

Article

Modified Suzuki-Simulation Type Contractive Mapping in Non-Archimedean Quasi Modular Metric **Spaces and Application to Graph Theory**

Ekber Girgin * and Mahpeyker Öztürk

Department of Mathematics, Sakarya University, Sakarya 54050, Turkey

* Correspondence: ekber.girgin2@ogr.sakarya.edu.tr

Received: 15 July 2019; Accepted: 16 August 2019; Published: 21 August 2019

Abstract: In this paper, we establish generalized Suzuki-simulation-type contractive mapping and prove fixed point theorems on non-Archimedean quasi modular metric spaces. As an application, we acquire graphic-type results.

Keywords: non-Archimedean quasi modular metric space; θ -contraction; Suzuki contraction; simulation contraction

1. Introduction

In the sequel, the letter \mathbb{R}_+ will denote the set of all nonnegative real numbers. Let *S* be a nonempty set and $V : S \to S$ be given mappings. A point $j \in S$ is said to be:

- i. a fixed point of *V* if and only if $V_1 = I$;
- ii. a common fixed point of *V* and *Z* if and only if $V_1 = Z_1 = I$.

Kosjasteh et al. [1] defined a new control function as follows.

Definition 1 ([1]). Let $\zeta : [0,\infty)^2 \to \mathbb{R}$ be a mapping. The mapping ζ is named a simulation function satisfying the following conditions:

 ζ_1 . $\zeta(0,0) = 0$, ζ_2 . $\zeta(a,b) < a-b$, for all a, b > 0, ζ_3 . *if* $\{a_k\}$ and $\{b_k\}$ are sequences in \mathbb{R}_+ such that $\lim_{k\to\infty} a_k = \lim_{k\to\infty} b_k = l, l \in \mathbb{R}_+$. Thus,

$$\limsup_{k\to\infty}\zeta(a_k,b_k)<0$$

Argoubi et al. [2] modified the above and so introduced it as follows.

Definition 2 ([2]). *The mapping* ζ *is a simulation function providing the following:*

- i. $\zeta(a,b) < a-b$, for all a, b > 0,
- *if* $\{a_k\}$ and $\{b_k\}$ are sequences in \mathbb{R}_+ such that $\lim_{k\to\infty} a_k = \lim_{k\to\infty} b_k > 0$, and $a_k < b_k$, then $\limsup_{k\to\infty} \zeta(a_k, b_k) < 0$. ii.

For examples and related results on simulation functions, one may refer to [1-8]. Radenovic and Chandok generalized the simulation function combining the C-class function as follows.

Definition 3 ([4]). A mapping $G : [0, \infty)^2 \to \mathbb{R}$ is named a C-class function if it is continuous and satisfies the following conditions:

- *i*. $G(a,b) \leq a$,
- *ii.* G(a,b) = a *implies that either* a = 0 *or* b = 0*, for all* $a, b \in [0, \infty)$ *.*

Definition 4 ([4]). A C_G -simulation function is a mapping $\zeta : [0, \infty)^2 \to \mathbb{R}$ satisfying the following conditions:

- *i*. $\zeta(a,b) < G(a,b)$ for all a, b > 0, where $G : [0,\infty)^2 \to \mathbb{R}$ is a C-class function,
- *ii. if* $\{a_k\}$ and $\{b_k\}$ are sequences in $(0,\infty)$ such that $\lim_{k\to\infty} b_k = \lim_{k\to\infty} a_k > 0$, and $b_k < a_k$, then $\limsup_{k\to\infty} \zeta(a_k, b_k) < C_G$.

Definition 5 ([4]). A mapping $G : [0, \infty)^2 \to \mathbb{R}$ has the property C_G , if there exists a $C_G \ge 0$ such that:

- *i*. $G(a,b) > C_G$ *implies* a > b,
- *ii.* $G(a,a) \leq C_G$ for all $a \in [0,\infty)$.

Moreover, using *C*-class function many researchers investigated some new results combining other control functions in different spaces [9].

Suzuki [10] proved the following fixed point theorem using a new contraction, which is known as the Suzuki contraction in literature. Furthermore, many mathematicians generalized this contraction in other spaces.

Theorem 1 ([10]). Let (S,d) be a compact metric space and $V : S \to S$ be a mapping. Suppose that, for all $1, \ell \in S$ with $1 \neq \ell$,

$$\frac{1}{2}d(j,V_j) < d(j,\ell) \quad \Rightarrow \quad d(V_j,V\ell) < d(j,\ell).$$

Then, V has a unique fixed point in S.

Bindu et al. [11] proved the commonfixed point theorem for Suzuki type mapping in a complete subspace of the partial metric space.

Theorem 2. Let (S, δ) be a partial metric space and $f, g, V, Z : S \to S$ be mappings satisfying:

$$\frac{1}{2}\min\left\{\delta\left(f_{j},V_{j}\right),\delta\left(g\ell,Z\ell\right)\right\} \leq \ell\left(f_{j},g\ell\right) \quad \Rightarrow \quad \phi\left(V_{j},Z\ell\right) \leq \alpha\left(M\left(j,\ell\right)\right) - \beta\left(M\left(j,\ell\right)\right),$$

for all $j, \ell \in S$, where $\phi, \alpha, \beta : [0, \infty) \to [0, \infty)$ are such that ϕ is an altering distance function, α is continuous, and β is lower-semi continuous α (0) = β (0) = 0 and ϕ (t) – α (t) + β (t) > 0, for all t > 0 and:

$$M(j,\ell) = \max\left\{\delta(fj,g\ell), \delta(fj,V\ell), \delta(g\ell,Z\ell), \frac{\delta(fj,Z\ell) + \delta(g\ell,Vj)}{2}\right\},\$$

i. $V(S) \subseteq g(S)$, $Z(S) \subseteq f(S)$;

ii. either f(S) *or* g(S) *is a complete subspace of* S*;*

iii. the pairs (f, V) *and* (g, Z) *are weakly compatible.*

Then, f, g, V, Z have a common fixed point.

Jleli and Samet [12] introduced a Σ -contraction and established fixed point results in generalized metric spaces. Jleli and Samet [12] also introduced a class of Θ such that Σ : $(0, \infty) \rightarrow (1, \infty)$ of all functions, providing the following conditions:

- Σ_1 . Σ is nondecreasing;
- Σ_2 . for any sequence $\{a_k\}$ in $(0, \infty)$, $\lim_{k \to \infty} \Sigma(a_k) = 1$ if and only if $\lim_{k \to \infty} a_k = 0$;

 Σ_3 . there exist $r \in (0, 1)$ and $l \in (0, \infty)$ such that $\lim_{k \to 0^+} \frac{\Sigma(k) - 1}{k^r} = l$.

Theorem 3 ([12]). Let (S, d) be a complete generalized metric space and $V : S \to S$ be a mapping. Suppose that *there exist* $\Sigma \in \Theta$ *and* $\gamma \in (0, 1)$ *such that:*

$$d(V_{j}, V\ell) \neq 0 \quad \Rightarrow \quad \Sigma(d(V_{j}, V\ell)) \leq [\Sigma(d(j, \ell))]^{\gamma},$$

for all $1, \ell \in S$. Then, V has a unique fixed point.

After that, many authors generalized such a contraction in different spaces [13–17].

Liu et al. [15] modified the class of function Θ exchanging conditions. The class of functions $\hat{\Theta}$ was defined by the set of $\Sigma : (0, \infty) \to (1, \infty)$ satisfying the following conditions:

 $\tilde{\Sigma}_1$. Σ is non-decreasing and continuous, $\tilde{\Sigma}_{2}$. $\inf_{k \in (0,\infty)} \Sigma(k) = 1.$

Lemma 1 ([15]). Let $\Sigma : (0, \infty) \to (1, \infty)$ be a non-decreasing and continuous function with $\inf_{k \in (0,\infty)} \Sigma(k) = 1$ and $\{a_k\}$ be a sequence in $(0, \infty)$. Then, the following condition holds:

$$\lim_{k\to\infty}\Sigma\left(a_k\right)=1\quad\Leftrightarrow\quad\lim_{k\to\infty}a_k=0.$$

Zheng et al. [18] denoted new set functions Φ satisfying the following conditions:

 Φ_1 . $\varphi : [1, \infty) \rightarrow [1, \infty)$ is nondecreasing, Φ_2 . for each k > 0, $\lim_{n \to \infty} \varphi^n(k) = 1$, Φ_3 . φ is continuous on $[1, \infty)$.

Lemma 2 ([18]). If $\varphi \in \Phi$, then $\varphi(1) = 1$ and $\varphi(t) < t$ for each t > 1.

Definition 6 ([18]). Let (S,d) be a metric space and $V : S \to S$ be a mapping. V is said to be a $\Sigma - \varphi$ -contraction if there exist $\Sigma \in \Theta$ and $\varphi \in \Phi$ such that for any 1, $\ell \in S$,

$$\Sigma\left(d\left(V_{j},V\ell\right)\right) \leq \varphi\left(\Sigma\left(N\left(j,\ell\right)\right)\right),$$

where:

$$N(j,\ell) = \max \left\{ d(j,\ell), d(j,V\ell), d(j,V\ell) \right\}$$

Theorem 4 ([18]). Let (S, d) be a complete metric space and $V : S \to S$ be a $\Sigma - \varphi$ -contraction. Then, V has a unique fixed point.

Motivated by the above, we will establish a generalized Suzuki-simulation-type contractive mapping and obtain fixed point results.

2. Quasi Modular Metric Space

Girgin and Öztürk [19] introduced a new space, which is named a quasi modular metric space. Furthermore, they gave some topological properties. Moreover, defining non-Archimedean quasi modular metric space, they proved some fixed point theorems and obtained some applications.

Definition 7 ([19]). A function $Q : (0,\infty) \times S \times S \rightarrow [0,\infty]$ is called a quasi modular metric on S if the following hold:

$$q_1$$
. $\xi = \eta$ if and only if $Q_m(\xi, \eta) = 0$ for all $m > 0$;

 q_2 . $Q_{m+n}(\xi,\eta) \leq Q_m(\xi,\nu) + Q_n(\nu,\eta)$ for all m, n > 0 and $\xi,\eta,\nu \in S$.

Then, S_O is a quasi modular metric space. If in the above definition, we utilize the condition:

 $q_{1'}$. $Q_m(\xi,\xi) = 0$ for all m > 0 and $\xi \in S$,

instead of (q_1) , then Q is said to be a quasi pseudo modular metric on S. A quasi modular metric Q on S is called a regular if the following weaker version of (q_1) is satisfied:

*q*₃. $\xi = \eta$ *if and only if* $Q_m(\xi, \eta) = 0$ *for some* m > 0.

Again, Q is called a convex if for m, n > 0 and $\xi, \eta, \nu \in S$, the inequality holds:

 $q_4. \quad Q_{m+n}\left(\xi,\eta\right) \leq \frac{m}{m+n}Q_m\left(\xi,\nu\right) + \frac{n}{m+n}Q_n\left(\nu,\eta\right).$

Definition 8 ([19]). *In Definition 7, if we replace* (q_2) *by:*

 $q_{5}. \quad Q_{\max\{m,n\}}\left(\xi,\eta\right) \leq Q_{m}\left(\xi,\nu\right) + Q_{n}\left(\nu,\eta\right)$

for all m, n > 0 and $\xi, \eta, \nu \in S$, then S_O is called a non-Archimedean quasi modular metric space.

Note that the function $Q_{\max\{m,n\}}$ is more general than the function $Q_{m+n}(\xi,\eta)$, so every non-Archimedean quasi modular metric space is a quasi modular metric space.

Example 1 ([19]). Let $S = [0, \infty)$ and Q be defined by:

$$Q_m\left(\xi,\eta
ight) = \left\{egin{array}{cc} rac{\xi-\eta}{m} & ext{ if } \xi \geq \eta \ 1 & ext{ if } \xi < \eta. \end{array}
ight.$$

Then, S_Q is a quasi modular metric space with $m = \frac{1}{3}$ and $n = \frac{2}{3}$, but is not modular metric space since $Q_m(0,1) = 1$ and $Q_m(1,0) = \frac{1}{3}$.

Remark 1 ([19]). From the above definitions we deduce that:

- For a quasi modular metric Q on S, the conjugate quasi modular metric Q^{-1} on S of Q is defined by $Q_m^{-1}(\xi,\eta) = Q_m(\eta,\xi)$.
- *ii.* If Q is a T_0 -quasi pseudo modular metric on S, then the function Q^E defined by $Q^E = Q^{-1} \lor Q$, that is $Q_m^E(\xi,\eta) = \max \{Q_m(\xi,\eta), Q_m(\eta,\xi)\}, defines a modular metric space.$

Now, we discuss some topological properties of quasi modular metric spaces.

Definition 9 ([19]). A sequence $\{\xi_p\}$ in S_O converges to ξ and is called:

- a.
- *Q*-convergent or left convergent if $\xi_p \to \xi \Leftrightarrow Q_m(\xi, \xi_p) \to 0$. Q^{-1} -convergent or right convergent if $\xi_p \to \xi \Leftrightarrow Q_m(\xi_p, \xi) \to 0$. Q^E -convergent if $Q_m(\xi, \xi_p) \to 0$ and $Q_m(\xi_p, \xi) \to 0$. b.
- С.

Definition 10 ([19]). A sequence $\{\xi_p\}$ in a quasi modular metric space S_Q is called:

- d. *left (right)* Q-K-Cauchy *if for every* $\varepsilon > 0$ *, there exists* $p_{\varepsilon} \in N$ *such that* $Q_m(\xi_r, \xi_p) < \varepsilon$ *for all* $p, r \in N$ with $p_{\varepsilon} \leq r \leq p \ (p_{\varepsilon} \leq p \leq r)$ and for all m > 0.
- Q^{E} -Cauchy if for every $\varepsilon > 0$, there exists $p_{\varepsilon} \in N$ such that $Q_{m}(\xi_{p}, \xi_{r}) < \varepsilon$ for all $p, r \in N$ with $p, r \geq p_{\varepsilon}$. е.

Remark 2 ([19]). From the above definitions, we deduce that:

a sequence is left Q-K-Cauchy with respect to Q if and only if it is right Q-K-Cauchy with respect to Q^{-1} ; i.

ii. a sequence is Q^E-Cauchy if and only if it is left and right Q-K-Cauchy.

Definition 11 ([19]). A quasi modular metric space S_Q is called:

- *i. left Q-K-complete if every left Q-K-Cauchy is Q-convergent.*
- *ii. Q-Smyth-complete if every left Q-K-Cauchy sequence is Q^E-convergent.*

3. Common Fixed Point Results

In the sequel, *Q* is regular and convex and T_Z denotes the family of all C_G -simulation functions $\zeta : [0, \infty)^2 \to \mathbb{R}$.

Definition 12. Let S_Q be a non-Archimedean quasi modular metric space and $V : S_Q \to S_Q$ be a mapping. We say that V is a generalized Suzuki-simulation-type contractive mapping if there exist $\Sigma \in \tilde{\Theta}$, $\varphi \in \Phi$ and $\zeta \in T_Z$ such that:

$$\frac{1}{2}Q_{m}\left(\xi, V\xi\right) \leq Q_{m}\left(\xi, \eta\right) \quad \text{implies}$$

$$\zeta\left(\Sigma\left(Q_{m}\left(V\xi, V\eta\right)\right), \varphi\left(\Sigma\left(P\left(\xi, \eta\right)\right)\right)\right) \geq C_{G}$$
(1)

where:

 $P(\xi,\eta) = \max \left\{ Q_m(\xi,\eta), Q_m(\xi,V\xi), Q_m(\eta,V\eta) \right\}$

for all $\xi, \eta \in S_Q$.

Theorem 5. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space and V be the generalized Suzuki-simulation-type contractive mapping. Then, V has a unique fixed point.

Proof. Define a sequence $\{\xi_k\}$ in S_Q by:

$$\xi_{k+1} = V\xi_k,\tag{2}$$

for all $k \in \mathbb{N}$. If there exists an k_0 such that $\xi_{k_0} = \xi_{k_0+1}$, then $z = \xi_{k_0}$ becomes a fixed point of *V*. Consequently, we shall assume that $\xi_k \neq \xi_{k+1}$ for all $k \in \mathbb{N}$. Therefore, we have:

$$Q_m(\xi_k,\xi_{k+1}) > 0$$
, for all $n = 0, 1, 2...$ (3)

Hence, we have:

$$\frac{1}{2}Q_{m}\left(\xi_{k}, V\xi_{k}\right) < Q_{m}\left(\xi_{k}, V\xi_{k}\right) = Q_{m}\left(\xi_{k}, \xi_{k+1}\right) \quad \text{implies,}$$

$$C_{G} \leq \zeta\left(\Sigma\left(Q_{m}\left(V\xi_{k}, V\xi_{k+1}\right)\right), \varphi\left(\Sigma\left(P\left(\xi_{k}, \xi_{k+1}\right)\right)\right)\right)$$

$$= \zeta\left(\Sigma\left(Q_{m}\left(\xi_{k+1}, \xi_{k+2}\right)\right), \varphi\left(\Sigma\left(P\left(\xi_{k}, \xi_{k+1}\right)\right)\right)\right)$$

$$< G\left(\varphi\left(\Sigma\left(P\left(\xi_{k}, \xi_{k+1}\right)\right)\right), \Sigma\left(Q_{m}\left(\xi_{k+1}, \xi_{k+2}\right)\right)\right),$$
(4)

by Definition 5, we get that:

$$\Sigma\left(Q_m\left(\xi_{k+1},\xi_{k+2}\right)\right) < \varphi\left(\Sigma\left(P\left(\xi_k,\xi_{k+1}\right)\right)\right),\tag{5}$$

where:

$$P(\xi_{k},\xi_{k+1}) = \max \{Q_{m}(\xi_{k},\xi_{k+1}), Q_{m}(\xi_{k},V\xi_{k}), Q_{m}(\xi_{k+1},V\xi_{k+1})\}$$

= max { $Q_{m}(\xi_{k},\xi_{k+1}), Q_{m}(\xi_{k},\xi_{k+1}), Q_{m}(\xi_{k+1},\xi_{k+2})\}$
= max { $Q_{m}(\xi_{k},\xi_{k+1}), Q_{m}(\xi_{k+1},\xi_{k+2})\}.$ (6)

If:

$$\max \{Q_m(\xi_k,\xi_{k+1}), Q_m(\xi_{k+1},\xi_{k+2})\} = Q_m(\xi_{k+1},\xi_{k+2})$$

for some $k \in \mathbb{N}$, then it follows from (5) and Lemma 2 that we get:

$$\Sigma\left(Q_m\left(\xi_{k+1},\xi_{k+2}\right)\right) < \varphi\left(\Sigma\left(Q_m\left(\xi_{k+1},\xi_{k+2}\right)\right)\right) < \Sigma\left(Q_m\left(\xi_{k+1},\xi_{k+2}\right)\right)$$

which is a contradiction. Therefore, we have:

$$P\left(\xi_k,\xi_{k+1}\right) = Q_m\left(\xi_k,\xi_{k+1}\right)$$

for each $k \in \mathbb{N}$. Also, by (5), we have

$$\Sigma\left(Q_m\left(\xi_{k+1},\xi_{k+2}\right)\right) < \varphi\left(\Sigma\left(Q_m\left(\xi_k,\xi_{k+1}\right)\right)\right).$$

Repeating this step, we conclude that:

$$egin{aligned} &\Sigma\left(Q_m\left(\xi_{k+1},\xi_{k+2}
ight)
ight) < arphi\left(\Sigma\left(Q_m\left(\xi_k,\xi_{k+1}
ight)
ight)
ight) \ &< arphi^2\left(\Sigma\left(Q_m\left(\xi_{k-1},\xi_k
ight)
ight)
ight) \ &dots \ &dots \ &< arphi^k\left(\Sigma\left(Q_m\left(\xi_1,\xi_2
ight)
ight)
ight), \end{aligned}$$

for all $k \in \mathbb{N}$. Taking the limit $k \to \infty$ above, by the definition of φ and property Θ_2 , we have:

$$\lim_{k \to \infty} \varphi^k \left(Q_m \left(\xi_1, \xi_2 \right) \right) = 1. \tag{7}$$

Thus, from Lemma 1, it follows that:

$$\lim_{k \to \infty} Q_m \left(\xi_{k+1}, \xi_{k+2} \right) = 0, \tag{8}$$

for all $k \in \mathbb{N}$. Now, we show that $\{\xi_k\}$ is a left *Q*-*K*-Cauchy sequence. Assume the contrary. There exists $\varepsilon > 0$ such that we can find two subsequences $\{t_k\}$ and $\{s_k\}$ of positive integers satisfying the following inequalities:

$$Q_m\left(\xi_{t_k},\xi_{s_k}\right) \ge \varepsilon, \text{ and } Q_m\left(\xi_{t_k-1},\xi_{s_k}\right) < \varepsilon.$$
(9)

From (9) and (q_5) , it follows that:

$$\begin{aligned} \varepsilon &\leq Q_m \left(\xi_{t_k}, \xi_{s_k} \right) = Q_{\max\{m,m\}} \left(\xi_{t_k}, \xi_{s_k} \right) \\ &\leq Q_m \left(\xi_{t_k}, \xi_{t_k-1} \right) + Q_m \left(\xi_{t_k-1}, \xi_{s_k} \right) \\ &< \varepsilon + Q_m \left(\xi_{t_k}, \xi_{t_k-1} \right). \end{aligned}$$
(10)

On taking the limit as $k \to \infty$ in the above relation, we obtain that:

$$\lim_{k \to \infty} Q_m \left(\xi_{t_k}, \xi_{s_k} \right) = \varepsilon.$$
(11)

Also, from (9) and (q_5) , it follows that:

$$Q_{m} \left(\xi_{t_{k}+1}, \xi_{s_{k}+1}\right) = Q_{\max\{m,m\}} \left(\xi_{t_{k}+1}, \xi_{s_{k}+1}\right)
\leq Q_{m} \left(\xi_{t_{k}+1}, \xi_{t_{k}}\right) + Q_{m} \left(\xi_{t_{k}}, \xi_{s_{k}+1}\right)
= Q_{m} \left(\xi_{t_{k}+1}, \xi_{t_{k}}\right) + Q_{\max\{m,m\}} \left(\xi_{t_{k}}, \xi_{s_{k}+1}\right)
\leq Q_{m} \left(\xi_{t_{k}}, \xi_{t_{k}-1}\right) + Q_{m} \left(\xi_{t_{k}-1}, \xi_{s_{k}+1}\right) + Q_{m} \left(\xi_{t_{k}+1}, \xi_{t_{k}}\right)
= Q_{m} \left(\xi_{t_{k}}, \xi_{t_{k}-1}\right) + Q_{m} \left(\xi_{t_{k}+1}, \xi_{t_{k}}\right) + Q_{\max\{m,m\}} \left(\xi_{t_{k}-1}, \xi_{s_{k}+1}\right)
\leq Q_{m} \left(\xi_{t_{k}-1}, \xi_{s_{k}}\right) + Q_{m} \left(\xi_{s_{k}}, \xi_{s_{k}+1}\right)
+ Q_{m} \left(\xi_{t_{k}}, \xi_{t_{k}-1}\right) + Q_{m} \left(\xi_{t_{k}+1}, \xi_{t_{k}}\right)
< \varepsilon + Q_{m} \left(\xi_{s_{k}}, \xi_{s_{k}+1}\right) + Q_{m} \left(\xi_{t_{k}}, \xi_{t_{k}-1}\right)
+ Q_{m} \left(\xi_{t_{k}+1}, \xi_{t_{k}}\right).$$
(12)

Next, we claim that:

$$\frac{1}{2}Q_m\left(\xi_{t_k},V\xi_{t_k}\right)\leq Q_m\left(\xi_{t_k},\xi_{s_k}\right).$$

If:

$$\frac{1}{2}Q_m\left(\xi_{t_k}, V\xi_{t_k}\right) > Q_m\left(\xi_{t_k}, \xi_{s_k}\right)$$

$$= \frac{1}{2}Q_m\left(\xi_{t_k}, \xi_{t_k+1}\right) > Q_m\left(\xi_{t_k}, \xi_{s_k}\right),$$
(13)

then letting $k \to \infty$ in (13), from (11) and (8), we have that $0 > \varepsilon$ is a contradiction. Hence,

$$\frac{1}{2}Q_m\left(\xi_{t_k},V\xi_{t_k}\right)\leq Q_m\left(\xi_{t_k},\xi_{s_k}\right)$$

From the generalized Suzuki-simulation-type contractive mapping, we get:

$$C_{G} \leq \zeta \left(\Sigma \left(Q_{m} \left(V \xi_{t_{k}}, V \xi_{s_{k}} \right) \right), \varphi \left(\Sigma \left(P \left(\xi_{t_{k}}, \xi_{s_{k}} \right) \right) \right) \right)$$

= $\zeta \left(\Sigma \left(Q_{m} \left(\xi_{t_{k}+1}, \xi_{s_{k}+1} \right) \right), \varphi \left(\Sigma \left(P \left(\xi_{t_{k}}, \xi_{s_{k}} \right) \right) \right) \right),$ (14)

where:

$$P(\xi_{t_{k}},\xi_{s_{k}}) = \max \{Q_{m}(\xi_{t_{k}},\xi_{s_{k}}), Q_{m}(\xi_{t_{k}},V\xi_{t_{k}}), Q_{m}(\xi_{s_{k}},V\xi_{s_{k}})\}$$

= max { $Q_{m}(\xi_{t_{k}},\xi_{s_{k}}), Q_{m}(\xi_{t_{k}},\xi_{t_{k}+1}), Q_{m}(\xi_{s_{k}},\xi_{s_{k}+1})\}.$ (15)

Taking the limit $k \to \infty$ using (8), (11), and (12) in (14) and (15), we obtain:

$$C_{G} \leq \zeta \left(\Sigma \left(\varepsilon \right), \varphi \left(\Sigma \left(\varepsilon \right) \right) \right) < G \left(\varphi \left(\Sigma \left(\varepsilon \right) \right), \Sigma \left(\varepsilon \right) \right)$$

From Definition 5, we get:

$$\Sigma(\varepsilon) < \varphi(\Sigma(\varepsilon)) < \Sigma(\varepsilon)$$
.

It follows that $\Sigma(\varepsilon) < \Sigma(\varepsilon)$, a contradiction. Hence, $\{\xi_k\}$ is a left *Q*-*K*-Cauchy sequence. As S_Q is a *Q*-Smyth-complete non-Archimedean quasi modular metric space, there exists $u \in S_Q$ such that:

$$\lim_{k\to\infty}Q_m{}^E(\xi_k,u)=0.$$

Thus, we have:

$$\lim_{k\to\infty}Q_m\left(\xi_k,u
ight)=0 \qquad ext{and}\qquad \lim_{k\to\infty}Q_m\left(u,\xi_k
ight)=0.$$

Now, we show that *u* is a fixed point of *V*. Assume that $Q_m(Vu, u) > 0$. We claim that for each $k \ge 0$, the following holds:

$$\frac{1}{2}Q_m\left(\xi_k,V\xi_k\right)\leq Q_m\left(\xi_k,u\right)$$

On the contrary, suppose that:

$$\frac{1}{2}Q_m(\xi_k, V\xi_k) > Q_m(\xi_k, u) = \frac{1}{2}Q_m(\xi_k, \xi_{k+1}) > Q_m(\xi_k, u).$$
(16)

Taking the limit as $k \to \infty$ in (16), we obtain 0 > 0, a contradiction. Thus, the claim is true, and so, from the generalized Suzuki-simulation-type contractive mapping, we get:

$$C_{G} \leq \zeta \left(\Sigma \left(Q_{m} \left(V\xi_{k}, Vu \right) \right), \varphi \left(\Sigma \left(P \left(\xi_{k}, u \right) \right) \right) \right)$$

$$= \zeta \left(\Sigma \left(Q_{m} \left(\xi_{k+1}, Vu \right) \right), \varphi \left(\Sigma \left(P \left(\xi_{k}, u \right) \right) \right) \right)$$

$$< G \left(\varphi \left(\Sigma \left(P \left(\xi_{k}, u \right) \right) \right), \Sigma \left(Q_{m} \left(\xi_{k+1}, Vu \right) \right) \right).$$
(17)

By Definition 5,

$$\Sigma\left(Q_m\left(\xi_{k+1}, Vu\right)\right) < \varphi\left(\Sigma\left(P\left(\xi_k, u\right)\right)\right),\tag{18}$$

where:

$$P(\xi_{k}, u) = \max \{Q_{m}(\xi_{k}, u), Q_{m}(\xi_{k}, V\xi_{k}), Q_{m}(u, Vu)\}$$

$$= \max \{Q_{m}(\xi_{k}, u), Q_{m}(\xi_{k}, \xi_{k+1}), Q_{m}(u, Vu)\}.$$
(19)

Letting $k \to \infty$ in (17)–(19), we have:

$$\Sigma\left(Q_m\left(u,Vu\right)\right) < \varphi\left(\Sigma\left(Q_m\left(u,Vu\right)\right)\right) < \Sigma\left(Q_m\left(u,Vu\right)\right).$$

That is, $\Sigma(Q_m(u, Vu)) < \Sigma(Q_m(u, Vu))$, a contradiction. Thus, u is a fixed point of V. Suppose that there is an another fixed point u^* of V such that $Vu^* = u^*$ and $u \neq u^*$. Then, $Q_m(Vu, Vu^*) = Q_m(u, u^*) > 0$, and:

$$0=\frac{1}{2}Q_{m}\left(u,Vu\right) \leq Q_{m}\left(u,u^{\ast}\right) .$$

By the generalized Suzuki-simulation-type contractive mapping, we have:

$$C_{G} \leq \zeta \left(\Sigma \left(Q_{m} \left(Vu, Vu^{*} \right) \right), \varphi \left(\Sigma \left(P \left(u, u^{*} \right) \right) \right) \right)$$

$$= \zeta \left(\Sigma \left(Q_{m} \left(u, u^{*} \right) \right), \varphi \left(\Sigma \left(P \left(u, u^{*} \right) \right) \right) \right)$$

$$< G \left(\varphi \left(\Sigma \left(P \left(u, u^{*} \right) \right) \right), \Sigma \left(Q_{m} \left(u, u^{*} \right) \right) \right).$$
(20)

From the property of *G*,

$$\Sigma\left(Q_m\left(u,u^*\right)\right) < \varphi\left(\Sigma\left(P\left(u,u^*\right)\right)\right),\tag{21}$$

where:

$$P(u, u^*) = \max \{Q_m(u, u^*), Q_m(u, Vu), Q_m(u^*, Vu^*)\} = Q_m(u, u^*).$$
(22)

From (20)–(22), we attain the following ordering:

$$\Sigma\left(Q_m\left(u,u^*\right)\right) < \varphi\left(\Sigma\left(Q_m\left(u,u^*\right)\right)\right) < \Sigma\left(Q_m\left(u,u^*\right)\right),$$

which is a contradiction. Hence, u is a unique fixed point of V. \Box

Now, we give some corollaries that are directly acquired from our main results.

Corollary 1. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space and $V : S_Q \to S_Q$ be a mapping. If there exists $\Sigma \in \tilde{\Theta}$, $\varphi \in \Phi$, and $\zeta \in T_Z$ such that:

$$\frac{1}{2}Q_m(j,V_j) \le Q_m(j,\ell) \qquad \text{implies,}$$

$$\zeta \left(\Sigma \left(Q_m \left(V_{\mathcal{I}}, V \ell \right) \right), \varphi \left(\Sigma \left(Q_m \left(j, \ell \right) \right) \right) \right) \geq C_G,$$

for all $1, \ell \in S_O$, then V has a unique fixed point.

Corollary 2. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space and $V : S_Q \to S_Q$ be a mapping. If there exists $\Sigma \in \tilde{\Theta}$, $\varphi \in \Phi$, and $\zeta \in T_Z$ such that:

$$\zeta \left(\Sigma \left(Q_m \left(V_{\mathcal{I}}, V\ell \right) \right), \varphi \left(\Sigma \left(P \left(j, \ell \right) \right) \right) \right) \geq C_G$$

where:

$$P\left(j,\ell\right) = \max\left\{Q_m\left(j,\ell\right), Q_m\left(j,V_j\right), Q_m\left(\ell,V\ell\right)\right\}$$

for all $j, \ell \in S_Q$, then V has a unique fixed point.

Corollary 3. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space and $V : S_Q \to S_Q$ be a mapping. If there exists $\Sigma \in \tilde{\Theta}$ and $\varphi \in \Phi$ such that:

$$\frac{1}{2}Q_{m}(j, V_{j}) \leq Q_{m}(j, \ell) \quad \text{implies,}$$
$$\Sigma\left(Q_{m}(V_{j}, V\ell)\right) \leq \varphi\left(\Sigma\left(P\left(j, \ell\right)\right)\right)$$

where:

$$P(j, \ell) = \max \left\{ Q_m(j, \ell), Q_m(j, V_j), Q_m(\ell, V \ell) \right\}$$

for all $1, \ell \in S_O$, then V has a unique fixed point.

Corollary 4. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space and $V : S_Q \to S_Q$ be a mapping. If there exists $\Sigma \in \tilde{\Theta}$ and $\varphi \in \Phi$ such that:

$$\Sigma(Q_m(V_j, V\ell)) \leq \varphi(\Sigma(P(j, \ell)))$$

where:

 $P(j,\ell) = \max \left\{ Q_m(j,\ell), Q_m(j,V_j), Q_m(\ell,V\ell) \right\},\$

for all $j, \ell \in S_Q$, then V has a unique fixed point.

Corollary 5. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space and $V : S_Q \to S_Q$ be a mapping. If there exists $\Sigma \in \tilde{\Theta}$ and $\varphi \in \Phi$ such that:

 $\Sigma\left(Q_m\left(V_{l},V\ell\right)\right) \leq \varphi\left(\Sigma\left(Q_m\left(l,\ell\right)\right)\right),$

for all $j, \ell \in S_Q$, then V has a unique fixed point.

4. Application to a Graph Structure

Let S_Q be a non-Archimedean quasi modular metric space and $\Delta = \{(j,j) : j \in S_Q\}$ denote the diagonal of $S_Q \times S_Q$. Let H be a directed graph such that the set C(H) of its vertices coincides with S_Q and B(H) is the set of edges of the graph such that $\Delta \subseteq B(H)$. H is determined with the pair (C(H), B(H)). If j and ℓ are vertices of H, then a path in H from j to ℓ of length $p \in \mathbb{N}$ is a finite sequence $\{j_p\}$ of vertices such that $j = j_0, ..., j_p = \eta$ and $(j_{i-1}, j_i) \in B(H)$ for $i \in \{1, 2, ..., p\}$.

Recall that *H* is connected if there is a path between any two vertices, and it is weakly connected if \tilde{H} is connected, where \tilde{H} defines the undirected graph obtained from *H* by ignoring the direction of edges. Define by H^{-1} the graph obtained from *H* by reversing the direction of edges. Thus,

$$B\left(H^{-1}\right) = \left\{ (j,\ell) \in S_Q \times S_Q : (\ell,j) \in B(H) \right\}.$$

It is more convenient to treat \tilde{H} as a directed graph for which the set of its edges is symmetric, under this convention; we have that:

$$B(\widetilde{H}) = B(H) \cup B(H^{-1}).$$

Let H_j be the component of H consisting of all the edges and vertices that are contained in some way in H starting at j. We denote the relation (R) in the following way:

We have $j(R)\ell$ if and only if, there is a path in *H* from *j* to ℓ , for $j, \ell \in C(H)$.

If *H* is such that B(H) is symmetric, then for $j \in C(H)$, the equivalence class $[j]_G$ in V(G) described by the relation (*R*) is $C(H_1)$.

Let S_Q be a non-Archimedean quasi modular metric space endowed with a graph H and $\hbar : S_Q \to S_Q$. We set:

$$S_{\hbar} = \left\{ j \in S_Q : (j, \hbar j) \in B(H) \right\}$$

Definition 13 ([20]). (*S*,*d*) *is a metric space, and* $\hbar : S \to S$ *is a mapping. Then,* \hbar *is called a Banach H*-contraction if the following hold:

 B_1 . \hbar preserves edges of H, i.e., for all $1, \ell \in S$,

$$(\eta, \ell) \in B(H) \quad \Rightarrow \quad (\hbar \eta, \hbar \ell) \in B(H),$$

*B*₂. *there exists* $\delta \in (0, 1)$ *such that:*

$$d(\hbar_{l},\hbar_{\ell}) \leq \delta d(l,\ell)$$

for all $(j, \ell) \in B(H)$.

After that, many fixed point researchers investigated fixed point results improving the Jachymski fixed point theorems in [17,21–23].

Now, motivated by [24–26], we generate a new contraction and obtain fixed point results using a graph structure.

Definition 14. Let S_Q be a non-Archimedean quasi modular metric space and $\hbar : S_Q \to S_Q$ be a mapping. Then, we say that \hbar is a generalized Suzuki-simulation-H-type contractive mapping if the following conditions hold:

*H*₁. \hbar preserves edges of *G*; *H*₂. there exists $\Sigma \in \tilde{\Theta}$, $\varphi \in \Phi$ and $\zeta \in T_Z$ such that:

$$\frac{1}{2}Q_m(j,\hbar j) \le Q_m(j,\ell) \quad \text{implies,}$$

$$\zeta\left(\Sigma\left(Q_m(\hbar j,\hbar \ell)\right), \varphi\left(\Sigma\left(P(j,\ell)\right)\right)\right) \ge C_G,$$
(23)

where

 $P(j,\ell) = \max \left\{ Q_m(j,\ell), Q_m(j,\hbar j), Q_m(\ell,\hbar \ell) \right\}$

for all $j, \ell \in B(H)$ and for all m > 0.

Remark 3. Let S_Q be a non-Archimedean quasi modular metric space with a graph H and $\hbar : S_Q \to S_Q$ be a generalized Suzuki-simulation-H-type contractive mapping. If there exists $J_0 \in S_Q$ such that $\hbar J_0 \in [J_0]_{\tilde{H}'}$, then:

- R_1 . \hbar is both a generalized Suzuki-simulation- H^{-1} -type contractive mapping and a generalized Suzuki-Simulation- \tilde{H} -type contractive mapping.
- *R*₂. $[J_0]_{\tilde{H}}$ is \hbar -invariant, and $\hbar |_{[J_0]_{\tilde{H}}}$ is a generalized Suzuki-simulation- \tilde{H}_{J_0} -type contractive mapping.

Theorem 6. Let S_Q be a Q-Smyth-complete non-Archimedean quasi modular metric space with a graph H and $\hbar : S_Q \to S_Q$ be a mapping.

- *i.* there exists $j_0 \in S_{\hbar}$;
- *ii. ħ is the generalized Suzuki-simulation-Ĥ-type contractive mapping;*
- *iii. H is weakly connected;*
- *iv. if* $\{j_k\}$ *is a sequence in* S_Q *such that* $\lim_{k\to\infty} Q_m^E(j_k, u) = 0$ *and* $(j_k, j_{k+1}) \in B(H)$ *, then there exists a subsequence* $\{j_{k_s}\}$ *of* $\{j_k\}$ *such that* $(j_{k_s}, u) \in B(H)$ *.*

Then, ħ has a unique fixed point.

Proof. Define a sequence $\{j_k\}$ in S_Q by:

$$j_{k+1} = \hbar j_k, \tag{24}$$

for all $k \in \mathbb{N}$. Let j_0 be a given point in S_{\hbar} ; thus, $(j_0, \hbar j_0) = (j_0, j_1) \in B(H)$. Because \hbar preserves the edges of H,

 $(j_0, j_1) \in B(H) \implies (\hbar j_0, \hbar j_1) \in B(H).$

Continuing this way, we get:

$$(j_k, j_{k+1}) \in B(H).$$

Then from Theorem 5, we get that $\{j_k\}$ is a left *Q*-*K*-Cauchy sequence in S_Q . By the *Q*-Smyth-completeness of S_Q , there exists $u \in S_Q$ such that:

$$\lim_{k \to \infty} Q_m^E(j_k, u) = 0.$$
⁽²⁵⁾

Thus, we have:

$$\lim_{k \to \infty} Q_m(j_k, u) = 0 \text{ and } \lim_{k \to \infty} Q_m(u, j_k) = 0.$$
(26)

Now, we show that *u* is a fixed point of \hbar . Using (iv), we get $(j_{k_s}, u) \in B(H)$. We claim that:

$$\frac{1}{2}Q_m\left(j_{k_s},\hbar j_{k_s}\right) \le Q_m\left(j_{k_s},u\right).$$
(27)

If

$$\frac{1}{2}Q_m(j_{k_s},\hbar j_{k_s}) > Q_m(j_{k_s},u) = \frac{1}{2}Q_m(j_{k_s},j_{k_s+1}) > Q_m(j_{k_s},u)$$
(28)

and taking the limit $s \to \infty$ in (28), we get 0 > 0, a contradiction. Hence, the claim is true. Since \hbar is a generalized Suzuki-simulation- \tilde{H} -type contractive mapping, we have:

$$C_{G} \leq \zeta \left(\Sigma \left(Q_{m} \left(\hbar j_{k_{s}}, \hbar u \right) \right), \varphi \left(\Sigma \left(P \left(j_{k_{s}}, u \right) \right) \right) \right)$$

$$\leq \zeta \left(\Sigma \left(Q_{m} \left(\hbar j_{k_{s}}, \hbar u \right) \right), \varphi \left(\Sigma \left(P \left(j_{k_{s}}, u \right) \right) \right) \right)$$

$$\leq G \left(\varphi \left(\Sigma \left(P \left(j_{k_{s}}, u \right) \right) \right), \Sigma \left(Q_{m} \left(h_{j_{k_{s}}}, hu \right) \right) \right), \tag{29}$$

from Definition 5, we get:

$$\Sigma\left(Q_m\left(\hbar_{j_{k_s}},\hbar_u\right)\right),\varphi\left(\Sigma\left(P\left(j_{k_s},u\right)\right)\right),\tag{30}$$

where:

$$P(j_{k_{s}}, u) = \max \{ Q_{m}(j_{k_{s}}, u), Q_{m}(j_{k_{s}}, \hbar j_{k_{s}}), Q_{m}(u, \hbar u) \}$$

= max { $Q_{m}(j_{k_{s}}, u), Q_{m}(j_{k_{s}}, j_{k_{s}+1}), Q_{m}(u, \hbar u) \}.$ (31)

Taking the limit as $s \to \infty$ in (29)–(31), we get:

$$\Sigma(Q_m(u,hu)) < \varphi(\Sigma(Q_m(u,hu))) < \Sigma(Q_m(u,hu)).$$

It follows that $\Sigma (Q_m (u, hu)) < \Sigma (Q_m (u, hu))$, a contradiction. Therefore, we get $Q_m (u, hu) = 0$, that is u = hu since Q is regular.

Next, we show that u is a unique fixed point of \hbar . On the contrary, we suppose that u^* is another fixed point of \hbar , i.e., $u^* = \hbar u^*$ and $u \neq u^*$. Then, there exist $\sigma \in S_Q$ such that $(u, \sigma) \in B(H)$ and $(\sigma, u^*) \in B(H)$. Using (*iii*), we get that $(u, u^*) \in B(\tilde{H})$. Furthermore,

$$0 = \frac{1}{2}Q_m(u,hu) < Q_m(u,u^*).$$
(32)

From the generalized Suzuki-Simulation- \tilde{H} -type contractive mapping we have:

$$C_{G} \leq \zeta \left(\Sigma \left(Q_{m} \left(hu, hu^{*} \right) \right), \varphi \left(\Sigma \left(P \left(u, u^{*} \right) \right) \right) \right)$$

$$\leq \zeta \left(\Sigma \left(Q_{m} \left(u, u^{*} \right) \right), \varphi \left(\Sigma \left(P \left(u, u^{*} \right) \right) \right) \right)$$

$$\leq G \left(\varphi \left(\Sigma \left(P \left(u, u^{*} \right) \right) \right), \Sigma \left(Q_{m} \left(hu, hu^{*} \right) \right) \right).$$
(33)

Using Definition 5, we get:

$$\Sigma\left(Q_m\left(u,u^*\right)\right) < \varphi\left(\Sigma\left(P\left(u,u^*\right)\right)\right) \tag{34}$$

where:

$$P(u, u^{*}) = \max \{Q_{m}(u, u^{*}), Q_{m}(u, \hbar u), Q_{m}(u^{*}, \hbar u^{*})\}$$

= max {Q_m(u, u^{*}), 0} = Q_m(u, u^{*}). (35)

From (33)–(35), it follows that:

$$\Sigma\left(Q_m\left(u,u^*\right)\right) < \varphi\left(\Sigma\left(Q_m\left(u,u^*\right)\right)\right) < \Sigma\left(Q_m\left(u,u^*\right)\right).$$

This is an incorrect statement. Hence, $u = u^*$. \Box

5. Conclusions

First, motivated by [4,10,15], we established a new contractive mapping, which is called the generalized Suzuki-simulation-type contractive mapping. Second, in [19], we constituted a new quasi metric space, which is named the non-Archimedean quasi modular metric space, and so using this, we attained fixed point theorems via generalized Suzuki-simulation-type contractive mapping. Finally, we acquired graphical fixed point results in non-Archimedean quasi modular metric spaces.

Author Contributions: The authours contributed equally in writing this article. Authours read and approved the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors are grateful to the editor and reviewers for their careful reviews and useful comments.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Khojasteh, F.; Shukla, S.; Radenovic, S. A new approach to the study of fixed point theorems via simulation functions. *Filomat* **2015**, *29*, 1189–1194. [CrossRef]
- 2. Argoubi, H.; Samet, B.; Vetro, C. Nonlinear contractions involving simulation functions in a metric space with a partial order. *J. Nonlinear Sci. Appl.* **2015**, *8*, 1082–1094. [CrossRef]
- 3. Abbas, M.; Latif, A.; Suleiman, Y. Fixed points for cyclic *R*-contractions and solution of nonlinear Volterra integro-differential equations. *Fixed Point Theory Appl.* **2016**, 2016, 61. [CrossRef]
- 4. Radenovic, S.; Chandok, S. Simulation type functions and coincidence point results. *Filomat* **2018**, *32*, 141–147. [CrossRef]
- 5. Samet, B. Best proximity point results in partially ordered metric spaces via simulation functions. *Fixed Point Theory Appl.* **2015**, 2015, 232. [CrossRef]
- 6. Tchier, F.; Vetro, C.; Vetro, F. Best approximation and variational inequality problems involving a simulation function. *Fixed Point Theory Appl.* **2016**, 2016, 26. [CrossRef]
- 7. Gholizadeh, L.; Karapinar, E. Best proximity point results in dislocated metric space via *R*-functions. *Rev. Real Acad. Cienc. Exactas Físicas Nat. Ser. A Mat.* **2018**, *112*, 1391–1407. [CrossRef]
- 8. Alsamir, H.; Noorani, M.S.; Shatanawi, W.; Aydi, H.; Akhadkulov, H.; Alanazi, K. Fixed point results in metric-like spaces via *σ*-simulation functions. *Eur. J. Pure Appl. Math.* **2009**, *12*, 88–100. [CrossRef]
- 9. Ansari, A.H.; Demma, M.; Guran, L. Fixed point reults for C-class functions in modular spaces. J. Fixed Point Theory Appl. 2018, 20, 13. [CrossRef]
- 10. Suzuki, T. A new type of fixed point theorem in metric spaces. Nonlinear Anal. 2009, 71, 5313–5317. [CrossRef]
- 11. Hima Bindu, V.M.L.; Kishore, G.N.V.; Rao, K.P.R.; Phani, Y. Suzuki type unique common fixed point theorem in partial metric spaces using (*C*)-condition. *Math Sci.* **2017**, *11*, 39–45. [CrossRef]
- 12. Jleli, M.; Samet, B. A new generalization of the Banach contraction principle. *J. Inequal. Appl.* **2014**, 2014, 38. [CrossRef]
- Jleli, M.; Karapinar, E.; Samet, B. Further generalization of the Banach contraction principle. *J. Inequal. Appl.* 2014, 2014, 439. [CrossRef]
- 14. Hussain, N.; Parvaneh, V.; Samet, B.; Vetro, C. Some fixed point theorems for generalized contractive mappings in complete metric spaces. *Fixed Point Theory Appl.* **2015**, 2015, 185. [CrossRef]
- 15. Liu, X.D.; Chang, S.S.; Xiao, Y.; Zhao, L.C. Existence of fixed points for Θ-type contraction and Θ-type Suzuki contraction in complete metric spaces. *Fixed Point Theory Appl.* **2016**, 2016, 8. [CrossRef]
- 16. Ahmad, J.; Al-Mazrooei, A.E.; Cho, Y.J.; Yang, Y. Fixed point results for generalized Θ-contractions. J. Nonlinear Sci. Appl. 2017, 10, 2350–2358. [CrossRef]
- 17. Onsod, W.; Kumam, P.; Cho, Y.J. Fixed points of *α*-Θ-Geraghty type and Θ-Geraghty grahic type contractions. *Appl. Gen. Topol.* **2017**, *18*, 153–171. [CrossRef]
- Zheng, D.W.; Cai, Z.Y.; Wang, P. New fixed point theorems for *α*-*ψ*-contraction in complete metric spaces. *J. Nonlinear Sci. Appl.* **2017**, *10*, 2662–2670. [CrossRef]
- 19. Girgin, E.; Öztürk, M. (α , β)- ψ -type contraction in non-Archimedean quasi modular metric spaces and applications. *J. Math. Anal.* **2019**, *10*, 19–30.
- 20. Jachymski, J. The contraction principle for mappings on a metric space with a graph. *Proc. Am. Math. Soc.* **2008**, *136*, 1359–1373. [CrossRef]
- 21. Öztürk, M.; Abbas, M.; Girgin, E. Common fixed point results of a pair generalized (ψ , φ)-contraction mappings in modular spaces. *Fixed Point Theory Appl.* **2016**, 2016, 19. [CrossRef]
- 22. Beg, I.; Butt, A.R.; Radenovic, S. The contraction principle for set value mappings on a metric space with graph. *Comput. Math. Appl.* **2010**, *60*, 1214–1219. [CrossRef]
- 23. Hussain, N.; Arshad, M.; Shoabid, A. Common fixed point results for *α*-*ψ* contractions on a metric space endowed with a graph. *J. Inequal. Appl.* **2014**, 2014, 136. [CrossRef]
- 24. Öztürk, M.; Abbas, M.; Girgin, E. Fixed Points of ψ-Contractive Mappings in Modular Spaces. *Filomat* **2016**, 30, 3817–3827. [CrossRef]

- 25. Pansuwan, A.; Sintunavarat, W.; Parvaneh, V.; Cho, Y.J. Some fixed point theorems for (*α*, *θ*, *k*)-contractive multi-valued mappings with some applications. *Fixed Point Theory Appl.* **2015**, 2015, 132. [CrossRef]
- 26. Rasham, T.; Shoaib, A.; Alamri, B.A.S.; Arshad, M. Fixed Point Results for Multivalued Contractive Mappings Endowed with Graphic Structure. *J. Math.* **2018**, *2018*, 8. [CrossRef]

 \odot 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).