzed statement instance s1

6,t1
is the tenth element from the end of H1. Because the

direct impact successors of s1
6,t1

consist of s2
6,t1

, we get V1
6,t1

= V2
6,t1

= {s1
8,t1
}, P1

6,t1
= P2

6,t1
= {s1

11,t1
},
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V1
6,t1

= V2
6,t1

= {s1
13,t1
}, P1

6,t1
= P2

6,t1
= ∅ and L1

6,t1
= {B11,t,t1} according to formulas (2), (5), (8), (10)

and (12).
The eleventh analyzed statement instance s1

5,t1
is the eleventh statement instance from the end

from H1. Because s1
5,t1

is a controlling expression instance, we get V1
5,t1

= ∅, P1
5,t1

= {s1
5,t1
}, V1

5,t1
=

V1
5,t,t1

= {s1
8,t1
}, P1

5,t1
= P1

5,t,t1
= {s1

11,t1
} and L1

5,t1
= ∅ according to Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2

and 3.5.3.
The twelfth analyzed statement instance s1

4,t1
is the twelfth element from the end of H1. Because the

direct impact successors of s1
4,t1

consist of s1
6,t1

, we get V1
4,t1

= V1
6,t1

= {s1
8,t1
}, P1

4,t1
= P1

6,t1
= {s1

11,t1
},

V1
4,t1

= V1
6,t,t1

= {s1
13,t1
}, P1

4,t1
= P1

6,t,t1
= ∅, L1

4,t1
= L1

6,t1
= {B1

11,t,t1
} according to formulas (2), (5), (8),

(10) and (12).
The thirteenth analyzed statement instance s1

2,t1
is the thirteenth element from the end of

H1. The direct impact successors of s1
2,t1

consist of s1
5,t1

, s1
6,t1

and s1
7,t1

. According to formulas
(2), (5), (8), (10) and (12), we get V1

2,t1
= V1

5,t1

⋃
V1

6,t1

⋃
V1

7,t1
= {s1

8,t1
}, P1

2,t1
= P1

5,t1

⋃
P1

6,t1

⋃
P1

7,t1
=

{s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1
}, V1

2,t1
= V1

5,t1

⋃ V1
6,t1

⋃ V1
7,t1

= {s1
8,t1

, s1
13,t1
}, P1

2,t1
= P1

5,t1

⋃P1
6,t1

⋃P1
7,t1

= {s1
11,t1
}

and L1
2,t1

= L1
5,t1

⋃
L1

6,t1

⋃
L1

7,t1
= {B3

5,t,t1
, B1

11,t,t1
}.

The fourteenth analyzed statement instance s1
1,t1

is the fourteenth element from the end of H1.
Because s1

1,t1
is a controlling expression instance, we get V1

1,t1
= ∅, P1

1,t1
= {s1

1,t1
}, V1

1,t1
= V1

1,t,t1
=

V1
2,t1

= {s1
8,t1
}, P1

1,t1
= P1

1,t,t1
= P1

2,t1
\ B1

1,t,t1
= {s1

5,t1
, s2

5,t1
, s3

5,t1
, s1

11,t1
} and L1

1,t1
= B1

1, f ,t1
according to

Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3.
Similar to the above procedure, we can continue to calculate the above first five impact sets for all

statement instances generated during the executions of test case 2 and test case 3, respectively. Thus
far, steps 1–5 are completed, and their final results are shown in Table 3.

After calculating the first five impact sets of each statement instance, based on Table 3 and
Formulas (1), (4), (7), (9) and (11), we can get the first five impact sets of each statement, as shown in
Table 4. The corresponding impact factors are shown in Table 5.

After calculating the first five impact factors of each statement, we calculate the execution number
of each statement, as shown in Table 6.

Finally, similar to Example 13, we use the Formula (13) to calculate the information hidden factor
of each statement. The calculation process are shown in Table 7.

4.2. Computational Complexity Analysis

Through the analysis of computational complexity, we can draw the following conclusion:
Compared with the time required for direct mutation testing, the time used to calculate all statement
features can be neglected. The computation time of statement features consists of two parts. The first
part of time overhead is used to calculate the value impact factor, path impact factor, generalized
value impact factor, generalized path impact factor and potential impact factor. The calculation of
these features is relatively complex. The second part of time overhead is used to calculate the other
two statement features. The calculation of these two features is relatively simple. Therefore, we can
approximatively consider the first part of time overhead as the total time overhead for computing all
statement features. In this situation, to prove the conclusion, we only need to prove that the first part
of time overhead is much lower than that used to directly execute mutation testing. We can get this
conclusion from the following four steps:

In the first steps, we first suppose the time overhead that the computer spends to executes one
statement once is T0. According the Section 4.1, we can get the following conclusion: the time overhead
used to compute a factor of a statement instance is also roughly equal to T0. If a statement instance
has at least one impact successor, then we use the formulas (2), (5), (8), (10) and (12) to calculate its
first five impact factors, respectively. Otherwise, this statement does not have any impact successors,
and we use the method in the Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3 to calculate them, respectively.
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Whichever method is used, the calculation is simple. Therefore, we can consider that the time overhead
used to compute an impact factor of the statement instance is roughly equal to T0.

Table 3. The first five impact sets of all statement instances in Program 1.

Statement
Instance

Direct Impact
Successors

Value
Impact Set

Path
Impact Set

Generalized
Value Impact Set

Generalized
Path Impact Set

Latent
Impact Set

s1
13,t1

∅ s1
13,t1

∅ ∅ ∅ ∅

s1
11,t1

∅ ∅ s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s1
9,t1

∅ ∅ s1
9,t1

s1
13,t1

∅ B1
9,t,t1

s1
8,t1

∅ s1
8,t1

∅ ∅ ∅ ∅

s3
5,t1

∅ ∅ s3
5,t1

∅ ∅ B3
5,t,t1

s2
7,t1

s3
5,t1

∅ s3
5,t1

∅ ∅ B3
5,t,t1

s2
6,t1

s1
8,t1

, s1
11,t1

s1
8,t1

s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s2
5,t1

∅ ∅ s2
5,t1

s1
8,t1

s1
11,t1

∅

s1
7,t1

s2
5,t1

, s2
6,t1

, s2
7,t1

s1
8,t1

s2
5,t1

, s3
5,t1

, s1
11,t1

s1
8,t1

, s1
13,t1

s1
11,t1

B3
5,t,t1

, B1
11,t,t1

s1
6,t1

s2
6,t1

s1
8,t1

s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s1
5,t1

∅ ∅ s1
5,t1

s1
8,t1

s1
11,t1

∅

s1
4,t1

s1
6,t1

s1
8,t1

s1
11,t1

s1
13,t1

∅ B1
11,t,t1

s1
2,t1

s1
5,t1

, s1
6,t1

, s1
7,t1

s1
8,t1

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

s1
8,t1

, s1
13,t1

s1
11,t1

B3
5,t,t1

, B1
11,t,t1

s1
1,t1

∅ ∅ s1
1,t1

s1
8,t1

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

B1
1, f ,t1

s1
12,t2

∅, s1
12,t2

∅ ∅ ∅ ∅

s1
11,t2

∅, ∅ s1
11,t2

s1
12,t2

∅ B1
11, f ,t2

s1
9,t2

∅ ∅ s1
9,t2

s1
12,t2

∅ B1
9,t,t2

s1
8,t2

∅ s1
8,t2

∅ ∅ ∅ ∅

s1
5,t2

∅ ∅ s1
5,t2

∅ ∅ B1
5,t,t2

s1
4,t2

s1
8,t2

, s1
11,t2

s1
8,t2

s1
11,t2

s1
12,t2

∅ B1
11, f ,t2

s1
3,t2

s1
5,t2

∅ s1
5,t2

∅ ∅ B1
5,t,t2

s1
1,t2

∅ ∅ s1
1,t2

∅ s1
5,t2

B1
5,t,t2

s1
10,t3

∅ s1
10,t3

∅ ∅ ∅ ∅

s1
9,t3

∅ ∅ s1
9,t3

s1
10,t3

∅ B1
9, f ,t3

s1
8,t3

∅ s1
8,t3

∅ ∅ ∅ ∅

s3
5,t3

∅ ∅ s3
5,t3

∅ ∅ B3
5,t,t3

s2
7,t3

s3
5,t3

∅ s3
5,t3

∅ ∅ B3
5,t,t3

s2
6,t3

s1
8,t3

s1
8,t3

∅ ∅ ∅ ∅

s2
5,t3

∅ ∅ s2
5,t3

s1
8,t3

∅ ∅

s1
7,t3

s2
5,t3

, s2
6,t3

, s2
7,t3

s1
8,t3

s2
5,t3

, s2
5,t3

s1
8,t3

∅ B3
5,t,t3

s1
6,t3

s2
6,t3

s1
8,t3

∅ ∅ ∅ ∅

s1
5,t3

∅ ∅ s1
5,t3

s1
8,t3

∅ ∅

s1
4,t3

s1
6,t3

s1
8,t3

∅ ∅ ∅ ∅

s1
3,t3

s1
5,t3

, s1
6,t3

, s1
7,t3

s1
8,t3

s1
5,t3

, s2
5,t3

, s3
5,t3

s1
8,t3

∅ B3
5,t,t3

s1
1,t3

∅ ∅ s1
1,t3

s1
8,t3

s1
5,t3

, s2
5,t3

, s3
5,t3

B1
1,t,t3



Mathematics 2019, 7, 778 20 of 39

Table 4. The first five impact sets of all statements in Program 1.

Statement
instance

Value
Impact Set

Path
Impact Set

Generalized
Value Impact Set

Generalized
Path Impact Set

Latent
Impact Set

s1 ∅ s1
1,t1

, s1
1,t2

, s1
1,t3

s1
8,t1

, s1
8,t3

s1
5,t1

, s2
5,t1

, s3
5,t1

, s1
11,t1

,s1
5,t2

, s1
5,t3

, s2
5,t3

, s3
5,t3

B1
1, f ,t1

,B1
5,t,t2

, B1
1,t,t3
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12,t2
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11,t,t1

, B1
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s12 s1
12,t2

∅ ∅ ∅ ∅

s13 s1
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∅ ∅ ∅ ∅

Table 5. The first five impact factors of all statements in Program 1.

Statement Value
Impact Factor

Path
Impact Factor

Generalized
Value Impact Factor

Generalized
Path Impact Factor

Latent
Impact Factor

s1 0 3 2 8 3

s2 1 4 2 1 2

s3 1 4 1 0 2

s4 3 2 2 0 2

s5 0 7 2 1 3

s6 2 1 1 0 1

s7 2 5 3 1 3

s8 3 0 0 0 0

s9 0 3 3 0 3

s10 1 0 0 0 2

s11 0 2 2 0 2

s12 1 0 0 0 0

s13 1 0 0 0 0

Table 6. The execution number of each statement in Program 1.

s1 s2 s3 s4 s5 s6 s7 s8 s9 s10 s11 s12 s13

3 1 2 3 7 4 4 3 3 1 2 1 1
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Table 7. Computation for information hidden factor of each statement in Program 1.

Statement Ratio (fac = 6 class 1) Ratio (fac = 1 class 2) Information Hidden Factor

s1 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s2 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

s3 1/2 1/2 −
(

1
2

)
log2

(
1
2

)
−
(

1
2

)
log2

(
1
2

)
= 1.0

s4 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s5 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s6 2/2 −
(

2
2

)
log2

(
2
2

)
= 0

s7 2/2 −
(

2
2

)
log2

(
2
2

)
= 0

s8 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s9 2/3 1/3 −
(

2
3

)
log2

(
2
3

)
−
(

1
3

)
log2

(
1
3

)
= 0.9182

s10 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

s11 1/2 1/2 −
(

1
2

)
log2

(
1
2

)
−
(

1
2

)
log2

(
1
2

)
= 1.0

s12 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

s13 1/1 −
(

1
1

)
log2

(
1
1

)
= 0

In the second step, we can conclude that the time overhead used to calculate all factors of all
statement instances is roughly equal to five times ∑G

g=1 ∑K
k=1 HgkT0, where G is the total number of

statements in program under testing, K is the total number of test cases in test suite, and Hgk is the
number of times statement sg is executed by the test case tk. Because statement sg generates ∑K

k=1 Hgk
execution instances, in terms of the program under testing, the total number of executed statement
instances by the tests suite is ∑G

g=1 ∑K
k=1 Hgk. Combining with the conclusion in the first step, we get

the conclusion: In terms of the program under testing, the time overhead for computing all features of
all statement instances is roughly equal to five times ∑G

g=1 ∑K
k=1 Hgk.

In the third step, we can conclude that the time overhead for direct mutation testing is
∑G

g=1 ∑K
k=1 ng|Pk|T0, where we suppose that the statement sg generates ng mutants, and the test

case tk executes |Pk| statement instances. In the direct mutation testing, the program under testing
generates ∑G

g=1 ng mutants, each mutant is tested by the test suite, and the time overhead for the test

suite to test each mutant is ∑K
k=1 |Pk|T0. Therefore, the time overhead for direct mutation testing is

∑G
g=1 ng ×∑K

k=1 |Pk|T0 = ∑G
g=1 ∑K

k=1 ng|Pk|T0.
In the fourth step, we compare the time overhead used to calculate all features of all statement

instances and the overhead used in the direct mutation testing. The ratio of the two time overheads
is 5 ∑G

g=1 ∑K
k=1 Hgk/∑G

g=1 ∑K
k=1 ng|Pk|. Because ng � 5, |Pk| � Hgk, we can get the final conclusion:

Compared with the time required for direct mutation testing, the time overhead used to calculate all
statement features can be neglected.

5. Machine Learning Algorithms Comparison and Modelling

Taking the Brier scores as a criterion, we compared the prediction effects of the following five
models on statement mutation scores: artificial neural networks (ANN), logical regression (LR),
random forests (RF), support vector machines (SVM) and symbolic regression (SR). The experiment
result shows the artificial neural network algorithm has the highest prediction precision.
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We did not try very complex models because the model should not be too complicated. First,
our sample size should not be too large. Our data records need to be extracted in real time, so that
the excessively large sample size will cause the user to wait a long time. In the case of a small sample
size, over-complexing models can cause over-fitting. Secondly, according to the introduction of the
Section 3, we can know that the relationship between the dependent variable and each independent
variable is monotonic, so we estimate that the available model should not be very complicated.

5.1. Experimental Subjects

In this paper, there are two programs under testing: schedule.c and tcas.c. We explain our
experiment with schedule.c as the main part and tcas.c as the auxiliary part. The program schedule.c
realizes a CPU process management, and the program tcas.c realizes an aircraft early warning system.
A more specific introduction is as follows.

The program schedule.c [16] realizes a priority scheduling algorithm. A computer has only one
CPU, but sometimes multiple programs simultaneously request to be executed. For solving this
problem, the priority scheduling algorithm assigns each program a priority. When a program needs to
use CPU, it is first stored in a queue so that the program with a higher priority gets a CPU, whereas
the program with a lower priority can wait. The schedule.c consists of 73 lines of C code including
one branch statement, two single-loop statements and two double-loop statements. The test cases are
included in its usage instructions. We take these test cases as a test suite of schedule.c.

The program tcas.c [17] is used to avoid collision of aircraft, which consists of 135 lines of C
code with 40 program branch statements and 10 compound predicates. The tcas.c is able to monitor
the traffic situation around a plane and offer information on the altitude of other aircraft. It can also
generate collision warnings that another aircraft is in close vicinity by calculating the vertical and
horizontal distances between the two aircrafts. The Software artifact Infrastructure Repository (SIR)
also supplies some types of test case suites for tcas.c. From the SIR, we randomly selected a branch
coverage test suite suite122 as the test suite used in our experiment.

5.2. The Construction Method of Data Set

To compare the prediction accuracy of the five machine learning models, we did two experiments
with schedule.c and tcas.c, respectively. No matter the experiment, the data set is created in the same
way. In each experiment, the data set contains 200 data records. Each data record rp is established with
one corresponding mutant sample mp and contains seven independent variables and one dependent
variable. If mp is generated by modifying the statement sq, then the seven independent variables of rp

are the seven features of the statement sq, and the dependent variable of rp is the identification result
of the mutant mp.

We take an example to explain the construction process of a data record. We might as well assume
that a mutant sample mp is generated by modifying statement s2 and identified by the test suite.
Now, we use mp to construct one data record rp. Because mp is generated by modifying s2, the values
of seven independence variables in rp are the seven features of statement s2, i.e., (1, 4, 2, 1, 2, 1, 0) as
shown in Tables 5–7. Because mp is identified by the test suite, the value of dependence variable in rp

is 1. Therefore, the data record rp is (1, 4, 2, 1, 2, 1, 0, 1).

5.3. Performance Metrics

A model may be considered good when it is evaluated using a metric, but, at the same time,
the model may be considered bad when assessed against other metrics. For this reason, we will
compare a few different common evaluation metrics and decide which of them is more suitable to our
statement mutation score prediction.
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5.3.1. Area under Curve

The two coordinates of the receiver operating characteristic (ROC) curve represent sensitivity and
specificity, respectively. Through these two indicators, the ROC curve displays the two types of errors
for all possible thresholds. The area AUC under the ROC curve is the quantitative indicator commonly
used to evaluate a binary classification algorithm [18].

5.3.2. Logarithmic Loss

Logarithmic Loss works by penalising the false classifications [18]. It works well for
both binary classification and multi-class classification generally. For a binary classification,
the logarithmic function

− 1
n

n

∑
i=1

I(yi = 1) log
[
p̂(Y = 1|xi)

]
+ I(yi = 0) log

[
1− p̂(Y = 1|xi)

]
is often used as a classifier’s loss function. Logarithmic Loss closer to 0 indicates higher accuracy for
the classifier.

5.3.3. Brier Score

The basic idea of Brier score is to compute the mean squared error (MSE) between the predicted
probability scores and the true class indicator [19], where the positive class is coded as yi = 1,
and negative class yi = 0. The most common formulation of the Brier score is shown as follows:

BS =
1
n

n

∑
i=1

[yi − p̂(Y = yi|xi)]
2.

The Brier score is a loss function, which means the lower its value, the better the machine
learning model.

5.3.4. Metric Comparison

In the cross-validation process, we choose the Brill score as the model evaluation criterion.
Our purpose is only to tell our users how likely the software bug in a statement will be detected
by a test suite. Therefore, AUC is not suitable for us because it is also not directly related to the
predicted probability. Because the logarithmic loss function may lead to an infinite penalty, it is
also not used by us. The Brier score is the good score function because it is related to the predicted
probability and is bounded. For the above reasons, we take the Brier score as an evaluation criterion in
the cross-validation.

5.4. Model Comparing and Tuning

Under the condition of the same partitioning of the data set, we take the Brier score as a standard
to evaluate the model. In our experiment, we tune hyperparameters and compare the prediction
accuracies of five machine learning models. We use the same partitioning of the data set and the
repeated 5-fold cross-validation to evaluate the prediction accuracy of the models because of the two
following reasons.

(1) We tune some hyperparameters to find the optimal model settings with the help of the
repeated 5-fold cross-validation method. During the 5-fold cross-validation, the samples are randomly
partitioned into five equally sized folds. Models are then fitted by repeatedly leaving out one of
the folds. In our each experiments, our data set contains 200 data records, so that the training and
validation sets contain 160 and 40 data records, respectively. However the result from cross-validation
is more or less uncertain generally. Therefore, in our experiment, five repeats of 5-fold cross-validation
are used to effectively reduce this uncertainty and increase the precision of the estimates. Because each
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5-fold cross-validation supplies a Brier score, five repeats of 5-fold cross-validation supply 5 Brier
scores. Under each candidate combination of hyperparameters, we use the average of the five Brier
scores to represent the prediction effects of the corresponding model.

(2) Because the performance metric is sensitive to the data splits, we thus compare the machine
learning models based on the same partitioning of the data. Otherwise, the difference in performance
will come from two different sources: the differences among the data splits and the differences among
the models themselves. If one model is better than the other, we don’t know if all performance
differences are caused by model differences.

The compared models include the logistic regression, random forest, neural network, support
vector machine and symbolic regression. We use their average Brier scores to assess their
prediction effects.

5.4.1. Logistic Regression

(1) Introduction to Logistic Regression

Conventional logistic regression [20,21] can predict the occurrence probability of a specific
outcome. The conditional probability of a positive outcome could be expressed with the formula below:

p(xi) = p(Y = 1|xi) =
1

1 + eβ0+β1x1+β2x2+···+βdxd
,

where βi is the coefficient for the ith feature, and d is the total number of features. β1, β2, · · · , βd can
be solved by the elastic net approach [22–24] as follows:

maxβ0,β
1
n

n

∑
i=1

{
I(yi = 1)logp(xi) + I(yi = 0)log

(
1− p(xi)

)}
− λ

[
(1− α)

1
2
‖β‖2

2 + α‖β‖1
]
, (14)

where
‖β‖2

2 = β2
1 + β2

2 + · · ·+ β2
d and ‖β‖1 = |β1|+ |β2|+ · · ·+ |βd| .

(2) Logistic regression tuning

Glmnet [25] is an R language software package that can fit linear, logistic and multinomial,
Poisson, and Cox regression models by maximizing the penalized likelihood. In order to predict
the mutant score of each program statement in schedule.c, we use the ridge penalty algorithm in a
glmnet software package to fit the logistic regression mode. Hence, during tuning hyper parameters,
the penalized parameter α in the formula (14) is set to 0, and the penalized parameter λ is set to 10i

where i takes each integer from −7 to 7 in turn. In the cross-validation process, we use the Brier
score as the model evaluation criterion. Under each penalized parameter, the five repeats of 5-fold
cross-validation generate five Brier scores. We calculate the average of the five Brier scores under each
candidate penalized parameter λ, so that we can use the average Brier score to represent the prediction
effect of the model under the each candidate penalized parameter.

Figure 4 and Table 8 show the average Brier Score under each candidate value of the penalized
parameter λ . In Figure 4, the profile shows a decrease in the average Brier score until the penalized
value λ is 10−2. Therefore, the numerically optimally value of the penalized parameter is 10−2.
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Table 8. Average Brier scores for the logistic regression model.

λ 10−7 10−6 10−5 10−4 10−3

Mean 0.1095 0.1062 0.1075 0.1016 0.0955

λ 10−2 10−1 1 101 102

Mean 0.0950 0.1090 0.1321 0.1374 0.1380

λ 103 104 105 106 107

Mean 0.1381 0.1381 0.1381 0.1381 0.1381
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Figure 4. The performance profile of the logistic regression for predicting the statement mutation scores.

5.4.2. Random Forests

(1) Introduction to Random Forest

The random forest model [26,27] can work for regression tasks and classification tasks generally.
It is a tree-based model consisting of multiple decision trees. Each decision tree is created on an
independent and random sample taken from the training data set.

The decision tree algorithm [18,28] is a top-down “greedy” approach that partitions the dataset
into smaller subsets. This algorithm has a tree-like structure that predicts the value of a target variable
based on several input variables. At each decision node, the features are split into two subsets and this
process is repeated until the number of data in the splits falls below some threshold. According to
the target variable’s type, decision trees can be divided into regression trees and classification trees.
The purpose of classification tree is to classify, and its target variable takes discrete values. The purpose
of regression trees is to build a regression model, its target variable takes continuous values.
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For regression, the regression tree algorithm begins with the entire data set S and searches every
distinct value of every independent variable to find the appropriate independent variable and split its
value that partitions the data into two subsets (S1 and S2) such that the overall sums of squares error

SSE = ∑
i∈S1

(yi − y1)
2 + ∑

i∈S2

(yi − y2)
2 (15)

are minimized, where y1 and y2 are the averages of the outcomes within subsets S1 and S2, respectively.
Then, within each of subsets S1 and S2, this method searches again for the independent variable and
splits its value that best reduces SSE. Because of the recursive splitting nature of regression trees,
this method is also known as recursive partitioning.

For classification, the aim of classification trees is to partition the data into smaller,
more homogeneous groups. Homogeneity in this context means that the nodes of the split are
more pure. This purity is usually quantified by the entropy or Gini index. For the two-class problem,
the Gini index for a given node is defined as

p1(1− p1) + p2(1− p2), (16)

where p1 and p2 are the probabilities of Class 1 and Class 2, respectively.
In order to make a prediction for a given observation, the regression tree first analyzes which class

this observation belongs to, and then takes the mean of the training data in the class as the prediction
of this observation. When random forest algorithms are used, the result of regression question can be
obtained by averaging predictions across all regression trees, and the result of the classification question
can be obtained by a majority vote across all classification trees, respectively. The generalization error
of a random forest depends on the errors of individual trees and the correlation between the trees.

(2) Random forest tuning

The randomForest package [29] implements the random forest algorithm in the R environment.
We use this software to predict statement mutation scores generated when the test suite executes on
the program schedule.c. Because the statement mutation score can be considered as the probability
of positive class in binary classification, we denote the positive class and negative class as 1 and 0,
respectively, and let Random Forests run under regression mode to predict the probability of a positive
class [30]. In order to obtain a good prediction model, the different hyper parameter combinations are
tried. The most important hyper parameter is mtry, which is the number of independent variables
randomly selected at each split. In our experiment, we tried multiple candidate values of mtry (from
1 to 7). The other important tuning parameter is ntree, which is the number of bootstrap samples
in the random forest algorithm. In theory, the performance of a random forest model should be a
monotonic function of the number of trees (ntree). However, when ntree is greater than a certain
number, the performance of a random forest model can only improve slowly. In our experiment, ntree
is set to 1000. Under each candidate value of the parameter mtry, we calculate the average of the five
Brier scores generated from the five repeats of 5-fold cross-validation. Furthermore, we use these
averages to express the prediction effects of the random forest model under different candidate values
of hyperparameter mtry. Figure 5 and Table 9 show the average Brier score under each candidate value
of the hyperparameter mtry. As shown in Figure 5, the average Brier scores show a U shape, whose
minimum value occurs in mtry = 3. Therefore, 3 is the optimal value of mtry.

Table 9. Average Brier scores for the random forest model.

mtry 1 2 3 4 5 6 7

Mean 0.1166 0.0923 0.0888 0.0897 0.0914 0.0928 0.0925
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Figure 5. The performance profile of the random forest for predicting the statement mutation scores.

5.4.3. Artificial Neural Networks

(1) Introduction to neural network

Neural networks [18,31] can be used not only for regression but also for classification. The outcome
of a neural network is modeled by an intermediary set of unobserved variables called hidden units.
The simplest neural network architecture is the single hidden layer feed-forward network.

The working process of the single hidden layer feed-forward neural network is as follows.
During the entire work of the neural network, all input neurons representing the original independent
variables x1, x2, · · · , xs are first activated through the sensors perceiving the environment. Next,
inside each hidden unit hk, all original independent variables are linearly combined to generate

uk(x) = β0k +
s

∑
j=1

β jkxj, (17)

where k = 1, 2,· · · , r and r is the number of the hidden units. Then, by a nonlinear function gk, uk(x) is
typically transformed into the output of hidden unit hk as follows:

gk(x) =
1

1 + e−uk(x)
. (18)

(i) When treating the neural network as a regression model, all gk(x) are linearly combined to
form the output of neural network:

f (x) = γ0 +
r

∑
k=1

γkgk(x). (19)
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All of the parameters β and γ can be solved by minimizing the the penalized sum of the
squared residuals:

n

∑
i=1

(yi − f (xi))
2 + λ

r

∑
k=1

s

∑
j=0

β2
jk + λ

r

∑
k=0

γ2
k , (20)

where f (xi) and yi are the predicted result and the actual result related to the ith observed
data, respectively.

(ii) Neural networks can also be used for classification. Unlike neural networks for regression,
an additional nonlinear transformation is used on the linear combination of the outputs of hidden units.

When the neural network is used for binary classification, it uses

f ∗(x) =
1

1 + e− f (x)
=

1

1 + e−(γ0+∑r
k=1 γk gk(x))

(21)

to predict the class probability. The estimation of the parameters γ and β can be solved by minimizing
the penalized cross-entropy

−
n

∑
i=1

yi log f (xi) + (1− yi) log(1− f (xi)) + λ
r

∑
k=1

s

∑
j=0

β2
jk + λ

r

∑
k=0

γ2
k , (22)

where yi is the 0/1 indicator for the positive class. The neural network algorithm can also be used
for multi-class classification. In this situation, the softmax transform outputs the probability that the
sample x belongs to the lth class. Except the single hidden layer feed-forward network, there are
many other types of models. For example, the famous deep learning approaches consist of multiple
hidden layers.

(2) Neural network tuning

As we said before, the our model must not be too complicated, so we select R package nnet [32]
to predict the statement mutation scores of the test suite on schedule.c. The software package nnet
implements a feed-forward neural network with a single hidden layer. The λ and r in formula (22)
represent the weight decay and the number of units in the hidden layer, respectively. They are denoted
as decay and size in nnet package, respectively. Therefore, decay is the regularization parameter to
avoid over-fitting.

In our experiment, size is set in turn to each integer value between one and then. At the same
time, the decay was set to 10i where i takes each integer value from −4 to 5 in turn.

Figure 6 and Table 10 show the average Brier scores under the each candidate combinations of size
and decay. From them, we can know that the optimal combination of the weight decay and hidden unit
number is decay = 10−2 and size = 8 because, at this time, the minimum average Brier score appears.

Table 10. Average Brier scores for neural network models.

Size
Decay 10−4 10−3 10−2 10−1 1 101 102 103 104 105

1 0.1180 0.0984 0.0928 0.0968 0.1111 0.1397 0.1956 0.2419 0.2491 0.2499
2 0.0915 0.0869 0.0883 0.0876 0.1104 0.1379 0.1889 0.2404 0.2489 0.2498
3 0.0953 0.0890 0.0865 0.0867 0.1099 0.1371 0.1835 0.2390 0.2488 0.2498
4 0.0897 0.0889 0.0863 0.0881 0.1094 0.1367 0.1791 0.2375 0.2486 0.2498
5 0.0874 0.0890 0.0865 0.0880 0.1093 0.1366 0.1753 0.2361 0.2484 0.2498
6 0.0881 0.0869 0.0865 0.0881 0.1093 0.1365 0.172 0.2348 0.2483 0.2498
7 0.0896 0.0887 0.0862 0.0878 0.1093 0.1364 0.1694 0.2334 0.2481 0.2498
8 0.0884 0.0878 0.0856 0.0882 0.1093 0.1364 0.1670 0.2321 0.2479 0.2497
9 0.0884 0.0871 0.0869 0.0881 0.1093 0.1364 0.1649 0.2308 0.2478 0.2497

10 0.0870 0.0880 0.0867 0.0878 0.1093 0.1365 0.1631 0.2295 0.2476 0.2497
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Figure 6. The performance profile of the neural network for predicting the statement mutation scores.

5.4.4. Support Vector Machines

(1) Introduction to support vector machine

Given a set of n training instances x1, x2, · · · , xn, the goal of support vector machine is to find a
hyperplane that separates the positive and the negative training instances with the maximum margin
and minimum misclassification error. The training of support vector machine is equivalent to solving
the following optimization problem:

min
w,b,ζi

1
2
‖w‖2 + C

n

∑
i=1

ζi

subject to yi(wTxi + b) ≥ 1− ζi

ζi ≥ 0, i = 1, 2, · · · , n,

where w is the normal vector of the maximum-margin hyperplane wTx + b = 0, C is the regularization
parameter, ζi indicates a non-negative slack variable to tolerant some training data falling in the wrong
side of the hyperplane, and b is a bias. The parameter C specifies the cost of a violation to the margin.
When C is small, the margins will be wide and many support vectors will be on the margin or will
violate the margin. When C is large, the margins will be narrow and there will be few support vectors
on the margin or violating the margin.

The maximum-margin hyperplane can be obtained by solving the above problem. Given new
data x, f (x) = wTx + b represents the signed distance between x and the hyperplane. We can classify
the new data x based on the sign of f (x).

If the original problem is stated in a finite-dimensional space, it often happens that the sets to
discriminate are not linearly separable. For solving this problem, a support vector machine maps
the original finite-dimensional space into a higher-dimensional space, making the separation easier.
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Let φ(x) denote the vector after x mapping. In this higher-dimensional space, the optimization problem
can be rewritten into

min
w,b,ζi

1
2
‖w‖2 + C

n

∑
i=1

ζi (23)

subject to yi(wTφ(xi) + b) ≥ 1− ζi (24)

ζi ≥ 0, i = 1, 2, · · · , n (25)

or expressed in the dual form

min
α

−
n

∑
i=1

αi +
1
2

n

∑
i=1

n

∑
j=1

αiαjyiyjk(xi, xj) (26)

subject to
n

∑
i=1

αiyi = 0 (27)

0 ≤ αi ≤ C, i = 1, 2, · · · , n, (28)

where k(xi, xj) = φ(xi)
Tφ(xj) defines the kernel function greatly reducing the computational cost.

By solving the above optimization problem, the optimal α∗i and b∗ can be obtained. Therefore, the
maximum-margin hyperplane in the higher-dimensional space is

w∗Tφ(x) + b =
n

∑
i=1

α∗i yiφ(xi)
Tφ(x) + b∗ =

n

∑
i=1

α∗i yik(xi, x) + b∗. (29)

The kernel trick allows the support vector machine model to produce extremely flexible decision
boundaries. The most common kernel functions are listed in Table 11:

Table 11. Kernel functions.

Name Expression Parameter

linear kernel k(xi, xj) = xi
T xj

polynomial kernel k(xi, xj) = (γxi
T xj + θ)d γ, θ, d

radial kernel exp(−σ‖xi − xj‖2) σ

The original SVM can be used for classification and regression without probability information.
To solve this problem, Platt [33] proposed to use a logistic function to convert the decision value from
a binary support vector machine to a probability. Formally, the probability of data xi being a positive
instance is defined as follows:

P(yi = 1|xi) =
1

1 + exp(A f (xi) + B)
,

where f (x) = wTφ(x) + b is the maximum-margin hyperplane. The parameters A and B are derived
by minimizing the negative log-likelihood of the training data:

−
n

∑
i=1

[tilog(P(yi = 1|xi)) + (1− ti)log(1− P(yi = 1|xi))]

where

ti =

{
n++1
n++2 i f yi = 1,

1
n−+2 i f yi = −1.

n+ denotes the number of positive training instances (i.e., yi = 1), and n− denotes the number of
negative training instances (i.e., yi = −1). Newton’s method with backtracking is a commonly used
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approach to solve the above optimization problem [34] and is implemented in LibSVM. Besides the
binary classification, the support vector machine can also compute the class probabilities for the
multi-class problem using one-against-one (i.e., pairwise) approach [35] .

(2) Support vector machine tuning

Support vector machine algorithms are provided in the software package kernlab [36] written
in the R language. We built the support vector machine based on the radial basis kernel function
provided by this package. A radial basis kernel function maps the independent variables to an
infinite-dimensional space. The regularization parameter C in formula (23) is called cost parameter in
kernlab. A smaller C results in a smoother decision surface and a larger C results in a flexible model
that strives to classify all training data correctly. The radial basis kernel function in kernlab package is
shown in Table 11, where the parameter σ represents the inverse kernel width. A larger σ means a
narrower radial basis kernel function.

When we use kernlab to predict the statement mutation scores of schedule.c, we hope to get the
Brier score as small as possible by tuning C and σ. For this purpose, we first set the parameter σ to
the median of ‖x− x′‖2 [18,37,38]. Next, let the parameter C take respectively as 2−5, 2−3, 2−1, 21, 23,
25, 27, 29, 211, 213 and 215. Then, under each candidate value of C, we use the five repeats of 5-fold
cross-validation to calculate the average Brier scores.

Figure 7 and Table 12 show the average Brier score generated by five repeats of 5-fold
cross-validation at each candidate value of C. As shown in Figure 7, although there was a relatively
large fluctuation, the average Brier score shows a general trend of first decreasing and then rising.
From this figure, we can know that C = 2−1 is the optimally value of the regularization parameter.
At this time, the average Brier score reaches a minimum 0.0933.
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Figure 7. The performance profile of the support vector for predicting the statement mutation scores.
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Table 12. Resampled Brier score for the support vector machine model.

C 2−5 2−3 2−1 21 23 25 27 29 211 213 215

Mean 0.0984 0.0967 0.0933 0.0978 0.0978 0.0985 0.1004 0.1008 0.0997 0.1003 0.1002

5.4.5. Symbolic Regression

(1) Introduction to symbolic regression

Symbolic regression can also be called function modeling. Based on the given data, it can
automatically find the functional relationship, such as 2x3 + 5, cos(x)+ 1/ey, etc., between independent
variables and dependent variables.

Throughout the modeling process, a function model f (x) is always coded as a symbolic expression
tree. The input of symbolic regression is a data set, and the genetic programming method is often
used to determine f (x). The genetic programming constantly changes an old function model into a
new better fitted one by selecting the function with the better fitness value. A possible and frequently
used fitness function is the average squared difference between the values predicated by f (x) and the
actually observed values y as follows:

MSE( f (x), y) =
1
n

n

∑
i=1

( f (xi)− yi)
2.

Mutation operations and crossover operations are the two important ways to change function
model f (x). A mutation operation directly changes a symbolic expression sub tree, and a crossover
operation cuts a symbolic expression sub tree and replace it with a sub tree in another symbolic
expression tree.

(2) Symbolic regression tunning

The symbolic regression tool rgp [39] is an implementation of genetic programming methods in
the R environment. We use rgp to predict the statement mutation scores of schedule.c. In our symbolic
regression experiment, the most basic mathematical operators are set to the operators +, −, *, /, sin.
An important tuning parameter in rgp is populationSize, which means the number of individuals
included in a population, and is set to 100 in our experiment.

Another important tuning parameter is the number of evolution generations. Too few evolutionary
generations produce an under-fitting, whereas too many evolutionary generations produce an
over-fitting. We did a grid search to determine the optimal number of the generations, which minimizes
the average Brier score. Because we need to complete the model fitting in a relatively short time,
the number of evolution generations cannot be set too large. In our experiment, the candidate
number of evolution generations is set to 3, 6, 9, 12, 15, 18, respectively. The five repeats of five-fold
cross-validation are used to calculate the evolution effects (i.e., the average Brier scores) under each
candidate number of evolution generations.

As shown in Table 13 and Figure 8, the average Brier scores oscillated down. In the 12th generation
evolution, the smallest average Brier score 0.1504 appeared.

Table 13. Average Brier scores for the symbolic regression.

Generation 3 6 9 12 15 18

Mean 0.1640 0.1546 0.1548 0.1504 0.1527 0.1515
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Figure 8. Rgp tuning.

5.4.6. Comparing Models

Once the hyper parameters in the above five models have been determined for the above five
models, we face the question: how do we choose among multiple models? The logistic regression
model is used to set the baseline performance because its mathematical expression is simple and
operation speed is fast. If other predictive models do not surpass it, the logistic regression model is
used in future actual forecasting.

The boxplot in Figure 9 shows, under the condition that the Brier score is the standard, the neural
network does the best job about predicting the statement mutation scores. The second best is the
random forest model, which is a little better than the support vector machine model. The logistic
model is second to last and greatly exceeded the symbolic regression.
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Figure 9. Comparison of the Brier scores of the five machine learning models for schedule.c.
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5.4.7. Testing Predictions in Practice

According to Figure 9 and Tables 8–10, 12 and 13, we know that, in the process of repeated
cross-validation, the average Brier scores of the logistic regression, random forest, neural network,
support vector machine and symbolic regression are 0.0950, 0.0888, 0.0856, 0.0933 and 0.1504,
respectively. Therefore, the neural network is the best model because its average Brier score is
lower than other models. To further demonstrate the predictive effect of the neural network model
on the schedule.c, we did the two following things. Firstly, we apply the neural network model,
whose hyper-parameters have been tuned according to the method in Section 5.4.3, to predict the
statement mutation scores of schedule.c. Under the condition that the schedule.c is used as the
experiment subject, we calculate the mean absolute error between all statement mutation scores
obtained by the neural network prediction and all real statement mutation scores. The experiment
result shows the mean absolute error reaches 0.1205. Secondly, we randomly select 34 statements in
schedule.c, and their two kinds of statement mutation scores are shown in Figure 10. In this figure,
the horizontal coordinate represents the real statement mutation score, and the vertical coordinate
represents the statement mutation score predicted by the neural network model. Each circle represents
a statement, and the distance between each short dashed line and diagonal line is 0.1. From this figure,
we can see that more than 60% of the statements are located between the two short dashed lines.
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Figure 10. Comparing the real statement mutation scores and the predicted statement mutation scores
in schedule.c by the artificial neural network.

5.5. Further Confirmation of the Optimization Model

To further confirm that the prediction effect of the neural network is the best, we compared the five
machine learning models again under the condition that the program tcas.c is used as the experimental
subject. In the process of repeated cross-validation, the average Brier score of the neural network model
reaches 0.1164. The average Brier scores of the logistic regression, the support vector machine, the
random forest and the symbolic regression are 0.1233, 0.1249, 0.1289 and 0.1373, respectively. Therefore,
the neural network is once again considered the best model because its average Brier score is lower
than other models. To further demonstrate the predictive effect of the neural network model on the
tcas.c, we apply the neural network model, whose hyper-parameters have been tuned according to the
method in Section 5.4.3, to predict the statement mutation scores of tcas.c. Under the condition that the
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tcas.c is used as the experiment subject, the mean absolute error between real statement mutation scores
and the statement mutation scores predicted by the tuned neural network reaches 0.1198. In order to
illustrate the prediction results of the neural network more vividly, we randomly selected 31 statements
in the program tcas.c. Their real statement mutation scores and the corresponding predicted mutation
scores are shown in Figure 11.
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Figure 11. Comparing the real statement mutation scores and the predicted statement mutation scores
in tcas.c by the artificial neural network.

Through the above analysis, we can see that, whether the experiment subject is schedule.c or
tcas.c, the average Brier scores of the neural network are both the minimums. Thus, we recommend the
single hidden layer feedforward neural network as the best model. In the two experiments, the mean
absolute error between the statement mutation scores predicted by the neural network model and the
real statement mutation scores both approximately reach 0.12.

6. Structure of the Automated Prediction Tool

The work process of our automatic analysis tool consists of the five parts, as shown in
Figure 12: extracting the features of the statements in the program under testing, generating mutants,
executing test suite on the each mutants, establishing the neural network model, and predicting the
statement mutation scores.

In the first part, we extract the features of statements in the program under testing. First, we
execute each test case and construct its execution impact graph with the open source software giri [40].
Giri was originally a dynamic program slice tool and is currently modified by us. Next, we traverse
the statement instances in reverse order of the execution history of the test cases. Whenever we
visit a statement instance, we compute its features. After calculating the features of each statement
instance, we calculate the features of each program statement according to the corresponding the
statement instances.

In the second part, we generate mutants. We first build a mutation operator set. In our
experiments, the mutation operator set consists of the 22 mutation operators, which exist in the open
source mutant generate tool ProteumIM2.0 [12]. These operators include u-Cccr, u-OEAA, u-OEBA,
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u-OESA, u-CRCR, u-Ccsr, u-OAAN, u-OABN, u-OALN, u-OARN, u-OASN, u-OCNG, u-OLAN,
u-OLBN, u-OLLN, u-OLNG, u-OLRG, u-OLSN, u-ORBN, u-ORLN, u-ORRN and u-ORSN. Next, we
use these mutation operators to randomly construct 200 mutants, each of which is the program with a
software bug.

In the third part, we execute the test suite on each mutant and record the corresponding
identification result.

In the fourth part, we take the features of the mutant as independent variables and the
identification result of the mutant as dependent variables to construct the prediction model with
the neural network.

In the fifth part, we predict the mutation scores of each program statement with the
constructed model.

Use ProteumIM2.0 to 
create mutant samples

 Input test 
program P

Execute mutant samples 
and obtain their test 

results

Compute mutation score for 
each program statement

Fitting Prediction 
Model with Feedforward 

Neural Network

Compute the feature 
of each statement in

the program P

Figure 12. The structure of Automated Analysis Tool.

7. Conclusions

In this paper, we predicted statement mutation scores while using a single hidden layer
feedforward neural network and seven statement features. As analyzed in Section 5, each experimental
result shows that the neural network is the best prediction model from the standpoint of the mean
absolute error. The experimental results on two c programs demonstrate that our method can directly
predict statement mutant scores approximately. The experiment results also show that the seven
statement features that represent the dynamic program execution and testing process can basically
reflect the impact of statements on program output.

However, two shortcomings need to be improved. Firstly, a part of statement features weakly
related to program outputs still need to be discovered. If the real mutation score of a statement is
low, then this statement usually only has some statement features weakly related to program outputs.
In this case, the prediction effect of my model is not good because we only found a part of weakly
relevant statement features, and the other part of the weakly correlated sentence features still need
to be discovered.

Secondly, in this paper, we assume the controlling expression has no side effect. However, in a few
cases, a controlling expression has a side effect. In this case, the execution instance of the controlling
expression may have some impact successors. For example, if there is a controlling expression if(x >
y++) in the original program, then the execution result of y++ will be changed when it is executed a
test case, so that it impacts subsequent statement instances containing y variables. In this situation,
the methods mentioned in Sections 3.1.4, 3.2.4, 3.3.2, 3.4.2 and 3.5.3 are no longer applicable, and the
corresponding algorithm needs to be redesigned.

In the future, we also plan to predict the statement mutation scores with the prediction model
established by other programs. In this case, the users can train a prediction model with the data
records from other programs beforehand. Using this pre-trained model, users can directly predict the
statement mutation scores of the current program.
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Abbreviations

The following abbreviations are used in this manuscript:

Vg value impact set of the statement sg

xvi(sg) value impact factor of the statement sg

Vh
g,tk

value impact set of the statement instance sh
g,tk

Vl
r,z,tk

value impact set of the branch instance Bl
r,z,tk

Pg path impact set of the statement sg

xpi(sg) path impact factor of the statement sg

Ph
g,tk

path impact set of the statement instance sh
g,tk

Pl
r,z,tk

path impact set of the branch instance Bl
r,z,tk

Vg generalized value impact set of the statement sg

xgvi(sg) generalized value impact factor of the statement sg

Vh
g,tk

generalized value impact set of the statement instance sh
g,tk

Pg generalized path impact set of the statement sg

xgpi(sg) generalized path impact factor of the statement sg

Ph
g,tk

path impact set of the generalized statement instance sh
g,tk

Lg latent impact set of statement sg

xli(sg) latent impact factor of statement sg

Lh
g,tk

latent impact set of statement instance sh
g,tk

xih(sg) information hidden factor of statement sg
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