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Abstract

:

In this paper, we establish generalized Suzuki-simulation-type contractive mapping and prove fixed point theorems on non-Archimedean quasi modular metric spaces. As an application, we acquire graphic-type results.
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1. Introduction


In the sequel, the letter   R +   will denote the set of all nonnegative real numbers.



Let S be a nonempty set and   V : S → S   be given mappings. A point   𝚥 ∈ S   is said to be:




	i.

	
a fixed point of V if and only if   V 𝚥 = 𝚥  ;




	ii.

	
a common fixed point of V and Z if and only if   V 𝚥 = Z 𝚥 = 𝚥  .









Kosjasteh et al. [1] defined a new control function as follows.



Definition 1

([1]). Let   ζ :    0 , ∞   2  → R   be a mapping. The mapping ζ is named a simulation function satisfying the following conditions:




	ζ1.

	
  ζ   0 , 0   = 0  ,




	ζ2.

	
  ζ   a , b   < a − b  , for all   a , b > 0  ,




	ζ3.

	
if    a k    and    b k    are sequences in   R +   such that    lim  k → ∞    a k  =  lim  k → ∞    b k  = l ,     l ∈  R +   . Thus,


    lim sup ζ    a k  ,  b k      k → ∞   < 0 .  



















Argoubi et al. [2] modified the above and so introduced it as follows.



Definition 2

([2]). The mapping ζ is a simulation function providing the following:




	i.

	
  ζ   a , b   < a − b  , for all   a , b > 0  ,




	ii.

	
if    a k    and    b k    are sequences in   R +   such that    lim  k → ∞    a k  =  lim  k → ∞    b k  > 0 ,   and    a k  <  b k   , then     lim sup ζ    a k  ,  b k      k → ∞   < 0 .  











For examples and related results on simulation functions, one may refer to [1,2,3,4,5,6,7,8].



Radenovic and Chandok generalized the simulation function combining the C-class function as follows.



Definition 3

([4]). A mapping   G :    0 , ∞   2  → R   is named a C-class function if it is continuous and satisfies the following conditions:




	i.

	
  G   a , b   ≤ a  ,




	ii.

	
  G   a , b   = a   implies that either   a = 0   or   b = 0  , for all   a , b ∈   0 , ∞   .  











Definition 4

([4]). A   C G  -simulation function is a mapping   ζ :    0 , ∞   2  → R   satisfying the following conditions:




	i.

	
  ζ   a , b   < G   a , b     for all   a , b > 0  , where   G :    0 , ∞   2  → R   is a C-class function,




	ii.

	
if    a k    and    b k    are sequences in    0 , ∞    such that    lim  k → ∞    b k  =  lim  k → ∞    a k  > 0 ,   and    b k  <  a k   , then     lim sup ζ    a k  ,  b k      k → ∞   <  C G  .  











Definition 5

([4]). A mapping   G :    0 , ∞   2  → R   has the property   C G  , if there exists a    C G  ≥ 0   such that:




	i.

	
  G   a , b   >  C G    implies   a > b  ,




	ii.

	
  G   a , a   ≤  C G    for all   a ∈   0 , ∞   .  











Moreover, using C-class function many researchers investigated some new results combining other control functions in different spaces [9].



Suzuki [10] proved the following fixed point theorem using a new contraction, which is known as the Suzuki contraction in literature. Furthermore, many mathematicians generalized this contraction in other spaces.



Theorem 1

([10]). Let   ( S , d )   be a compact metric space and   V : S → S   be a mapping. Suppose that, for all   𝚥 , ℓ ∈ S   with   𝚥 ≠ ℓ  ,


   1 2  d   𝚥 , V 𝚥   < d   𝚥 , ℓ    ⇒  d   V 𝚥 , V ℓ   < d   𝚥 , ℓ   .  








Then, V has a unique fixed point in S.





Bindu et al. [11] proved the commonfixed point theorem for Suzuki type mapping in a complete subspace of the partial metric space.



Theorem 2.

Let   ( S , δ )   be a partial metric space and   f , g , V , Z : S → S   be mappings satisfying:


    1 2  min   δ   f 𝚥 , V 𝚥   , δ   g ℓ , Z ℓ     ≤ ℓ   f 𝚥 , g ℓ    ⇒  ϕ   V 𝚥 , Z ℓ   ≤ α   M   𝚥 , ℓ     − β   M   𝚥 , ℓ     ,   








for all   𝚥 , ℓ ∈ S ,   where   ϕ , α , β :   0 , ∞   →   0 , ∞     are such that ϕ is an altering distance function, α is continuous, and β is lower-semi continuous   α  0  = β  0  = 0   and   ϕ  t  − α  t  + β  t  > 0 ,   for all   t > 0   and:


   M   𝚥 , ℓ   = max   δ   f 𝚥 , g ℓ   , δ   f 𝚥 , V ℓ   , δ   g ℓ , Z ℓ   ,   δ   f 𝚥 , Z ℓ   + δ   g ℓ , V 𝚥    2    ,   












	i.

	
  V  S  ⊆ g  S  ,  Z  S  ⊆ f  S   ;




	ii.

	
either   f ( S )   or   g ( S )   is a complete subspace of S;




	iii.

	
the pairs   ( f , V )   and   ( g , Z )   are weakly compatible.









Then,   f , g , V , Z   have a common fixed point.





Jleli and Samet [12] introduced a  Σ -contraction and established fixed point results in generalized metric spaces. Jleli and Samet [12] also introduced a class of  Θ  such that   Σ :   0 , ∞   →   1 , ∞     of all functions, providing the following conditions:




	Σ1.

	
 Σ  is nondecreasing;




	Σ2.

	
for any sequence    a k    in    0 , ∞   ,    lim  k → ∞   Σ   a k   = 1   if and only if    lim  k → ∞    a k  = 0 ;  




	Σ3.

	
there exist   r ∈   0 , 1     and   l ∈   0 , ∞     such that    lim  k →  0 +      Σ  k  − 1   k r   = l .  









Theorem 3

([12]). Let   ( S , d )   be a complete generalized metric space and   V : S → S   be a mapping. Suppose that there exist   Σ ∈ Θ   and   γ ∈   0 , 1     such that:


  d   V 𝚥 , V ℓ   ≠ 0  ⇒  Σ   d   V 𝚥 , V ℓ     ≤    Σ   d   𝚥 , ℓ       γ  ,  








for all   𝚥 , ℓ ∈ S .   Then, V has a unique fixed point.





After that, many authors generalized such a contraction in different spaces [13,14,15,16,17].



Liu et al. [15] modified the class of function  Θ  exchanging conditions. The class of functions   Θ ˜   was defined by the set of   Σ :   0 , ∞   →   1 , ∞     satisfying the following conditions:




	
    Σ ˜  1  .    Σ  is non-decreasing and continuous,



	
    Σ ˜  2  .      inf  k ∈   0 , ∞     Σ  k  = 1 .  








Lemma 1

([15]). Let   Σ :   0 , ∞   →   1 , ∞     be a non-decreasing and continuous function with    inf  k ∈   0 , ∞     Σ  k  = 1   and    a k    be a sequence in    0 , ∞   . Then, the following condition holds:


   lim  k → ∞   Σ   a k   = 1  ⇔   lim  k → ∞    a k  = 0 .  













Zheng et al. [18] denoted new set functions  Φ  satisfying the following conditions:




	Φ1.

	
  φ :   1 , ∞   →   1 , ∞     is nondecreasing,




	Φ2.

	
for each   k > 0 ,      lim  n → ∞     φ n   k  = 1 ,  




	Φ3.

	
 φ  is continuous on     1 , ∞   .  









Lemma 2

([18]). If   φ ∈ Φ ,   then   φ ( 1 ) = 1   and   φ ( t ) < t   for each   t > 1 .  





Definition 6

([18]). Let   ( S , d )   be a metric space and   V : S → S   be a mapping. V is said to be a   Σ − φ  -contraction if there exist   Σ ∈ Θ   and   φ ∈ Φ   such that for any   𝚥 , ℓ ∈ S ,  


  Σ   d   V 𝚥 , V ℓ     ≤ φ   Σ   N   𝚥 , ℓ       ,  








where:


  N   𝚥 , ℓ   = max   d   𝚥 , ℓ   , d   𝚥 , V ℓ   , d   𝚥 , V ℓ     .  













Theorem 4

([18]). Let   ( S , d )   be a complete metric space and   V : S → S   be a   Σ − φ  -contraction. Then, V has a unique fixed point.





Motivated by the above, we will establish a generalized Suzuki-simulation-type contractive mapping and obtain fixed point results.




2. Quasi Modular Metric Space


Girgin and Öztürk [19] introduced a new space, which is named a quasi modular metric space. Furthermore, they gave some topological properties. Moreover, defining non-Archimedean quasi modular metric space, they proved some fixed point theorems and obtained some applications.



Definition 7

([19]). A function   Q :   0 , ∞   × S × S →   0 , ∞     is called a quasi modular metric on S if the following hold:




	q1.

	
  ξ = η   if and only if    Q m    ξ , η   = 0   for all   m > 0  ;




	q2.

	
   Q  m + n     ξ , η   ≤  Q m    ξ , ν   +  Q n    ν , η     for all   m ,  n > 0   and   ξ , η , ν ∈ S  .









Then,   S Q   is a quasi modular metric space. If in the above definition, we utilize the condition:




	q1′.

	
   Q m    ξ , ξ   = 0   for all   m > 0   and   ξ ∈ S ,  









instead of   (  q 1  )  , then Q is said to be a quasi pseudo modular metric on S. A quasi modular metric Q on S is called a regular if the following weaker version of   (  q 1  )   is satisfied:




	q3.

	
  ξ = η   if and only if    Q m    ξ , η   = 0   for some   m > 0 .  









Again, Q is called a convex if for   m ,  n > 0   and   ξ , η , ν ∈ S  , the inequality holds:




	q4.

	
    Q  m + n     ξ , η   ≤  m  m + n    Q m    ξ , ν   +  n  m + n    Q n    ν , η   .   











Definition 8

([19]). In Definition 7, if we replace   (  q 2  )   by:




	q5.

	
   Q  max   m , n       ξ , η   ≤  Q m    ξ , ν   +  Q n    ν , η    









for all   m , n > 0   and   ξ , η , ν ∈ S  , then   S Q   is called a non-Archimedean quasi modular metric space.





Note that the function   Q  max   m , n      is more general than the function    Q  m + n     ξ , η    , so every non-Archimedean quasi modular metric space is a quasi modular metric space.



Example 1

([19]). Let   S =   0 , ∞     and Q be defined by:


   Q m    ξ , η   =        ξ − η  m    if  ξ ≥ η       1    if  ξ < η .       











Then,   S Q   is a quasi modular metric space with   m =  1 3    and   n =  2 3   , but is not modular metric space since    Q m    0 , 1   = 1   and    Q m    1 , 0   =  1 3   .





Remark 1

([19]). From the above definitions we deduce that:




	i.

	
For a quasi modular metric Q on S, the conjugate quasi modular metric   Q  − 1    on S of Q is defined by    Q m  − 1     ξ , η   =  Q m    η , ξ   .  




	ii.

	
If Q is a   T 0  -quasi pseudo modular metric on S, then the function   Q E   defined by    Q E  =  Q  − 1   ∨ Q  , that is    Q m E    ξ , η   = max    Q m    ξ , η   ,  Q m    η , ξ      , defines a modular metric space.











Now, we discuss some topological properties of quasi modular metric spaces.



Definition 9

([19]). A sequence    ξ p    in   S Q   converges to ξ and is called:




	a.

	
Q-convergent or left convergent if    ξ p  → ξ  ⇔   Q m    ξ ,  ξ p    → 0 .  




	b.

	
  Q  − 1   -convergent or right convergent if    ξ p  → ξ  ⇔   Q m     ξ p  , ξ   → 0 .  




	c.

	
  Q E  -convergent if    Q m    ξ ,  ξ p    → 0   and    Q m     ξ p  , ξ   → 0 .  











Definition 10

([19]). A sequence    ξ p    in a quasi modular metric space   S Q   is called:




	d.

	
left (right) Q-K-Cauchy if for every   ε > 0  , there exists    p ε  ∈ N   such that    Q m     ξ r  ,  ξ p    < ε   for all   p , r ∈ N   with    p ε  ≤ r ≤ p     p ε  ≤ p ≤ r     and for all   m > 0  .




	e.

	
  Q E  -Cauchy if for every   ε > 0  , there exists    p ε  ∈ N   such that    Q m     ξ p  ,  ξ r    < ε   for all   p , r ∈ N   with   p , r ≥  p ε   .











Remark 2

([19]). From the above definitions, we deduce that:




	i.

	
a sequence is left Q-K-Cauchy with respect to Q if and only if it is right Q-K-Cauchy with respect to   Q  − 1   ;




	ii.

	
a sequence is   Q E  -Cauchy if and only if it is left and right Q-K-Cauchy.











Definition 11

([19]). A quasi modular metric space   S Q   is called:




	i.

	
left Q-K-complete if every left Q-K-Cauchy is Q-convergent.




	ii.

	
Q-Smyth-complete if every left Q-K-Cauchy sequence is   Q E  -convergent.












3. Common Fixed Point Results


In the sequel, Q is regular and convex and   T Z   denotes the family of all   C G  -simulation functions   ζ :    0 , ∞   2  → R  .



Definition 12.

Let   S Q   be a non-Archimedean quasi modular metric space and   V :  S Q  →  S Q    be a mapping. We say that V is a generalized Suzuki-simulation-type contractive mapping if there exist   Σ ∈  Θ ˜   ,   φ ∈ Φ   and   ζ ∈  T Z    such that:


       1 2   Q m    ξ , V ξ   ≤  Q m    ξ , η    implies        ζ   Σ    Q m    V ξ , V η     , φ   Σ   P   ξ , η         ≥  C G       



(1)




where:


   P   ξ , η   = max    Q m    ξ , η   ,  Q m    ξ , V ξ   ,  Q m    η , V η       








for all   ξ , η ∈  S Q   .





Theorem 5.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space and V be the generalized Suzuki-simulation-type contractive mapping. Then, V has a unique fixed point.





Proof. 

Define a sequence    ξ k    in   S Q   by:


      ξ  k + 1   = V  ξ k  ,     



(2)




for all   k ∈ N  . If there exists an   k 0   such that    ξ  k 0   =  ξ   k 0  + 1   ,   then   z =  ξ  k 0     becomes a fixed point of V. Consequently, we shall assume that    ξ k  ≠  ξ  k + 1     for all   k ∈ N  . Therefore, we have:


   Q m     ξ k  ,  ξ  k + 1     > 0 ,  for  all  n = 0 , 1 , 2 …  .  



(3)







Hence, we have:


   1 2   Q m     ξ k  , V  ξ k    <  Q m     ξ k  , V  ξ k    =  Q m     ξ k  ,  ξ  k + 1       implies ,   










      C G  ≤ ζ   Σ    Q m    V  ξ k  , V  ξ  k + 1       , φ   Σ   P    ξ k  ,  ξ  k + 1                   = ζ   Σ    Q m     ξ  k + 1   ,  ξ  k + 2       , φ   Σ   P    ξ k  ,  ξ  k + 1                   < G   φ   Σ   P    ξ k  ,  ξ  k + 1         , Σ    Q m     ξ  k + 1   ,  ξ  k + 2         ,     



(4)




by Definition 5, we get that:


  Σ    Q m     ξ  k + 1   ,  ξ  k + 2       < φ   Σ   P    ξ k  ,  ξ  k + 1         ,  



(5)




where:


     P    ξ k  ,  ξ  k + 1     = max    Q m     ξ k  ,  ξ  k + 1     ,  Q m     ξ k  , V  ξ k    ,  Q m     ξ  k + 1   , V  ξ  k + 1                  = max    Q m     ξ k  ,  ξ  k + 1     ,  Q m     ξ k  ,  ξ  k + 1     ,  Q m     ξ  k + 1   ,  ξ  k + 2                  = max    Q m     ξ k  ,  ξ  k + 1     ,  Q m     ξ  k + 1   ,  ξ  k + 2       .     



(6)







If:


  max    Q m     ξ k  ,  ξ  k + 1     ,  Q m     ξ  k + 1   ,  ξ  k + 2       =  Q m     ξ  k + 1   ,  ξ  k + 2      








for some   k ∈ N  , then it follows from (5) and Lemma 2 that we get:


  Σ    Q m     ξ  k + 1   ,  ξ  k + 2       < φ   Σ    Q m     ξ  k + 1   ,  ξ  k + 2         < Σ    Q m     ξ  k + 1   ,  ξ  k + 2        








which is a contradiction. Therefore, we have:


  P    ξ k  ,  ξ  k + 1     =  Q m     ξ k  ,  ξ  k + 1      








for each   k ∈ N  . Also, by (5), we have


  Σ    Q m     ξ  k + 1   ,  ξ  k + 2       < φ   Σ    Q m     ξ k  ,  ξ  k + 1         .  











Repeating this step, we conclude that:


     Σ    Q m     ξ  k + 1   ,  ξ  k + 2       < φ   Σ    Q m     ξ k  ,  ξ  k + 1                      <  φ 2    Σ    Q m     ξ  k − 1   ,  ξ k                     ⋮              <  φ k    Σ    Q m     ξ 1  ,  ξ 2        ,     








for all   k ∈ N  . Taking the limit   k → ∞   above, by the definition of  φ  and property   Θ 2  , we have:


   lim  k → ∞    φ k     Q m     ξ 1  ,  ξ 2      = 1 .  



(7)







Thus, from Lemma 1, it follows that:


   lim  k → ∞    Q m     ξ  k + 1   ,  ξ  k + 2     = 0 ,  



(8)




for all   k ∈ N  . Now, we show that    ξ k    is a left Q-K-Cauchy sequence. Assume the contrary. There exists   ε > 0   such that we can find two subsequences    t k    and    s k    of positive integers satisfying the following inequalities:


   Q m     ξ  t k   ,  ξ  s k     ≥ ε ,   and    Q m     ξ   t k  − 1   ,  ξ  s k     < ε .  



(9)







From (9) and (  q 5  ), it follows that:


    ε    ≤  Q m     ξ  t k   ,  ξ  s k     =  Q  max   m , m        ξ  t k   ,  ξ  s k            ≤  Q m     ξ  t k   ,  ξ   t k  − 1     +  Q m     ξ   t k  − 1   ,  ξ  s k            < ε +  Q m     ξ  t k   ,  ξ   t k  − 1     .     



(10)







On taking the limit as   k → ∞   in the above relation, we obtain that:


   lim  k → ∞    Q m     ξ  t k   ,  ξ  s k     = ε .  



(11)







Also, from (9) and (  q 5  ), it follows that:


     Q m     ξ   t k  + 1   ,  ξ   s k  + 1     =    Q  max   m , m        ξ   t k  + 1   ,  ξ   s k  + 1           ≤  Q m     ξ   t k  + 1   ,  ξ  t k     +  Q m     ξ  t k   ,  ξ   s k  + 1            =  Q m     ξ   t k  + 1   ,  ξ  t k     +  Q  max   m , m        ξ  t k   ,  ξ   s k  + 1            ≤  Q m     ξ  t k   ,  ξ   t k  − 1     +  Q m     ξ   t k  − 1   ,  ξ   s k  + 1     +  Q m     ξ   t k  + 1   ,  ξ  t k            =  Q m     ξ  t k   ,  ξ   t k  − 1     +  Q m     ξ   t k  + 1   ,  ξ  t k     +  Q  max   m , m        ξ   t k  − 1   ,  ξ   s k  + 1            ≤  Q m     ξ   t k  − 1   ,  ξ  s k     +  Q m     ξ  s k   ,  ξ   s k  + 1            +  Q m     ξ  t k   ,  ξ   t k  − 1     +  Q m     ξ   t k  + 1   ,  ξ  t k            < ε +  Q m     ξ  s k   ,  ξ   s k  + 1     +  Q m     ξ  t k   ,  ξ   t k  − 1            +  Q m     ξ   t k  + 1   ,  ξ  t k     .     



(12)







Next, we claim that:


   1 2   Q m     ξ  t k   , V  ξ  t k     ≤  Q m     ξ  t k   ,  ξ  s k     .  











If:


      1 2   Q m     ξ  t k   , V  ξ  t k     >  Q m     ξ  t k   ,  ξ  s k           =  1 2   Q m     ξ  t k   ,  ξ   t k  + 1     >  Q m     ξ  t k   ,  ξ  s k     ,     



(13)




then letting   k → ∞   in (13), from (11) and (8), we have that   0 > ε   is a contradiction. Hence,


   1 2   Q m     ξ  t k   , V  ξ  t k     ≤  Q m     ξ  t k   ,  ξ  s k     .  











From the generalized Suzuki-simulation-type contractive mapping, we get:


      C G  ≤ ζ   Σ    Q m    V  ξ  t k   , V  ξ  s k       , φ   Σ   P    ξ  t k   ,  ξ  s k                   = ζ   Σ    Q m     ξ   t k  + 1   ,  ξ   s k  + 1       , φ   Σ   P    ξ  t k   ,  ξ  s k           ,     



(14)




where:


     P    ξ  t k   ,  ξ  s k     = max    Q m     ξ  t k   ,  ξ  s k     ,  Q m     ξ  t k   , V  ξ  t k     ,    Q m     ξ  s k   , V  ξ  s k                   = max    Q m     ξ  t k   ,  ξ  s k     ,  Q m     ξ  t k   ,  ξ   t k  + 1     ,    Q m     ξ  s k   ,  ξ   s k  + 1         .     



(15)







Taking the limit   k → ∞   using (8), (11), and (12) in (14) and (15), we obtain:


   C G  ≤ ζ   Σ  ε  , φ   Σ  ε      < G   φ   Σ  ε    , Σ  ε    .  











From Definition 5, we get:


  Σ  ε  < φ   Σ  ε    < Σ  ε  .  











It follows that   Σ  ε  < Σ  ε  ,   a contradiction. Hence,    ξ k    is a left Q-K-Cauchy sequence. As   S Q   is a Q-Smyth-complete non-Archimedean quasi modular metric space, there exists   u ∈  S Q    such that:


   lim  k → ∞      Q m   E     ξ k  , u   = 0 .  











Thus, we have:


   lim  k → ∞    Q m     ξ k  , u   = 0   and    lim  k → ∞    Q m    u ,  ξ k    = 0 .  











Now, we show that u is a fixed point of V. Assume that    Q m    V u , u   > 0 .   We claim that for each   k ≥ 0  , the following holds:


   1 2   Q m     ξ k  , V  ξ k    ≤  Q m     ξ k  , u   .  











On the contrary, suppose that:


   1 2   Q m     ξ k  , V  ξ k    >  Q m     ξ k  , u   =  1 2   Q m     ξ k  ,  ξ  k + 1     >  Q m     ξ k  , u   .  



(16)







Taking the limit as   k → ∞   in (16), we obtain   0 > 0 ,   a contradiction. Thus, the claim is true, and so, from the generalized Suzuki-simulation-type contractive mapping, we get:


      C G  ≤ ζ   Σ    Q m    V  ξ k  , V u     , φ   Σ   P    ξ k  , u                 = ζ   Σ    Q m     ξ  k + 1   , V u     , φ   Σ   P    ξ k  , u                 < G   φ   Σ   P    ξ k  , u       , Σ    Q m     ξ  k + 1   , V u       .     



(17)







By Definition 5,


  Σ    Q m     ξ  k + 1   , V u     < φ   Σ   P    ξ k  , u       ,  



(18)




where:


    P    ξ k  , u     = max    Q m     ξ k  , u   ,  Q m     ξ k  , V  ξ k    ,  Q m    u , V u           = max    Q m     ξ k  , u   ,  Q m     ξ k  ,  ξ  k + 1     ,  Q m    u , V u     .     



(19)







Letting   k → ∞   in (17)–(19), we have:


  Σ    Q m    u , V u     < φ   Σ    Q m    u , V u       < Σ    Q m    u , V u     .  











That is,   Σ    Q m    u , V u     < Σ    Q m    u , V u      , a contradiction. Thus, u is a fixed point of V. Suppose that there is an another fixed point   u ∗   of V such that   V  u ∗  =  u ∗    and   u ≠  u ∗  .   Then,    Q m    V u , V  u ∗    =  Q m    u ,  u ∗    > 0 ,   and:


  0 =  1 2   Q m    u , V u   ≤  Q m    u ,  u ∗    .  











By the generalized Suzuki-simulation-type contractive mapping, we have:


      C G  ≤ ζ   Σ    Q m    V u , V  u ∗      , φ   Σ   P   u ,  u ∗                  = ζ   Σ    Q m    u ,  u ∗      , φ   Σ   P   u ,  u ∗                  < G   φ   Σ   P   u ,  u ∗        , Σ    Q m    u ,  u ∗        .     



(20)







From the property of G,


  Σ    Q m    u ,  u ∗      < φ   Σ   P   u ,  u ∗        ,  



(21)




where:


  P   u ,  u ∗    = max    Q m    u ,  u ∗    ,  Q m    u , V u   ,  Q m     u ∗  , V  u ∗      =  Q m    u ,  u ∗    .  



(22)







From (20)–(22), we attain the following ordering:


  Σ    Q m    u ,  u ∗      < φ   Σ    Q m    u ,  u ∗        < Σ    Q m    u ,  u ∗      ,  








which is a contradiction. Hence, u is a unique fixed point of V. □





Now, we give some corollaries that are directly acquired from our main results.



Corollary 1.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space and   V :  S Q  →  S Q    be a mapping. If there exists   Σ ∈  Θ ˜   ,   φ ∈ Φ  , and   ζ ∈  T Z    such that:


    1 2   Q m    𝚥 , V 𝚥   ≤  Q m    𝚥 , ℓ      implies ,    










   ζ   Σ    Q m    V 𝚥 , V ℓ     , φ   Σ    Q m    𝚥 , ℓ         ≥  C G  ,   








for all   𝚥 , ℓ ∈  S Q   , then V has a unique fixed point.





Corollary 2.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space and   V :  S Q  →  S Q    be a mapping. If there exists   Σ ∈  Θ ˜   ,   φ ∈ Φ  , and   ζ ∈  T Z    such that:


   ζ   Σ    Q m    V 𝚥 , V ℓ     , φ   Σ   P   𝚥 , ℓ         ≥  C G    








where:


   P   𝚥 , ℓ   = max    Q m    𝚥 , ℓ   ,  Q m    𝚥 , V 𝚥   ,  Q m    ℓ , V ℓ     ,   








for all   𝚥 , ℓ ∈  S Q   , then V has a unique fixed point.





Corollary 3.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space and   V :  S Q  →  S Q    be a mapping. If there exists   Σ ∈  Θ ˜    and   φ ∈ Φ   such that:


    1 2   Q m    𝚥 , V 𝚥   ≤  Q m    𝚥 , ℓ      implies ,    










   Σ    Q m    V 𝚥 , V ℓ     ≤ φ   Σ   P   𝚥 , ℓ         








where:


   P   𝚥 , ℓ   = max    Q m    𝚥 , ℓ   ,  Q m    𝚥 , V 𝚥   ,  Q m    ℓ , V ℓ     ,   








for all   𝚥 , ℓ ∈  S Q   , then V has a unique fixed point.





Corollary 4.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space and   V :  S Q  →  S Q    be a mapping. If there exists   Σ ∈  Θ ˜    and   φ ∈ Φ   such that:


   Σ    Q m    V 𝚥 , V ℓ     ≤ φ   Σ   P   𝚥 , ℓ         








where:


   P   𝚥 , ℓ   = max    Q m    𝚥 , ℓ   ,  Q m    𝚥 , V 𝚥   ,  Q m    ℓ , V ℓ     ,   








for all   𝚥 , ℓ ∈  S Q   , then V has a unique fixed point.





Corollary 5.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space and   V :  S Q  →  S Q    be a mapping. If there exists   Σ ∈  Θ ˜    and   φ ∈ Φ   such that:


   Σ    Q m    V 𝚥 , V ℓ     ≤ φ   Σ    Q m    𝚥 , ℓ       ,   








for all   𝚥 , ℓ ∈  S Q   , then V has a unique fixed point.






4. Application to a Graph Structure


Let   S Q   be a non-Archimedean quasi modular metric space and   ∆ = {  ( 𝚥 , 𝚥 )  : 𝚥 ∈  S Q  }   denote the diagonal of    S Q  ×  S Q  .   Let H be a directed graph such that the set   C ( H )   of its vertices coincides with   S Q   and   B ( H )   is the set of edges of the graph such that   ∆ ⊆ B ( H )  . H is determined with the pair   ( C ( H ) , B ( H ) )  .



If 𝚥 and ℓ are vertices of H, then a path in H from 𝚥 to ℓ of length   p ∈ N   is a finite sequence   {  𝚥 p  }   of vertices such that   𝚥 =  𝚥 0  , … ,  𝚥 p  = η   and    (  𝚥  i − 1   ,  𝚥 i  )  ∈ B  ( H )    for   i ∈ { 1 , 2 , … , p }  .



Recall that H is connected if there is a path between any two vertices, and it is weakly connected if   H ˜   is connected, where   H ˜   defines the undirected graph obtained from H by ignoring the direction of edges. Define by   H  − 1    the graph obtained from H by reversing the direction of edges. Thus,


  B   H  − 1    =   𝚥 , ℓ  ∈  S Q  ×  S Q  :  ℓ , 𝚥  ∈ B  H   .  











It is more convenient to treat   H ˜   as a directed graph for which the set of its edges is symmetric, under this convention; we have that:


  B  (  H ˜  )  = B  ( H )  ∪ B  (  H  − 1   )  .  











Let   H 𝚥   be the component of H consisting of all the edges and vertices that are contained in some way in H starting at   𝚥 .   We denote the relation   ( R )   in the following way:



We have   𝚥 ( R ) ℓ   if and only if, there is a path in H from 𝚥 to   ℓ ,   for   𝚥 , ℓ ∈ C ( H ) .  



If H is such that   B ( H )   is symmetric, then for   𝚥 ∈ C ( H )  , the equivalence class    [ 𝚥 ]  G   in   V ( G )   described by the relation   ( R )   is   C (  H 𝚥  ) .  



Let   S Q   be a non-Archimedean quasi modular metric space endowed with a graph H and   ℏ :  S Q  →  S Q   . We set:


   S ℏ  =   𝚥 ∈  S Q  :   𝚥 , ℏ 𝚥   ∈ B  H    .  











Definition 13

([20]).   ( S , d )   is a metric space, and   ℏ : S → S   is a mapping. Then, ℏ is called a Banach H-contraction if the following hold:




	B1.

	
ℏ preserves edges of H, i.e., for all   𝚥 , ℓ ∈ S ,  


    𝚥 , ℓ   ∈ B  H    ⇒     ℏ 𝚥 , ℏ ℓ   ∈ B  H  ,  












	B2.

	
there exists   δ ∈   0 , 1     such that:


  d   ℏ 𝚥 , ℏ ℓ   ≤ δ d   𝚥 , ℓ    








for all   ( 𝚥 , ℓ ) ∈ B ( H )  .











After that, many fixed point researchers investigated fixed point results improving the Jachymski fixed point theorems in [17,21,22,23].



Now, motivated by [24,25,26], we generate a new contraction and obtain fixed point results using a graph structure.



Definition 14.

Let   S Q   be a non-Archimedean quasi modular metric space and   ℏ :  S Q  →  S Q    be a mapping. Then, we say that ℏ is a generalized Suzuki-simulation-H-type contractive mapping if the following conditions hold:




	H1.

	
ℏ preserves edges of G;




	H2.

	
there exists   Σ ∈  Θ ˜   ,   φ ∈ Φ   and   ζ ∈  T Z    such that:


       1 2   Q m    𝚥 , ℏ 𝚥   ≤  Q m    𝚥 , ℓ     implies ,         ζ   Σ    Q m    ℏ 𝚥 , ℏ ℓ     , φ   Σ   P   𝚥 , ℓ         ≥  C G  ,      



(23)




where


   P   𝚥 , ℓ   = max    Q m    𝚥 , ℓ   ,  Q m    𝚥 , ℏ 𝚥   ,  Q m    ℓ , ℏ ℓ       








for all   𝚥 , ℓ ∈ B ( H )   and for all   m > 0  .











Remark 3.

Let   S Q   be a non-Archimedean quasi modular metric space with a graph H and   ℏ :  S Q  →  S Q    be a generalized Suzuki-simulation-H-type contractive mapping. If there exists    𝚥 0  ∈  S Q    such that   ℏ  𝚥 0  ∈    𝚥 0    H ˜    , then:




	R1.

	
ℏ is both a generalized Suzuki-simulation-  H  − 1   -type contractive mapping and a generalized Suzuki- Simulation-  H ˜  -type contractive mapping.




	R2.

	
    𝚥 0    H ˜    is ℏ-invariant, and   ℏ       𝚥 0    H ˜       is a generalized Suzuki-simulation-   H ˜   𝚥 0   -type contractive mapping.











Theorem 6.

Let   S Q   be a Q-Smyth-complete non-Archimedean quasi modular metric space with a graph H and   ℏ :  S Q  →  S Q    be a mapping.




	i.

	
there exists    𝚥 0  ∈  S ℏ   ;




	ii.

	
ℏ is the generalized Suzuki-simulation-  H ˜  -type contractive mapping;




	iii.

	
H is weakly connected;




	iv.

	
if    𝚥 k    is a sequence in   S Q   such that    lim  k → ∞      Q m   E     𝚥 k  , u   = 0   and      𝚥 k  ,  𝚥  k + 1     ∈ B  H   , then there exists a subsequence    𝚥  k s     of    𝚥 k    such that      𝚥  k s   , u   ∈ B  H   .









Then, ℏ has a unique fixed point.





Proof. 

Define a sequence    𝚥 k    in   S Q   by:


      𝚥  k + 1   = ℏ  𝚥 k  ,     



(24)




for all   k ∈ N  . Let   𝚥 0   be a given point in   S ℏ  ; thus,      𝚥 0  , ℏ  𝚥 0    =    𝚥 0  ,  𝚥 1    ∈ B  H  .   Because ℏ preserves the edges of H,


     𝚥 0  ,  𝚥 1    ∈ B  H    ⇒     ℏ  𝚥 0  , ℏ  𝚥 1    ∈ B  H  .  











Continuing this way, we get:


     𝚥 k  ,  𝚥  k + 1     ∈ B  H  .  











Then from Theorem 5, we get that    𝚥 k    is a left Q-K-Cauchy sequence in   S Q  . By the Q-Smyth- completeness of   S Q  , there exists   u ∈   S Q    such that:


   lim  k → ∞    Q m E     𝚥 k  , u   = 0 .  



(25)







Thus, we have:


   lim  k → ∞    Q m     𝚥 k  , u   = 0   and    lim  k → ∞    Q m    u ,  𝚥 k    = 0 .  



(26)







Now, we show that u is a fixed point of ℏ. Using   ( i v )  , we get     𝚥  k s   , u  ∈ B  H   . We claim that:


   1 2   Q m     𝚥  k s   , ℏ  𝚥  k s     ≤  Q m     𝚥  k s   , u   .  



(27)







If


      1 2   Q m     𝚥  k s   , ℏ  𝚥  k s     >  Q m     𝚥  k s   , u   =  1 2   Q m     𝚥  k s   ,  𝚥   k s  + 1     >  Q m     𝚥  k s   , u       



(28)




and taking the limit   s → ∞   in (28), we get   0 > 0 ,   a contradiction. Hence, the claim is true. Since ℏ is a generalized Suzuki-simulation-  H ˜  -type contractive mapping, we have:


      C G  ≤ ζ   Σ    Q m    ℏ  𝚥  k s   , ℏ u     , φ   Σ   P    𝚥  k s   , u                 ≤ ζ   Σ    Q m    ℏ  𝚥  k s   , ℏ u     , φ   Σ   P    𝚥  k s   , u                 ≤ G   φ   Σ   P    𝚥  k s   , u       , Σ    Q m    h  𝚥  k s   , h u       ,     



(29)




from Definition 5, we get:


   Σ    Q m    ℏ  𝚥  k s   , ℏ u     , φ   Σ   P    𝚥  k s   , u        ,  



(30)




where:


    P    𝚥  k s   , u     = max    Q m     𝚥  k s   , u   ,  Q m     𝚥  k s   , ℏ  𝚥  k s     ,      Q m    u , ℏ u           = max    Q m     𝚥  k s   , u   ,  Q m     𝚥  k s   ,  𝚥   k s  + 1     ,      Q m    u , ℏ u     .     



(31)







Taking the limit as   s → ∞   in (29)–(31), we get:


  Σ    Q m    u , h u     < φ   Σ    Q m    u , h u       < Σ    Q m    u , h u     .  











It follows that   Σ    Q m    u , h u     < Σ    Q m    u , h u     ,   a contradiction. Therefore, we get    Q m    u , ℏ u   = 0  , that is   u = ℏ u   since Q is regular.



Next, we show that u is a unique fixed point of ℏ. On the contrary, we suppose that   u ∗   is another fixed point of ℏ, i.e.,    u ∗  = ℏ  u ∗    and   u ≠  u ∗  .   Then, there exist   σ ∈  S Q    such that   ( u , σ ) ∈ B ( H )   and    ( σ ,  u ∗  )  ∈ B  ( H )   . Using   ( i i i )  , we get that    ( u ,  u ∗  )  ∈ B  (  H ˜  )  .   Furthermore,


  0 =  1 2   Q m    u , h u   <  Q m    u ,  u ∗    .  



(32)







From the generalized Suzuki-Simulation-  H ˜  -type contractive mapping we have:


      C G  ≤ ζ   Σ    Q m    h u , h  u ∗      , φ   Σ   P   u ,  u ∗                  ≤ ζ   Σ    Q m    u ,  u ∗      , φ   Σ   P   u ,  u ∗                  ≤ G   φ   Σ   P   u ,  u ∗        , Σ    Q m    h u , h  u ∗        .     



(33)




Using Definition 5, we get:


  Σ    Q m    u ,  u ∗      < φ   Σ   P   u ,  u ∗         



(34)




where:


    P   u ,  u ∗      = max    Q m    u ,  u ∗    ,  Q m    u , ℏ u   ,      Q m     u ∗  , ℏ  u ∗            = max    Q m    u ,  u ∗    ,    0  =  Q m    u ,  u ∗    .     



(35)







From (33)–(35), it follows that:


  Σ    Q m    u ,  u ∗      < φ   Σ    Q m    u ,  u ∗        < Σ    Q m    u ,  u ∗      .  











This is an incorrect statement. Hence,   u =  u ∗  .   □






5. Conclusions


First, motivated by [4,10,15], we established a new contractive mapping, which is called the generalized Suzuki-simulation-type contractive mapping. Second, in [19], we constituted a new quasi metric space, which is named the non-Archimedean quasi modular metric space, and so using this, we attained fixed point theorems via generalized Suzuki-simulation-type contractive mapping. Finally, we acquired graphical fixed point results in non-Archimedean quasi modular metric spaces.
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