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1. Introduction

In the sequel, the letter R, will denote the set of all nonnegative real numbers.
Let S be a nonempty setand V : S — S be given mappings. A point j € S is said to be:

i. afixed point of V if and only if Vj = j;
ii. acommon fixed pointof V and Z ifand only if V] = Zj = .

Kosjasteh et al. [1] defined a new control function as follows.

Definition 1 ([1]). Let ¢ : [0,00)2 — R be a mapping. The mapping  is named a simulation function
satisfying the following conditions:

C1. ¢(0,0) =0,

Co. C(ab)<a—0b,foralla,b>0,

C3. if {ay} and {b} are sequences in R such that klim ay = klim by =1,1 € Ry. Thus,
— 00 — 00

limsup ¢ (ay, b) < 0.

k—ro0
Argoubi et al. [2] modified the above and so introduced it as follows.

Definition 2 ([2]). The mapping ( is a simulation function providing the following:

i. {(ab)<a—b,forallab>0,

ii. if {ax} and {by} are sequences in R such that kl]m ap = kl by > 0,and a. < by, then lim sup ¢ (ax, bx) < 0.
—00 —>00 k—00

For examples and related results on simulation functions, one may refer to [1-8].
Radenovic and Chandok generalized the simulation function combining the C-class function as follows.

Definition 3 ([4]). A mapping G : [0, oo)2 — R is named a C-class function if it is continuous and satisfies
the following conditions:
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i. G(ab)<a,
ii. G (a,b) = aimplies that eithera = 0orb =0, forall a,b € [0,0).
Definition 4 ([4]). A Cg-simulation function is a mapping ¢ : [0, c>o)2 — R satisfying the following conditions:

i.  (ab) < G(a,b)foralla,b>0,whereG :[0,00)* — R isa C-class function,
ii. if {ax} and {by} are sequences in (0,00) such that klim by = klim ap > 0, and by < ay,
—» 00 —» 00

then limsup ¢ (ak, by) < Cg.

k—o0
Definition 5 ([4]). A mapping G : [0, oo)2 — R has the property Cg, if there exists a Cg > 0 such that:

i. G (ab) > Cgimpliesa > b,
ii. G(a,a) <Cgforallae [0,00).

Moreover, using C-class function many researchers investigated some new results combining
other control functions in different spaces [9].

Suzuki [10] proved the following fixed point theorem using a new contraction, which is known as
the Suzuki contraction in literature. Furthermore, many mathematicians generalized this contraction
in other spaces.

Theorem 1 ([10]). Let (S,d) be a compact metric space and V : S — S be a mapping. Suppose that,
forall 1,0 € Swithy # ¢,

1
Ed(]' Vi) <d(, ) = d(V),Ve)<d(,l).
Then, V has a unique fixed point in S.

Bindu et al. [11] proved the commonfixed point theorem for Suzuki type mapping in a complete
subspace of the partial metric space.

Theorem 2. Let (S, 6) be a partial metric space and f,g,V,Z : S — S be mappings satisfying:

%min{5(fJ,VJ),5(g€,Z€)}Sl’(fj,gf) = ¢V, 20 <a(M(},0)) =B (M1, 1)),

forall j, £ € S, where ¢, u, B : [0,00) — [0, 00) are such that ¢ is an altering distance function, a is continuous,
and B is lower-semi continuous « (0) = B (0) = 0and ¢ (t) — a (t) + B (t) > 0, forall t > 0 and:

M (},£) = max {5(fJ,gé)r5(f],w),5(g€,Z€),5(’:]’2@ —;5(g€,V])},

i V(5)cg(S), Z(S)cf(S)
ii. either f(S) or g(S) is a complete subspace of S;
iii. the pairs (f,V) and (g, Z) are weakly compatible.

Then, f,g,V,Z have a common fixed point.

Jleli and Samet [12] introduced a X-contraction and established fixed point results in generalized
metric spaces. Jleli and Samet [12] also introduced a class of ® such that £ : (0,00) — (1,00)
of all functions, providing the following conditions:

2. Xisnondecreasing;
Y,. for any sequence {a;} in (0, c0), klim ¥ (a;) = 1if and only if klim a = 0;
—so0 —»00
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X3. thereexistr € (0,1) and ! € (0, c0) such that klim+ % =1
—0

Theorem 3 ([12]). Let (S,d) be a complete generalized metric space and V : S — S be a mapping. Suppose that
there exist ¥ € © and vy € (0,1) such that:

d(Vi,ve) #0 = X(d(V, V) <20 0],
forallj,€ € S. Then, V has a unique fixed point.

After that, many authors generalized such a contraction in different spaces [13-17].
Liu et al. [15] modified the class of function ® exchanging conditions. The class of functions @
was defined by the set of £ : (0,00) — (1, o) satisfying the following conditions:

¥1. ¥ is non-decreasing and continuous,
Y. inf Z(k)=1.
ke(0,00)
Lemma 1 ([15]). Let X : (0,00) — (1, 00) be a non-decreasing and continuous function with ] i(%f )Z (k)y=1
€(0,00
and {ay } be a sequence in (0,00). Then, the following condition holds:

lim X (a) =1 <& lima=0.
k—oc0 k—c0

Zheng et al. [18] denoted new set functions P satisfying the following conditions:

®;. ¢ :[1,00) = [1,00) is nondecreasing,
®,. foreachk >0, 1i_r>n " (k) =1,
n—oo

®3. ¢ is continuous on [1,00).
Lemma 2 ([18]). If ¢ € @, then ¢(1) = 1 and ¢(t) < t foreacht > 1.

Definition 6 ([18]). Let (S,d) be a metric space and V. : S — S be a mapping. V is said to be
a ¥ — g-contraction if there exist . € © and ¢ € ® such that forany j,¢ € S,

L@V, V) <eE(NGD)),

where:
N (j,4) = max{d (;,€),d (;,VE),d (1, V)}.

Theorem 4 ([18]). Let (S, d) be a complete metric space and V : S — S be a ¥ — @-contraction. Then, V has
a unique fixed point.

Motivated by the above, we will establish a generalized Suzuki-simulation-type contractive
mapping and obtain fixed point results.

2. Quasi Modular Metric Space

Girgin and Oztiirk [19] introduced a new space, which is named a quasi modular metric space.
Furthermore, they gave some topological properties. Moreover, defining non-Archimedean quasi
modular metric space, they proved some fixed point theorems and obtained some applications.

Definition 7 ([19]). A function Q : (0,00) x S x § — [0,00] is called a quasi modular metric on S
if the following hold:

q1. ¢ =nifandonly if Qu (&, n) = 0 forall m > 0;
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92- Qmtn (1) < Qm (&,v) + Qu (v,5) forallm, n > 0and &,n,v € S.
Then, Sq is a quasi modular metric space. If in the above definition, we utilize the condition:
gr. Qu (¢, &) =0forallm > 0and € S,

instead of (q1), then Q is said to be a quasi pseudo modular metric on S. A quasi modular metric Q on S is called
a regular if the following weaker version of (q1) is satisfied:

q3. ¢ = nifand only if Qu (&, 1) = 0 for some m > 0.

Again, Q is called a convex if for m, n > 0and ¢, n,v € S, the inequality holds:

qs- Qmun (C,1) < m"frn Qm (&,v) + mLJrnQn (v,1).
Definition 8 ([19]). In Definition 7, if we replace (q2) by:
qs- Qmax{m,n} (gr 1) < Qm ((:,V) + Qu (v, 77)

orallm,n > 0and ¢,n,v € S, then S is called a non-Archimedean quasi modular metric space.
Ui Q q P

Note that the function Quax{m,) is more general than the function Qu+x (¢, 77), so every
non-Archimedean quasi modular metric space is a quasi modular metric space.

Example 1 ([19]). Let S = [0, 0) and Q be defined by:

I T
Qm@w)—{l 7 <.

QIN

Then, Sq is a quasi modular metric space with m = } and n
Qm (0,1) = Land Qu (1,0) = 1.

, but is not modular metric space since

Remark 1 ([19]). From the above definitions we deduce that:

i.  For a quasi modular metric Q on S, the conjugate quasi modular metric Q' on S of Q is defined

by Q&l (&1)=Qm(1,8).
ii. If Qis a To-quasi pseudo modular metric on S, then the function QF defined by QF = Q=1 v Q, that is

QL (&,1) = max {Qm (&,1),Qm (11,&)}, defines a modular metric space.

Now, we discuss some topological properties of quasi modular metric spaces.

Definition 9 ([19]). A sequence {Cp} in Sqg converges to ¢ and is called:

a.  Q-convergent or left convergent if §, — & < Qu (&, &p) — 0.
b.  Q l-convergent or right convergent if &, — & < Qum (&p, ) — 0.
c.  QF-convergent if Qu (&,&p) — 0and Qu (&p, &) — 0.

Definition 10 ([19]). A sequence {&,} in a quasi modular metric space Sq is called:

d.  left (right) Q-K-Cauchy if for every € > 0, there exists pe € N such that Qp, (&, &p) < eforall p,r € N
with pe <r <p (pe < p <r)andforall m > 0.
e.  QF-Cauchy if for every e > 0, there exists pe € N such that Qu, (&p, &) < eforall p,r € N with p,r > pe.

Remark 2 ([19]). From the above definitions, we deduce that:

i.  asequence is left Q-K-Cauchy with respect to Q if and only if it is right Q-K-Cauchy with respect to Q1
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ii. asequence is QF-Cauchy if and only if it is left and right Q-K-Cauchy.

Definition 11 ([19]). A quasi modular metric space Sq is called:

i.  left Q-K-complete if every left Q-K-Cauchy is Q-convergent.
ii.  Q-Smyth-complete if every left Q-K-Cauchy sequence is QF-convergent.

3. Common Fixed Point Results

In the sequel, Q is regular and convex and T denotes the family of all C;-simulation functions
7:[0,00)% = R.

Definition 12. Let Sg be a non-Archimedean quasi modular metric space and V : Sg — Sq be a mapping.
We say that V is a generalized Suzuki-simulation-type contractive mapping if there exist L € ©, ¢ € ®
and { € Tz such that:
2Qu (&, V8) < Qu (&)  implies
)
¢ (Z(Qm (Ve V), ¢ (E(P(E1)))) = Ce

where:

p (C! 77) = maX{Qm (gl 77) 4 Qm (C/ Vg) er (77/ Vﬂ)}
forall ¢, n € Sq.

Theorem 5. Let S be a Q-Smyth-complete non-Archimedean quasi modular metric space and V' be the generalized
Suzuki-simulation-type contractive mapping. Then, V has a unique fixed point.

Proof. Define a sequence {{;} in Sp by:

Ckr1 = Vi, o)

for all k € N. If there exists an ko such that ¢y, = Gy 41, then z = {;, becomes a fixed point of V.
Consequently, we shall assume that §; # Cx4q for all k € N. Therefore, we have:

Qu (& Ei1) >0, foralln=0,1,2.... 3)
Hence, we have:
2 Qo (&, V) < Qu (8, VEx) = Qu (€, 1) implis,
Ce <0 (2(Qm (Vi V1)), ¢ (2 (P (Ek, k1))
= C(Z(Qm (Ck41,Gk+2)) » @ (B (P (8ks Cr41)))) @)

<G (9 (Z(P(SrChr1))) 2 (Qum (Grr1Chr2)))
by Definition 5, we get that:

Z(Qm (Ckr1,Gk12)) < @ (2 (P (Gk Crr1))) )
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where:
P (Ck, Gk+1) = max {Qm (Gk, Cx+1) » Qum (Skr VEk) » Qum (Cks1, VGra1)
= max {Qum (Ck, Ck41) » Qm (ks Ck41)  Qm (Gk1,Ck12) }
= max {Qm (Ck Ck41) » Qum (Cxr1,Cks2) } -
If:

max {Qm (Sx, Ck+1) » Qm (Ckv1,Cks2)} = Qm (Ck+1/Crr2)

for some k € N, then it follows from (5) and Lemma 2 that we get:

Z(Qm (Cks1,Ck42)) < @ (Z(Qm (Cks1,8k42))) < Z(Qum (Ck+1,Ck+2))

which is a contradiction. Therefore, we have:

P (8, Ckt1) = Qum (ks Ckv1)

for each k € N. Also, by (5), we have

Z(Qm (Crr1/Gk12)) < @ (2 (Qm (8k Crr1))) -

Repeating this step, we conclude that:

Z(Qm (Cr11,8r12)) < @ (Z(Qm (Gk Crr1)))
< @ (Z(Qm (Ek-1,E)))

< ¢F(Z(Qu (C1,62))),

for all k € N. Taking the limit k — oo above, by the definition of ¢ and property ©,, we have:

lim ¢* (Qu (81,62)) = 1.
k— 00
Thus, from Lemma 1, it follows that:

lim Qu (x41,Ck12) =0,
k—o0

6 of 14

(6)

@)

®)

forall k € N. Now, we show that {g } is a left Q-K-Cauchy sequence. Assume the contrary. There exists
¢ > 0 such that we can find two subsequences {f; } and {s; } of positive integers satisfying the following

inequalities:
Qm (Ctk/ gsk) >e¢, and Qp (gtkfl/ gsk) <e
From (9) and (gs), it follows that:

£ < Qm (Ctk165k> = Qmax{m,m} (‘;’tk/ Csk)
< Qm (gtk/ gtk—l) + Qm (gtk—l/ Csk)
<e+Qm (Ctkfgtk—l) .

On taking the limit as k — oo in the above relation, we obtain that:

kh—l;rolo Qm (éi’k/ Csk) =&

©)

(10)

(11)
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Also, from (9) and (g5), it follows that:

Qum (841, 8si+1) = Qmaxmmy (Ghr1,Gsr1)

< Qm (‘:tk-‘rll Ctk) + Qm ((:tk/ gsk-&-l)
= Qm (‘:tk+1/ gtk) =+ Qmax{m,m} (Ctk/ §Sk+1)
< Qum (&4, 8h—1) + Qm (81, 8s41) + Qum (811,81,
= Qum (8 Gte—1) + Qm (Eer1,Ct) + Qumaxmmy (Gt—1, 1) (12)
< Qm (‘:tkfll Csk) + Qm (gsk/ gSkJrl)
+Qm (8t Ct—1) + Qm (Cte1,Cry)
<&+ Qm (fskrffskﬂ) + Qm (Ctklgtk—l)
+Qm (8r,41,Cr,) -

Next, we claim that:

%Qm (‘:tk/ V‘:tk) < Qm (gtk'gsk) )

If:
%Qm (gtkfvgtk) > Qm (gtk’gsk)
(13)

= %Qm (étk":tk+1) > Qm <€t"'§sk) ’

then letting k — oo in (13), from (11) and (8), we have that 0 > ¢ is a contradiction. Hence,

2Qu (8, V) < Qu (E08s,).

From the generalized Suzuki-simulation-type contractive mapping, we get:
Co < C(2(Qn (Vi VEs)) 9 (2 (P (EnCs))))

(14)
= & (2 (Qun (Gyr1,8541)) @ (2 (P (80, 650))))

where:
P (gtk’gsk) = max {Qm (gtk’gsk) Qm (':fkf Vé{fk) » Qm (Csk’ Vgsk)}
(15)

= maXxX {Qm (ctkr gsk) ’, Qm (gfk/ gtk+1) ’ Qm (gsk/ gSkJrl) } .
Taking the limit k — oo using (8), (11), and (12) in (14) and (15), we obtain:

Co <0 (X(e),9(2(e)) <G (o (X(e),2(e)-

From Definition 5, we get:
L) <p(X(e)) <XZ(e).
It follows that X (¢) < X (), a contradiction. Hence, {} is a left Q-K-Cauchy sequence. As S
is a Q-Smyth-complete non-Archimedean quasi modular metric space, there exists u € Sg such that:

lim QmE (gk/ M) =0.
k—o0

Thus, we have:
lim Qu (&, u) =0  and  lim Qp (u,&) = 0.
k—so0 k—o0

Now, we show that u is a fixed point of V. Assume that Q,, (Vi, u) > 0. We claim that for each
k > 0, the following holds:

30 (8 VE) < Qu (G ).
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On the contrary, suppose that:

%Qm (Ck, VEk) > Qum (Crou) = %Qm (Cks Ckt1) > Qm (G 1) - (16)

Taking the limit as k — co in (16), we obtain 0 > 0, a contradiction. Thus, the claim is true,
and so, from the generalized Suzuki-simulation-type contractive mapping, we get:

Co < C(Z(Qm (VS Vu)), ¢ (2 (P (Cr,u))))
= (Z(Qm (Ckr1, V1)), @ (Z(P (k1)) (17)

<G (@ E(P(Cru))), Z(Qm (Ckr1, V1))

By Definition 5,
Z(Qm (Grt1, Vi) < @ (2 (P (G 1)), (18)

where:

p (gk/ Ll) = max {Qm (gkl u) ,Qm (gkr V‘:k) ,Qm (u/ VM)}
19)

=max {Qm (G, 1), Qm (8, k1) , Qm (1, V) }.
Letting k — oo in (17)-(19), we have:
£ (Qu (1, Vit)) < @ (E (Qu (1, Vir))) < E(Qu (u, Vir)).

Thatis, X (Qm (u, Vu)) < Z(Qm (1, Vur)), a contradiction. Thus, u is a fixed point of V. Suppose that
there is an another fixed point 1* of V such that Vu* = u* and u # u*. Then, Q,, (Vu, Vu*) = Qp (1, u*) > 0,
and: .

0= iQm (u, Vu) < Qum (u, u™).

By the generalized Suzuki-simulation-type contractive mapping, we have:
Co < T(2(Qm (Vu, Vur)), ¢ (Z (P (u,u"))))
= C(Z(Qm (wu)), @ (E(P(u,u")))) (20)
<G (@ (E(P (u,u))),Z(Qm (u,u"))).
From the property of G,
% (Qu (u,u")) < @ (Z(P(u,u7))), (21)

where:
P(u,u*) =max{Qm (u,u™), Qm (u, Vi), Qm (u*, Vu*)} = Qu (u,u*). (22)

From (20)—(22), we attain the following ordering;:
Z(Qum (u,u™)) < (X (Qm(u,u*))) <X (Qm(u,u*)),
which is a contradiction. Hence, u is a unique fixed pointof V. O

Now, we give some corollaries that are directly acquired from our main results.
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Corollary 1. Let Sq be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : Sg — Sg
be a mapping. If there exists ©. € ©, ¢ € ®, and { € Ty such that:

1 . .
EQm (1, V1) <Qu(1,4) implies,

C(Z(Qu (V1 V), ¢ (Z(Qm(1.0))) = Co,
forall j, 0 € S, then V has a unique fixed point.

Corollary 2. Let Sq be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : Sg — Sg
be a mapping. If there exists ©. € ©, ¢ € ®, and { € Ty such that:

CEQu(VLVE), 9 (E(P(1,0))) = Cq
where:

P(1,6) = max{Qm (7,€),Qu (1. V1), Qu (£, V) },
forallj, £ € Sq, then V has a unique fixed point.

Corollary 3. Let Sg be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : Sq — S
be a mapping. If there exists & € © and ¢ € ® such that:

1 . .
EQm (1, V) <Qum(1,0) implies,

Z(Qu (V3 V) <9 (E(P(1,0)))
where:

P(1,6) = max{Qm (7,€), Qu (1, V1), Qu (L, V),
forallj, £ € Sq, then V has a unique fixed point.

Corollary 4. Let Sg be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : Sq — S
be a mapping. If there exists & € © and ¢ € ® such that:

Z(Qu (V1 V) <o (Z(P (1))

where:

P (1,6) = max{Qm (7,€), Qu (1, V1), Qu (L, V),
forallj, £ € Sq, then V has a unique fixed point.

Corollary 5. Let Sg be a Q-Smyth-complete non-Archimedean quasi modular metric space and V : Sg — Sg
be a mapping. If there exists & € © and ¢ € ® such that:

Z(Qu (V1. V) <9 (Z(Qm(1,6)),
forall j, 0 € S, then V has a unique fixed point.

4. Application to a Graph Structure

Let Sg be a non-Archimedean quasi modular metric space and A = {(7,7) : j € Sg} denote
the diagonal of S x Sq. Let H be a directed graph such that the set C(H) of its vertices coincides

with Sg and B(H) is the set of edges of the graph such that A C B(H). H is determined with the pair
(C(H), B(H)).
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If  and ¢ are vertices of H, then a path in H from j to £ of length p € N is a finite sequence {7, }
of vertices such that; = jo,...,j, = 7 and (j;_1,7;) € B(H) fori € {1,2,.., p}.

Recall that H is connected if there is a path between any two vertices, and it is weakly connected
if H is connected, where H defines the undirected graph obtained from H by ignoring the direction
of edges. Define by H™! the graph obtained from H by reversing the direction of edges. Thus,

B (H*l) ={(0) €So x Sq: (£,7) € B(H)}.

It is more convenient to treat H as a directed graph for which the set of its edges is symmetric,
under this convention; we have that:

B(H) = B(H)UB(H™).

Let H, be the component of H consisting of all the edges and vertices that are contained in some
way in H starting at ;. We denote the relation (R) in the following way:

We have j(R)/ if and only if, there is a path in H from j to ¢, for j,£ € C(H).

If H is such that B(H) is symmetric, then for j € C(H), the equivalence class [j]g in V(G)
described by the relation (R) is C(H,).

Let Sg be a non-Archimedean quasi modular metric space endowed witha graph Hand 7 : Sg — Sg.
We set:

Sn=1{1€S0: (1) € B(H)}.

Definition 13 ([20]). (S,d) is a metric space, and h : S — S is a mapping. Then, h is called a Banach
H-contraction if the following hold:

By. hpreserves edges of H, i.e., forall j,£ € S,
(1,¢) € B(H) = (hy,nt) € B(H),
B,. thereexists § € (0,1) such that:
d(hy,ht) <dd(,0)
forall (7,¢) € B(H).
After that, many fixed point researchers investigated fixed point results improving the Jachymski
fixed point theorems in [17,21-23].

Now, motivated by [24-26], we generate a new contraction and obtain fixed point results using
a graph structure.

Definition 14. Let Sg be a non-Archimedean quasi modular metric space and h : Sq — Sq be a mapping.
Then, we say that i is a generalized Suzuki-simulation-H-type contractive mapping if the following conditions hold:

H;. h preserves edges of G;
H,. thereexists ™ € ©, ¢ € ® and { € Ty such that:

1Qu (1)) < Qu (,€)  implies,
(23)

¢ (2 (Qm (g, 1E)), 9 (2(P(1,£)))) = Ca,

where

P(3,6) = max{Qu (7,€), Qu (1. 77) , Qu (£, 1) }
forall j,¢ € B(H) and for all m > 0.
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Remark 3. Let S be a non-Archimedean quasi modular metric space with a graph H and h : Sq — Sg
be a generalized Suzuki-simulation-H-type contractive mapping. If there exists jo € Sq such that hyy € [jo] , then:

Ry. T is both a generalized Suzuki-simulation-H~'-type contractive mapping and a generalized Suzuki-
Simulation-H-type contractive mapping.
Ry. [jolg is h-invariant, and h ol 1S a generalized Suzuki-simulation-H,-type contractive mapping.

Theorem 6. Let Sq be a Q-Smyth-complete non-Archimedean quasi modular metric space with a graph H
and h : S — Sq be a mapping.

i.  thereexists jg € Sp;

ii. T is the generalized Suzuki-simulation-H-type contractive mapping;

iii.  H is weakly connected;

. if {jx} is a sequence in Sq such that klgl(}o Qut (Gxu) = 0and (g, jks1) € B (H), then there exists

a subsequence {ji_} of {jx} such that (j_,u) € B (H).

Then, I has a unique fixed point.

Proof. Define a sequence {j;} in Sp by:

for all k € N. Let jp be a given point in Sy; thus, (jo, ij0) = (jo,j1) € B (H) . Because 7 preserves the
edges of H,
(o) €B(H) = (fjohp) € B(H).

Continuing this way, we get:
(ks Jk+1) € B(H).

Then from Theorem 5, we get that {j;} is a left Q-K-Cauchy sequence in Sg. By the Q-Smyth-
completeness of Sq, there exists u € Sg such that:

lim QJ; (5, u) = 0. (25)
k— o0

Thus, we have:
lim Qu (jk,u) =0 and  lim Qp (u, ) = 0. (26)
k—o0 k—o0

Now, we show that u is a fixed point of #. Using (iv), we get (j,, ) € B (H). We claim that:
1

If
3Qm (ko k) > Qum (ko ) = 3Qm Ukor Jkt1) > Que (s 1) (28)

and taking the limit s — oo in (28), we get 0 > 0, a contradiction. Hence, the claim is true. Since 7
is a generalized Suzuki-simulation-H-type contractive mapping, we have:

Ce < ¢(2(Qm (R, fin)), @ (2 (P (i, u))))
< T (= (Qm (k1)) , ¢ (2 (P (k1)) (29)

<G (@ (Z(P (k1)) Z (Qum (hyi,, hu))),
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from Definition 5, we get:
Z(Qm (g, Tt)) , @ (2 (P (ks 1)), (30)

where:

P (ji,, u) = max {Qu (ks ) , Qu (ks Miies) » Qum (u, hue) }
(31)

= max {Qm (]kslu) 7 Qm (]ksr]ks-i-l) 7 Qm (u/ hu)} .
Taking the limit as s — oo in (29)-(31), we get:

Z(Qu (u hu)) < @ (X (Qu (u,hu))) < Z(Qum (u, hut)) .

It follows that 2 (Qp, (1, hu)) < X (Qum (4, hu)), a contradiction. Therefore, we get Qy, (u, i) =0,
that is u = T since Q is regular.

Next, we show that u is a unique fixed point of 7. On the contrary, we suppose that u* is another
fixed point of %, i.e., u* = hu* and u # u*. Then, there exist ¢ € Sy such that (u,0) € B(H)
and (o, u*) € B(H). Using (iii), we get that (1, u*) € B(H). Furthermore,

0= %Qm (u,hu) < Qum (u,u™*). (32)

From the generalized Suzuki-Simulation-H-type contractive mapping we have:

Co < C(2(Qm (hu,hu*)), ¢ (X (P (u,u7))))
<TE(Qm(wur)), ¢ (2(P(u,u%)))) (33)

<G (P(u,u)), 2 (Qu (hu hu*))).

Using Definition 5, we get:
Z(Qum (u,u7)) < ¢ (Z (P (u,u7))) (34)

where:

P(u,u*) = max {Qum (1, u*), Qum (1, 1), Qu (u*, hu*)}
(35)

=max {Qum (u,u*), 0} = Qu (u,u*).
From (33)—(35), it follows that:

Z(Qu (u,u")) < @ (X (Qm (u,u7))) <Z(Qm (u,u")).
This is an incorrect statement. Hence, u = u*. 0O

5. Conclusions

First, motivated by [4,10,15], we established a new contractive mapping, which is called the
generalized Suzuki-simulation-type contractive mapping. Second, in [19], we constituted a new quasi
metric space, which is named the non-Archimedean quasi modular metric space, and so using this, we
attained fixed point theorems via generalized Suzuki-simulation-type contractive mapping. Finally, we
acquired graphical fixed point results in non-Archimedean quasi modular metric spaces.
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