
mathematics

Article

An Efficient Conjugate Gradient Method for Convex
Constrained Monotone Nonlinear Equations
with Applications †

Auwal Bala Abubakar 1,2 , Poom Kumam 1,3,4,* , Hassan Mohammad 2 ,
and Aliyu Muhammed Awwal 1,5

1 KMUTTFixed Point Research Laboratory, SCL 802 Fixed Point Laboratory, Science Laboratory Building,
Department of Mathematics, Faculty of Science, King Mongkut’s University of Technology Thonburi
(KMUTT), 126 Pracha-Uthit Road, Bang Mod, Thrung Khru, Bangkok 10140, Thailand

2 Department of Mathematical Sciences, Faculty of Physical Sciences, Bayero University, Kano 700241, Nigeria
3 Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Science Laboratory Building,

King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Road, Bang Mod,
Thrung Khru, Bangkok 10140, Thailand

4 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

5 Department of Mathematics, Faculty of Science, Gombe State University, Gombe 760214, Nigeria
* Correspondence: poom.kum@kmutt.ac.th
† This project was supported by Petchra Pra Jom Klao Doctoral Academic Scholarship for Ph.D. Program at

KMUTT. Moreover, this project was partially supported by the Thailand Research Fund (TRF) and the King
Mongkut’s University of Technology Thonburi (KMUTT) under the TRF Research Scholar Award (Grant
No. RSA6080047).

Received: 29 June 2019; Accepted: 6 August 2019; Published: 21 August 2019
����������
�������

Abstract: This research paper proposes a derivative-free method for solving systems of nonlinear
equations with closed and convex constraints, where the functions under consideration are continuous
and monotone. Given an initial iterate, the process first generates a specific direction and then employs
a line search strategy along the direction to calculate a new iterate. If the new iterate solves the
problem, the process will stop. Otherwise, the projection of the new iterate onto the closed convex set
(constraint set) determines the next iterate. In addition, the direction satisfies the sufficient descent
condition and the global convergence of the method is established under suitable assumptions.
Finally, some numerical experiments were presented to show the performance of the proposed
method in solving nonlinear equations and its application in image recovery problems.

Keywords: nonlinear monotone equations; conjugate gradient method; projection method;
signal processing

MSC: 65K05; 90C52; 90C56; 92C55

1. Introduction

In this paper, we consider the following constrained nonlinear equation

F(x) = 0, subject to x ∈ Ψ, (1)

where F : Rn → Rn is continuous and monotone. The constraint set Ψ ⊂ Rn is nonempty, closed
and convex.

Mathematics 2019, 7, 767; doi:10.3390/math7090767 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6142-3694
https://orcid.org/0000-0002-5463-4581
https://orcid.org/0000-0003-1145-1651
https://orcid.org/0000-0002-1040-3626
http://www.mdpi.com/2227-7390/7/9/767?type=check_update&version=1
http://dx.doi.org/10.3390/math7090767
http://www.mdpi.com/journal/mathematics

Mathematics 2019, 7, 767 2 of 25

Monotone equations appear in many applications [1–3], for example, the subproblems in
the generalized proximal algorithms with Bregman distance [4], reformulation of some `1-norm
regularized problems arising in compressive sensing [5] and variational inequality problems are
also converted into nonlinear monotone equations via fixed point maps or normal maps [6], (see
References [7–9] for more examples). Among earliest methods for the case Ψ = Rn is the hyperplane
projection Newton method proposed by Solodov and Svaiter in Reference [10]. Subsequently, many
methods were proposed by different authors. Among the popular methods are spectral gradient
methods [11,12], quasi-Newton methods [13–15] and conjugate gradient methods (CG) [16,17].

To solve the constrained case (1), the work of Solodov and Svaiter was extended by Wang et al. [18]
which also involves solving a linear system in each iteration but it was shown later by some authors
that the computation of the linear system is not necessary. For examples, Xiao and Zhu [19] presented a
CG method, which is a combination the well known CG-DESCENT method in Reference [20] with the
projection strategy by Solodov and Svaiter. Liu et al. [21] presented two CG method with sufficiently
descent directions. In Reference [22], a modified version of the method in Reference [19] was presented
by Liu and Li. The modification improves the numerical performance of the method in Reference [19].
Another extension of the Dai and Kou (DK) CG method combined with the projection method to
solve (1) was proposed by Ding et al. in Reference [23]. Just recently, to popularize the Dai-Yuan (DY)
CG method, Liu and Feng [24] modified the DY such that the direction will be sufficiently descent.
A new hybrid spectral gradient projection method for solving convex constraints nonlinear monotone
equations was proposed by Awwal et al. in Reference [25]. The method is a convex combination of two
different positive spectral parameters together with the projection strategy. In addition, Abubakar et al.
extended the method in Reference [17] to solve (1) and also solve some sparse signal recovery problems.

Inspired by some the above methods, we propose a descent conjugate gradient method to solve
problem (1). Under appropriate assumptions, the global convergence is established. Preliminary
numerical experiments were given to compare the proposed method with existing methods to solve
nonlinear monotone equations and some signal and image reconstruction problems arising from
compressive sensing.

The remaining part of this paper is organized as follows. In Section 2, we state the proposed
algorithm as well as its convergence analysis. Finally, Section 3 reports some numerical results to show
the performance of the proposed method in solving Equation (1), signal recovery problems and image
restoration problems.

2. Algorithm: Motivation and Convergence Result

This section starts by defining the projection map together with some of its properties.

Definition 1. Let Ψ ⊂ Rn be a nonempty closed convex set. Then for any x ∈ Rn, its projection onto Ψ,
denoted by PΨ(x), is defined by

PΨ(x) = arg min{‖x− y‖ : y ∈ Ψ}.

Moreover, PΨ is nonexpansive, That is,

‖PΨ(x)− PΨ(y)‖ ≤ ‖x− y‖, ∀x, y ∈ Rn. (2)

All through this article, we assume the followings

(G1) The mapping F is monotone, that is,

(F(x)− F(y))T(x− y) ≥ 0, ∀x, y ∈ Rn.

Mathematics 2019, 7, 767 3 of 25

(G2) The mapping F is Lipschitz continuous, that is there exists a positive constant L such that

‖F(x)− F(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn.

(G3) The solution set of (1), denoted by Ψ
′
, is nonempty.

An important property that methods for solving Equation (1) must possess is that the direction
dk satisfy

F(xk)
Tdk ≤ −c‖F(xk)‖2, (3)

where c > 0 is a constant. The inequality (3) is called sufficient descent property if F(x) is the gradient
vector of a real valued function f : Rn → R.

In this paper, we propose the following search direction

dk =

{
−F(xk), if k = 0,

−F(xk) + βkdk−1 − θkF(xk), if k ≥ 1,
(4)

where

βk =
‖F(xk)‖
‖dk−1‖

(5)

and θk is determined such that Equation (3) is satisfied. It is easy to see that for k = 0, the equation
holds with c = 1. Now for k ≥ 1,

F(xk)
Tdk = −F(xk)

T F(xk) + F(xk)
T ‖F(xk)‖
‖dk−1‖

dk−1 − θkF(xk)
T F(xk)

= −‖F(xk)‖2 +
‖F(xk)‖
‖dk−1‖

F(xk)
Tdk−1 − θk‖F(xk)‖2

=
−‖F(xk)‖2‖dk−1‖2 + ‖F(xk)‖‖dk−1‖F(xk)

Tdk−1 − θk‖F(xk)‖2‖dk−1‖2

‖dk−1‖2 .

(6)

Taking θk = 1 we have
F(xk)

Tdk ≤ −‖F(xk)‖2. (7)

Thus, the direction defined by (4) satisfy condition (3) ∀k where c = 1.
To prove the global convergence of Algorithm 1, the following lemmas are needed.

Algorithm 1: (DCG)
Step 0. Given an arbitrary initial point x0 ∈ Rn, parameters σ > 0, 0 < β < 1, Tol > 0 and set

k := 0.
Step 1. If ‖F(xk)‖ ≤ Tol, stop, otherwise go to Step 2.
Step 2. Compute dk using Equation (4).
Step 3. Compute the step size αk = max{βi : i = 0, 1, 2, · · · } such that

− F(xk + αkdk)
Tdk ≥ σαk‖F(xk + αkdk)‖‖dk‖2. (8)

Step 4. Set zk = xk + αkdk. If zk ∈ Ψ and ‖F(zk)‖ ≤ Tol, stop. Else compute

xk+1 = PΨ[xk − ζkF(zk)]

where

ζk =
F(zk)

T(xk − zk)

‖F(zk)‖2 .

Step 5. Let k = k + 1 and go to Step 1.

Mathematics 2019, 7, 767 4 of 25

Lemma 1. The direction defined by Equation (4) satisfies the sufficient descent property, that is, there exist
constants c > 0 such that (3) holds.

Lemma 2. Suppose that assumptions (G1)–(G3) holds, then the sequences {xk} and {zk} generated by
Algorithm 1 (CGD) are bounded. Moreover, we have

lim
k→∞
‖xk − zk‖ = 0 (9)

and
lim
k→∞
‖xk+1 − xk‖ = 0. (10)

Proof. We will start by showing that the sequences {xk} and {zk} are bounded. Suppose x̄ ∈ Ψ
′
,

then by monotonicity of F, we get

F(zk)
T(xk − x̄) ≥ F(zk)

T(xk − zk). (11)

Also by definition of zk and the line search (8), we have

F(zk)
T(xk − zk) ≥ σα2

k‖F(zk)‖‖dk‖2 ≥ 0. (12)

So, we have

‖xk+1 − x̄‖2 = ‖PΨ[xk − ζkF(zk)]− x̄‖2 ≤ ‖xk − ζkF(zk)− x̄‖2

= ‖xk − x̄‖2 − 2ζkF(zk)
T(xk − x̄) + ‖ζF(zk)‖2

≤ ‖xk − x̄‖2 − 2ζkF(zk)
T(xk − zk) + ‖ζF(zk)‖2

= ‖xk − x̄‖2 −
(

F(zk)
T(xk − zk)

‖F(zk)‖

)2

≤ ‖xk − x̄‖2

(13)

Thus the sequence {‖xk − x̄‖} is non increasing and convergent and hence {xk} is bounded.
Furthermore, from Equation (13), we have

‖xk+1 − x̄‖2 ≤ ‖xk − x̄‖2, (14)

and we can deduce recursively that

‖xk − x̄‖2 ≤ ‖x0 − x̄‖2, ∀k ≥ 0.

Then from Assumption (G2), we obtain

‖F(xk)‖ = ‖F(xk)− F(x̄)‖ ≤ L‖xk − x̄‖ ≤ L‖x0 − x̄‖.

If we let L‖x0 − x̄‖ = κ, then the sequence {F(xk)} is bounded, that is,

‖F(xk)‖ ≤ κ, ∀k ≥ 0. (15)

Mathematics 2019, 7, 767 5 of 25

By the definition of zk, Equation (12), monotonicity of F and the Cauchy-Schwatz inequality,
we get

σ‖xk − zk‖ =
σ‖αkdk‖2

‖xk − zk‖
≤ F(zk)

T(xk − zk)

‖xk − zk‖
≤ F(zk)

T(xk − zk)

‖xk − zk‖
≤ ‖F(xk)‖. (16)

The boundedness of the sequence {xk} together with Equations (15) and (16), implies the sequence
{zk} is bounded.

Since {zk} is bounded, then for any x̄ ∈ Ψ, the sequence {zk − x̄} is also bounded, that is, there
exists a positive constant ν > 0 such that

‖zk − x̄‖ ≤ ν.

This together with Assumption (G2) yields

‖F(zk)‖ = ‖F(zk)− F(x̄)‖ ≤ L‖zk − x̄‖ ≤ Lν.

Therefore, using Equation (13), we have

σ2

(Lν)2 ‖xk − zk‖4 ≤ ‖xk − x̄‖2 − ‖xk+1 − x̄‖2,

which implies

σ2

(Lν)2

∞

∑
k=0
‖xk − zk‖4 ≤

∞

∑
k=0

(‖xk − x̄‖2 − ‖xk+1 − x̄‖2) ≤ ‖x0 − x̄‖ < ∞. (17)

Equation (17) implies
lim
k→∞
‖xk − zk‖ = 0.

However, using Equation (2), the definition of ζk and the Cauchy-Schwartz inequality, we have

‖xk+1 − xk‖ = ‖PΨ[xk − ζkF(zk)]− xk‖

≤ ‖xk − ζkF(zk)− xk‖

= ‖ζkF(zk)‖

= ‖xk − zk‖,

(18)

which yields
lim
k→∞
‖xk+1 − xk‖ = 0.

Equation (9) and definition of zk implies that

lim
k→∞

αk‖dk‖ = 0. (19)

Lemma 3. Suppose dk is generated by Algorithm 1 (CGD), then there exist M > 0 such the ‖dk‖ ≤ M

Mathematics 2019, 7, 767 6 of 25

Proof. By definition of dk and Equation (15)

‖dk‖ = ‖ − 2F(xk) +
‖F(xk)‖
‖dk−1‖

dk−1‖

≤ 2‖F(xk)‖+
‖F(xk)‖
‖dk−1‖

‖dk−1‖

≤ 3‖F(xk)‖.

≤ 3κ

(20)

Letting M = 3κ, we have the desired result.

Theorem 1. Suppose that assumptions (G1)–(G3) hold and let the sequence {xk} be generated by Algorithm 1,
then

lim inf
k→∞

‖F(xk)‖ = 0, (21)

Proof. To prove the Theorem, we consider two cases;
Case 1
Suppose lim inf

k→∞
‖dk‖ = 0, we have lim inf

k→∞
‖F(xk)‖ = 0. Then by continuity of F, the sequence {xk} has

some accumulation point x̄ such that F(x̄) = 0. Because {‖xk− x̄‖} converges and x̄ is an accumulation
point of {xk}, therefore {xk} converges to x̄.
Case 2
Suppose lim inf

k→∞
‖dk‖ > 0, we have lim inf

k→∞
‖F(xk)‖ > 0. Then by (19), it holds that lim

k→∞
αk = 0.

Also from Equation (8),

−F(xk + βi−1dk)
Tdk < σβi−1‖F(xk + βi−1dk)‖‖dk‖2

and the boundedness of {xk}, {dk}, we can choose a sub-sequence such that allowing k to go to infinity
in the above inequality results

F(x̄)T d̄ > 0. (22)

On the other hand, allowing k to approach ∞ in (7), implies

F(x̄)T d̄ ≤ 0. (23)

(22) and (23) imply contradiction. Hence, lim inf
k→∞

‖F(xk)‖ > 0 is not true and the proof is complete.

3. Numerical Examples

This section gives the performance of the proposed method with existing methods such as PCG
and PDY proposed in References [22,24], respectively, to solve monotone nonlinear equations using 9
benchmark test problems. Furthermore Algorithm 1 is applied to restore a blurred image. All codes
were written in MATLAB R2018b and run on a PC with intel COREi5 processor with 4 GB of RAM and
CPU 2.3 GHZ. All runs were stopped whenever ‖F(xk)‖ < 10−5.
The parameters chosen for the existing algorithm are as follows:

PCG method: All parameters are chosen as in Reference [22].
PDY method: All parameters are chosen as in Reference [24].
Algorithm 1: We have tested several values of β ∈ (0, 1) and found that β = 0.7 gives the best

result. In addition, to implement most of the optimization algorithms, the parameter σ is chosen as

Mathematics 2019, 7, 767 7 of 25

a very small number. Therefore, we chose β = 0.7 and σ = 0.0001 for the implementation of the
proposed algorithm.

We test 9 different problems with dimensions ranging from n = 1000, 5000, 10, 000, 50, 000, 100, 000
and 6 initial points: x1 = (0.1, 0.1, · · · , 1)T , x2 = (0.2, 0.2, · · · , 0.2)T , x3 = (0.5, 0.5, · · · , 0.5)T , x4 =

(1.2, 1.2, · · · , 1.2)T , x5 = (1.5, 1.5, · · · , 1.5)T , x6 = (2, 2, · · · , 2)T . In Tables 1–9, the number of iterations
(ITER), number of function evaluations (FVAL), CPU time in seconds (TIME) and the norm at the
approximate solution (NORM) were reported. The symbol ‘−’ is used when the number of iterations
exceeds 1000 and/or the number of function evaluations exceeds 2000.

The test problems are listed below, where the function F is taken as F(x) =

(f1(x), f2(x), . . . , fn(x))T .

Problem 1 ([26]). Exponential Function.

f1(x) = ex1 − 1,

fi(x) = exi + xi − 1, for i = 2, 3, ..., n,

and Ψ = Rn
+.

Problem 2 ([26]). Modified Logarithmic Function.

fi(x) = ln(xi + 1)− xi
n

, for i = 2, 3, ..., n,

and Ψ = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi > −1, i = 1, 2, . . . , n}.

Problem 3 ([13]). Nonsmooth Function.

fi(x) = 2xi − sin |xi|, i = 1, 2, 3, ..., n,

and Ψ = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥ 0, i = 1, 2, . . . , n}.

It is clear that Problem 3 is nonsmooth at x = 0.

Problem 4 ([26]). Strictly Convex Function I.

fi(x) = exi − 1, for i = 1, 2, ..., n,

and Ψ = Rn
+.

Problem 5 ([26]). Strictly Convex Function II.

fi(x) =
i
n

exi − 1, for i = 1, 2, ..., n,

and Ψ = Rn
+.

Problem 6 ([27]). Tridiagonal Exponential Function

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), for i = 2, ..., n− 1,

fn(x) = xn − ecos(h(xn−1+xn)),

h =
1

n + 1
and Ψ = Rn

+.

Mathematics 2019, 7, 767 8 of 25

Problem 7 ([28]). Nonsmooth Function

fi(x) = xi − sin |xi − 1|, i = 1, 2, 3, ..., n.

and Ψ = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥ −1, i = 1, 2, . . . , n}.

Problem 8 ([23]). Penalty 1

ti =
n

∑
i=1

x2
i , c = 10−5

fi(x) = 2c(xi − 1) + 4(ti − 0.25)xi, i = 1, 2, 3, ..., n.

and Ψ = Rn
+.

Problem 9 ([29]). Semismooth Function

f1(x) = x1 + x3
1 − 10,

f2(x) = x2 − x3 + x3
2 + 1,

f3(x) = x2 + x3 + 2x3
3 − 3,

f4(x) = 2x3
4,

and Ψ = {x ∈ R4 :
4

∑
i=1

xi ≤ 3, xi ≥ 0, i = 1, 2, 3, 4}.

In addition, we employ the performance profile developed in Reference [30] to obtain Figures 1–3,
which is a helpful process of standardizing the comparison of methods. The measure of the
performance profile considered are; number of iterations, CPU time (in seconds) and number of
function evaluations. Figure 1 reveals that Algorithm 1 most performs better in terms of number of
iterations, as it solves and wins 90 percent of the problems with less number of iterations, while PCG
and PDY solves and wins less than 10 percent. In Figure 2, Algorithm 1 performed a little less by
solving and winning over 80 percent of the problems with less CPU time as against PCG and PDY with
similar performance of less than 10 percent of the problems considered. The translation of Figure 3 is
identical to Figure 1. Figure 4 is the plot of the decrease in residual norm against number of iterations
on problem 9 with x4 as initial point. It shows the speed of the convergence of each algorithm using the
convergence tolerance 10−5, it can be observed that Algorithm 1 converges faster than PCG and PDY.

Mathematics 2019, 7, 767 9 of 25

Table 1. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 1 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 11 49 0.025557 8.88 × 10−6 18 73 0.019295 5.72 × 10−6 12 49 0.16248 9.18 × 10−6

x2 12 53 0.014164 4.78 × 10−6 18 73 0.011648 9.82 × 10−6 13 53 0.03780 6.35 × 10−6

x3 12 53 0.008524 8.75 × 10−6 19 77 0.011197 7.1 × 10−6 14 57 0.01550 5.59 × 10−6

x4 13 57 0.011333 6.68 × 10−6 18 73 0.022197 8.27 × 10−6 15 61 0.01746 4.07 × 10−6

x5 13 57 0.014202 6.09 × 10−6 63 254 0.046072 9.58 × 10−6 14 57 0.02193 9.91 × 10−6

x6 13 57 0.011045 8.14 × 10−6 61 246 0.031608 9.15 × 10−6 40 162 0.03472 9.70 × 10−6

5000

x1 12 53 0.024311 5.82 × 10−6 18 73 0.11431 7.42 × 10−6 13 53 0.03158 6.87 × 10−6

x2 13 57 0.027361 3.13 × 10−6 19 77 0.03997 6.53 × 10−6 14 57 0.04270 4.62 × 10−6

x3 13 57 0.02541 5.73 × 10−6 20 81 0.056159 5.2 × 10−6 15 61 0.05433 4.18 × 10−6

x4 14 61 0.032038 4.38 × 10−6 19 77 0.038381 8.1 × 10−6 15 61 0.04357 9.08 × 10−6

x5 14 61 0.039044 3.98 × 10−6 62 250 0.15836 9.53 × 10−6 15 61 0.08960 7.30 × 10−6

x6 14 61 0.027231 5.33 × 10−6 60 242 0.13276 9.1 × 10−6 39 158 0.11284 9.86 × 10−6

10,000

x1 12 53 0.05434 8.23 × 10−6 18 73 0.073207 9.5 × 10−6 13 53 0.06371 9.70 × 10−6

x2 13 57 0.045664 4.43 × 10−6 19 77 0.090771 8.15 × 10−6 14 57 0.06336 6.53 × 10−6

x3 13 57 0.041922 8.09 × 10−6 20 81 0.070859 6.74 × 10−6 15 61 0.06414 5.90 × 10−6

x4 14 61 0.047641 6.2 × 10−6 20 81 0.087357 5.11 × 10−6 16 65 0.07920 4.28 × 10−6

x5 14 61 0.045734 5.62 × 10−6 62 250 0.24646 8.87 × 10−6 39 158 0.22101 7.97 × 10−6

x6 14 61 0.057104 7.54 × 10−6 59 238 0.19949 9.96 × 10−6 87 351 0.36237 9.93 × 10−6

50,000

x1 13 57 0.16384 5.41 × 10−6 19 77 0.25487 8.8 × 10−6 14 57 0.27607 7.12 × 10−6

x2 13 57 0.18633 9.9 × 10−6 20 81 0.32689 7.39 × 10−6 15 61 0.26220 4.91 × 10−6

x3 14 61 0.20801 5.32 × 10−6 21 85 0.33649 6.31 × 10−6 16 65 0.28260 4.37 × 10−6

x4 15 65 0.1946 4.08 × 10−6 21 85 0.32779 5.1 × 10−6 38 154 0.60650 7.54 × 10−6

x5 15 65 0.19799 3.69 × 10−6 61 246 0.82615 8.85 × 10−6 177 712 2.52330 9.44 × 10−6

x6 15 65 0.22418 4.95 × 10−6 59 238 0.79992 8.5 × 10−6 361 1449 5.97950 9.74 × 10−6

100,000

x1 13 57 0.32291 7.65 × 10−6 20 81 0.53846 5.52 × 10−6 15 61 0.39342 3.39 × 10−6

x2 14 61 0.33329 4.12 × 10−6 21 85 0.61533 4.62 × 10−6 15 61 0.42154 6.94 × 10−6

x3 14 61 0.37048 7.52 × 10−6 21 85 0.53638 8.78 × 10−6 16 65 0.45851 6.18 × 10−6

x4 15 65 0.36058 5.76 × 10−6 21 85 0.62002 7.21 × 10−6 175 704 4.36100 9.47 × 10−6

x5 15 65 0.34975 5.22 × 10−6 60 242 1.4564 9.73 × 10−6 176 708 4.29180 9.91 × 10−6

x6 15 65 0.3621 7.01 × 10−6 58 234 1.4155 9.42 × 10−6 360 1445 9.71190 9.99 × 10−6

Mathematics 2019, 7, 767 10 of 25

Table 2. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 2 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 9 38 3.1744 5.84 × 10−6 15 59 0.049899 8.59 × 10−6 10 39 0.01053 6.96 × 10−6

x2 10 42 0.014633 6.25 × 10−6 11 42 0.015089 9.07 × 10−6 11 43 0.00937 9.23 × 10−6

x3 9 38 0.017067 7.4 × 10−6 17 66 0.016935 6.44 × 10−6 13 51 0.01111 6.26 × 10−6

x4 7 30 0.006392 6.53 × 10−6 18 69 0.01436 6 × 10−6 14 55 0.02154 9.46 × 10−6

x5 11 46 0.011954 3.47 × 10−6 13 48 0.00907 7.58 × 10−6 15 59 0.01850 4.60 × 10−6

x6 12 50 0.68666 6.74 × 10−6 18 68 0.01352 5.4 × 10−6 15 59 0.01938 7.71 × 10−6

5000

x1 10 42 0.11241 3.53 × 10−6 16 63 0.041151 9.35 × 10−6 11 43 0.03528 4.86 × 10−6

x2 11 46 0.028723 3.81 × 10−6 12 46 0.028706 8.8 × 10−6 12 47 0.04032 6.89 × 10−6

x3 10 42 0.029367 4.3 × 10−6 18 70 0.047532 6.98 × 10−6 14 55 0.04889 4.61 × 10−6

x4 13 54 0.036231 3.67 × 10−6 19 73 0.052164 6.45 × 10−6 15 59 0.04826 6.96 × 10−6

x5 11 46 0.04963 7.21 × 10−6 14 52 0.040529 6.71 × 10−6 16 63 0.05969 3.37 × 10−6

x6 13 54 0.054971 4.05 × 10−6 19 72 0.12303 5.71 × 10−6 16 63 0.06253 5.64 × 10−6

10,000

x1 10 42 0.049614 4.98 × 10−6 17 67 0.074779 6.6 × 10−6 11 43 0.06732 6.85 × 10−6

x2 11 46 0.061595 5.36 × 10−6 13 50 0.08308 6.11 × 10−6 12 47 0.12232 9.72 × 10−6

x3 10 42 0.054587 6.02 × 10−6 18 70 0.085554 9.83 × 10−6 14 55 0.08288 6.51 × 10−6

x4 13 54 0.073333 5.16 × 10−6 19 73 0.10579 9.07 × 10−6 15 59 0.08413 9.82 × 10−6

x5 12 50 0.06306 2.83 × 10−6 14 52 0.074982 9.18 × 10−6 16 63 0.09589 4.75 × 10−6

x6 13 54 0.062259 5.69 × 10−6 19 72 0.099167 8.02 × 10−6 16 64 0.11499 8.55 × 10−6

50,000

x1 11 46 0.20703 3.1 × 10−6 18 71 0.39473 7.37 × 10−6 12 47 0.27826 5.23 × 10−6

x2 12 50 0.23251 3.35 × 10−6 14 54 0.27346 6.74 × 10−6 13 51 0.29642 7.11 × 10−6

x3 11 46 0.21338 3.73 × 10−6 20 78 0.37249 5.5 × 10−6 15 59 0.35602 4.82 × 10−6

x4 14 58 0.3232 3.22 × 10−6 21 81 0.37591 5.07 × 10−6 35 141 0.69470 6.69 × 10−6

x5 12 50 0.22703 6.27 × 10−6 16 60 0.26339 5.02 × 10−6 35 141 0.68488 9.12 × 10−6

x6 14 58 0.25979 3.54 × 10−6 20 76 0.33814 8.93 × 10−6 35 141 0.70973 9.91 × 10−6

100,000

x1 11 46 0.55511 4.38 × 10−6 19 75 0.65494 5.22 × 10−6 12 47 0.44541 7.39 × 10−6

x2 12 50 0.54694 4.73 × 10−6 14 54 0.4944 9.52 × 10−6 14 55 0.53299 3.39 × 10−6

x3 11 46 0.40922 5.27 × 10−6 20 78 0.78319 7.78 × 10−6 15 60 0.58603 8.71 × 10−6

x4 14 58 0.62049 4.55 × 10−6 21 81 0.76051 7.17 × 10−6 72 290 2.70630 8.31 × 10−6

x5 12 50 0.47039 8.86 × 10−6 16 60 0.58545 7.07 × 10−6 72 290 2.72220 8.68 × 10−6

x6 14 58 0.71174 5.01 × 10−6 21 80 0.77051 6.32 × 10−6 72 290 2.75850 8.96 × 10−6

Mathematics 2019, 7, 767 11 of 25

Table 3. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 3 with given initial points and dimensions.

Algorithm 1 (DCG) PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 10 43 0.75322 9.9 × 10−6 19 76 0.55752 5.62 × 10−6 12 48 0.01255 4.45 × 10−6

x2 11 47 0.006933 5.46 × 10−6 20 80 0.010936 5.58 × 10−6 12 48 0.01311 9.02 × 10−6

x3 12 51 0.00676 3.48 × 10−6 21 84 0.011048 6.58 × 10−6 13 52 0.01486 8.34 × 10−6

x4 12 51 0.009664 4.41 × 10−6 22 88 0.011058 5.67 × 10−6 14 56 0.01698 8.04 × 10−6

x5 11 47 0.010487 9.06 × 10−6 22 88 0.012198 5.64 × 10−6 14 56 0.01551 9.72 × 10−6

x6 13 55 0.012702 3.15 × 10−6 21 84 0.018231 8.36 × 10−6 14 56 0.01534 9.42 × 10−6

5000

x1 11 47 0.019458 6.19 × 10−6 20 80 0.040808 6.29 × 10−6 12 48 0.03660 9.94 × 10−6

x2 12 51 0.021562 3.42 × 10−6 21 84 0.06688 6.25 × 10−6 13 52 0.03616 6.85 × 10−6

x3 12 51 0.024274 7.79 × 10−6 22 88 0.04144 7.37 × 10−6 14 56 0.04594 6.14 × 10−6

x4 12 51 0.026771 9.86 × 10−6 23 92 0.052214 6.35 × 10−6 15 60 0.04342 6.01 × 10−6

x5 12 51 0.026814 5.67 × 10−6 23 92 0.041444 6.31 × 10−6 15 60 0.04296 7.25 × 10−6

x6 13 55 0.023903 7.03 × 10−6 22 88 0.040135 9.37 × 10−6 32 129 0.10081 8.85 × 10−6

10,000

x1 11 47 0.044134 8.75 × 10−6 20 80 0.064312 8.9 × 10−6 13 52 0.06192 4.77 × 10−6

x2 12 51 0.051947 4.83 × 10−6 21 84 0.088102 8.84 × 10−6 13 52 0.06442 9.68 × 10−6

x3 13 55 0.057291 3.08 × 10−6 23 92 0.07296 5.22 × 10−6 14 56 0.09499 8.69 × 10−6

x4 13 55 0.055134 3.9 × 10−6 23 92 0.075265 8.99 × 10−6 15 60 0.07696 8.5 × 10−6

x5 12 51 0.047551 8.02 × 10−6 23 92 0.073937 8.93 × 10−6 33 133 0.18625 6.45 × 10−6

x6 13 55 0.055069 9.95 × 10−6 23 92 0.099888 6.64 × 10−6 33 133 0.15548 7.51 × 10−6

50,000

x1 12 51 0.19938 5.47 × 10−6 21 84 0.27031 9.97 × 10−6 14 56 0.23642 3.51 × 10−6

x2 13 55 0.22499 3.02 × 10−6 22 88 0.2657 9.9 × 10−6 14 56 0.24813 7.12 × 10−6

x3 13 55 0.19396 6.89 × 10−6 24 96 0.3246 5.85 × 10−6 15 60 0.27049 6.53 × 10−6

x4 13 55 0.20259 8.72 × 10−6 25 100 0.32373 5.04 × 10−6 34 137 0.54545 7.13 × 10−6

x5 13 55 0.19452 5.01 × 10−6 25 100 0.33764 5.01 × 10−6 68 274 1.02330 9.99 × 10−6

x6 14 59 0.22015 6.22 × 10−6 24 96 0.33687 7.44 × 10−6 69 278 1.03810 8.05 × 10−6

100,000

x1 12 51 0.39983 7.74 × 10−6 22 88 0.63809 7.06 × 10−6 14 56 0.45475 4.96 × 10−6

x2 13 55 0.32765 4.28 × 10−6 23 92 0.63458 7.02 × 10−6 15 60 0.49018 3.39 × 10−6

x3 13 55 0.30133 9.75 × 10−6 24 96 0.71422 8.27 × 10−6 15 60 0.49016 9.24 × 10−6

x4 14 59 0.42865 3.45 × 10−6 25 100 0.73524 7.13 × 10−6 139 559 4.03110 9.01 × 10−6

x5 13 55 0.34512 7.09 × 10−6 25 100 0.70625 7.09 × 10−6 70 282 2.07100 8.54 × 10−6

x6 14 59 0.40387 8.8 × 10−6 25 100 0.76777 5.27 × 10−6 139 559 4.02440 9.38 × 10−6

Mathematics 2019, 7, 767 12 of 25

Table 4. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 4 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 10 43 0.15461 8.33 × 10−6 18 72 0.11853 9.93 × 10−6 12 48 0.00989 4.60 × 10−6

x2 11 47 0.006276 3.84 × 10−6 19 76 0.014318 8.75 × 10−6 12 48 0.00966 9.57 × 10−6

x3 11 47 0.009859 3.91 × 10−6 20 80 0.0093776 7.15 × 10−6 13 52 0.00887 8.49 × 10−6

x4 11 47 0.007976 5.21 × 10−6 47 189 0.023321 7.83 × 10−6 12 48 0.01207 5.83 × 10−6

x5 12 51 0.008382 4.09 × 10−6 46 185 0.047105 9.76 × 10−6 29 117 0.05371 9.43 × 10−6

x6 12 51 0.008645 3.32 × 10−6 41 165 0.027719 8.77 × 10−6 29 117 0.02396 6.65 × 10−6

5000

x1 11 47 0.022024 5.21 × 10−6 20 80 0.029445 5.57 × 10−6 13 52 0.02503 3.49 × 10−6

x2 11 47 0.020587 8.59 × 10−6 20 80 0.033115 9.8 × 10−6 13 52 0.02626 7.24 × 10−6

x3 11 47 0.023714 8.75 × 10−6 21 84 0.033318 8.01 × 10−6 14 56 0.03349 6.29 × 10−6

x4 12 51 0.024728 3.26 × 10−6 49 197 0.071715 9.46 × 10−6 13 52 0.02258 4.25 × 10−6

x5 12 51 0.031015 9.14 × 10−6 49 197 0.068565 8.68 × 10−6 31 125 0.05471 7.59 × 10−6

x6 12 51 0.030012 7.43 × 10−6 44 177 0.070862 7.79 × 10−6 63 254 0.10064 8.54 × 10−6

10,000

x1 11 47 0.041476 7.37 × 10−6 20 80 0.043013 7.88 × 10−6 13 52 0.03761 4.93 × 10−6

x2 12 51 0.047866 3.4 × 10−6 21 84 0.051685 6.94 × 10−6 14 56 0.04100 3.37 × 10−6

x3 12 51 0.042607 3.46 × 10−6 22 88 0.050422 5.67 × 10−6 14 56 0.03919 8.90 × 10−6

x4 12 51 0.036406 4.61 × 10−6 50 201 0.17563 9.84 × 10−6 32 129 0.09613 6.02 × 10−6

x5 13 55 0.041374 3.61 × 10−6 50 201 0.20035 9.03 × 10−6 32 129 0.09177 6.44 × 10−6

x6 13 55 0.039847 2.94 × 10−6 45 181 0.12214 8.11 × 10−6 64 258 0.20791 9.39 × 10−6

50,000

x1 12 51 0.13928 4.61 × 10−6 21 84 0.27145 8.83 × 10−6 14 56 0.17193 3.63 × 10−6

x2 12 51 0.18031 7.6 × 10−6 22 88 0.23149 7.78 × 10−6 14 56 0.15237 7.54 × 10−6

x3 12 51 0.12526 7.74 × 10−6 23 92 0.28789 6.36 × 10−6 15 60 0.16549 6.66 × 10−6

x4 13 55 0.14322 2.88 × 10−6 53 213 0.61624 8.75 × 10−6 67 270 0.76283 7.81 × 10−6

x5 13 55 0.17904 8.08 × 10−6 53 213 0.7119 8.02 × 10−6 67 270 0.76157 8.80 × 10−6

x6 13 55 0.13635 6.57 × 10−6 47 189 0.48192 9.8 × 10−6 269 1080 2.92510 9.41 × 10−6

100,000

x1 12 51 0.24293 6.52 × 10−6 22 88 0.60822 6.25 × 10−6 14 56 0.30229 5.13 × 10−6

x2 13 55 0.27433 3.01 × 10−6 23 92 0.52965 5.51 × 10−6 15 60 0.31648 3.59 × 10−6

x3 13 55 0.2714 3.06 × 10−6 23 92 0.57064 8.99 × 10−6 32 129 0.72838 9.99 × 10−6

x4 13 55 0.26819 4.08 × 10−6 54 217 1.1805 9.1 × 10−6 135 543 2.86780 9.73 × 10−6

x5 14 59 0.31696 3.2 × 10−6 54 217 1.107 8.34 × 10−6 272 1092 5.74140 9.91 × 10−6

x6 13 55 0.2698 9.29 × 10−6 49 197 1.0617 7.49 × 10−6 548 2197 11.44130 9.87 × 10−6

Mathematics 2019, 7, 767 13 of 25

Table 5. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 5 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 19 78 0.71709 8.63 × 10−6 22 83 0.099338 7.48 × 10−6 16 63 0.07575 6.03 × 10−6

x2 21 86 0.017127 7.65 × 10−6 23 88 0.016014 7.31 × 10−6 16 63 0.01470 5.42 × 10−6

x3 23 95 0.013909 7.23 × 10−6 23 90 0.016328 9.31 × 10−6 33 132 0.02208 6.75 × 10−6

x4 22 92 0.0165 8.64 × 10−6 49 197 0.030124 8.45 × 10−6 30 121 0.01835 8.39 × 10−6

x5 35 145 0.024702 8.26 × 10−6 53 213 0.039321 8.38 × 10−6 32 129 0.02700 8.47 × 10−6

x6 43 182 0.027471 8.7 × 10−6 46 185 0.033627 8.8 × 10−6 30 121 0.01712 6.95 × 10−6

5000

x1 146 592 0.23803 9.45 × 10−6 24 91 0.060158 6.36 × 10−6 17 67 0.04394 5.64 × 10−6

x2 21 86 0.04337 9.46 × 10−6 25 95 0.060385 6.24 × 10−6 17 67 0.04635 5.07 × 10−6

x3 24 99 0.054619 8.27 × 10−6 25 98 0.040015 5.86 × 10−6 35 140 0.08311 9.74 × 10−6

x4 24 100 0.066424 6.66 × 10−6 53 213 0.098097 9.11 × 10−6 33 133 0.08075 6.02 × 10−6

x5 38 157 0.071222 9.28 × 10−6 58 233 0.10958 8.56 × 10−6 35 141 0.10091 7.51 × 10−6

x6 45 190 0.090276 7.14 × 10−6 50 201 0.21521 7.65 × 10−6 32 129 0.08054 8.55 × 10−6

10,000

x1 211 853 0.60357 9.65 × 10−6 25 95 0.076427 5.4 × 10−6 17 67 0.06816 8.81 × 10−6

x2 22 90 0.08012 4.98 × 10−6 25 95 0.098461 8.9 × 10−6 17 67 0.08833 7.80 × 10−6

x3 25 103 0.089269 5.89 × 10−6 25 98 0.07495 8.64 × 10−6 37 148 0.14732 6.36 × 10−6

x4 25 104 0.11781 5.54 × 10−6 55 221 0.19048 9.11 × 10−6 37 149 0.14293 8.25 × 10−6

x5 40 165 0.15859 7.43 × 10−6 60 241 0.19751 9.01 × 10−6 36 145 0.14719 8.23 × 10−6

x6 46 194 0.1728 8.62 × 10−6 51 205 0.28882 9.62 × 10−6 74 298 0.26456 7.79 × 10−6

50,000

x1 225 909 2.1373 9.93 × 10−6 26 99 0.34575 6.75 × 10−6 42 169 0.58113 7.78 × 10−6

x2 23 94 0.31098 4.48 × 10−6 27 103 0.43806 5.16 × 10−6 42 169 0.58456 7.13 × 10−6

x3 26 107 0.36293 6.83 × 10−6 27 106 0.4815 5.28 × 10−6 41 165 0.58717 8.87 × 10−6

x4 26 108 0.32427 9.72 × 10−6 60 241 0.90868 8.66 × 10−6 40 161 0.56431 7.17 × 10−6

x5 43 177 0.48938 9.47 × 10−6 65 261 0.7924 9.05 × 10−6 82 330 1.08920 8.44 × 10−6

x6 50 210 0.69117 8.12 × 10−6 56 225 0.72334 8.19 × 10−6 80 322 1.06670 7.82 × 10−6

100,000

x1 231 933 4.2588 9.85 × 10−6 26 99 0.71242 9.73 × 10−6 43 173 1.09620 8.47 × 10−6

x2 139 564 2.7266 9.96 × 10−6 27 103 0.62746 7.39 × 10−6 43 173 1.10040 7.77 × 10−6

x3 26 107 0.57505 9.92 × 10−6 27 106 0.82989 7.77 × 10−6 42 169 1.08330 9.66 × 10−6

x4 27 112 0.62227 8.52 × 10−6 62 249 1.5474 9 × 10−6 85 342 2.11880 9.22 × 10−6

x5 45 185 0.8992 7.79 × 10−6 67 269 1.6692 9.5 × 10−6 84 338 2.10640 9.78 × 10−6

x6 52 218 1.4318 7.37 × 10−6 58 233 1.4333 8.32 × 10−6 167 671 4.06200 9.90 × 10−6

Mathematics 2019, 7, 767 14 of 25

Table 6. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 6 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 13 55 1.38 5.68 × 10−6 23 92 0.4038 9.28 × 10−6 15 60 0.01671 4.35 × 10−6

x2 13 55 0.013339 5.47 × 10−6 23 92 0.016325 8.92 × 10−6 15 60 0.01346 4.18 × 10−6

x3 13 55 0.066142 4.81 × 10−6 23 92 0.023045 7.86 × 10−6 15 60 0.01630 3.68 × 10−6

x4 13 55 0.026838 3.3 × 10−6 23 92 0.016172 5.38 × 10−6 14 56 0.01339 7.48 × 10−6

x5 12 51 0.009864 9.45 × 10−6 22 88 0.03785 8.62 × 10−6 14 56 0.01267 6.01 × 10−6

x1 12 51 0.009881 5.57 × 10−6 22 88 0.015013 5.08 × 10−6 14 56 0.01685 3.54 × 10−6

5000

x1 14 59 0.042533 3.56 × 10−6 25 100 0.061642 5.22 × 10−6 15 60 0.05038 9.73 × 10−6

x2 14 59 0.036648 3.43 × 10−6 25 100 0.092952 5.02 × 10−6 15 60 0.04775 9.36 × 10−6

x3 14 59 0.043452 3.02 × 10−6 24 96 0.068141 8.82 × 10−6 15 60 0.04923 8.25 × 10−6

x4 13 55 0.032579 7.38 × 10−6 24 96 0.084625 6.04 × 10−6 15 60 0.05793 5.64 × 10−6

x5 13 55 0.03295 5.92 × 10−6 23 92 0.086122 9.67 × 10−6 15 60 0.04597 4.53 × 10−6

x6 13 55 0.033062 3.49 × 10−6 23 92 0.093318 5.7 × 10−6 14 56 0.05070 7.93 × 10−6

10,000

x1 14 59 0.064917 5.04 × 10−6 25 100 0.21424 7.38 × 10−6 68 274 0.40724 9.06 × 10−6

x2 14 59 0.069913 4.84 × 10−6 25 100 0.13978 7.09 × 10−6 68 274 0.41818 8.72 × 10−6

x3 14 59 0.08473 4.27 × 10−6 25 100 0.1731 6.25 × 10−6 34 137 0.21905 6.22 × 10−6

x4 14 59 0.075847 2.92 × 10−6 24 96 0.14744 8.54 × 10−6 15 60 0.10076 7.98 × 10−6

x5 13 55 0.07974 8.38 × 10−6 24 96 0.14169 6.85 × 10−6 15 60 0.12680 6.40 × 10−6

x6 13 55 0.063129 4.94 × 10−6 23 92 0.15294 8.06 × 10−6 15 60 0.11984 3.78 × 10−6

50,000

x1 15 63 0.25329 3.15 × 10−6 26 104 0.64669 8.26 × 10−6 143 575 3.09120 9.42 × 10−6

x2 15 63 0.36394 3.03 × 10−6 26 104 0.67717 7.95 × 10−6 143 575 3.06200 9.06 × 10−6

x3 14 59 0.2413 9.54 × 10−6 26 104 0.5562 7 × 10−6 142 571 3.04950 9.04 × 10−6

x4 14 59 0.27502 6.53 × 10−6 25 100 0.56171 9.56 × 10−6 69 278 1.53920 9.14 × 10−6

x5 14 59 0.36404 5.24 × 10−6 25 100 0.57982 7.67 × 10−6 68 274 1.49490 9.43 × 10−6

x6 14 59 0.2506 3.09 × 10−6 24 96 0.58645 9.03 × 10−6 15 60 0.38177 8.44 × 10−6

100,000

x1 15 63 0.84781 4.45 × 10−6 27 108 1.3215 5.86 × 10−6 292 1172 13.59530 9.53 × 10−6

x2 15 63 0.66663 4.28 × 10−6 27 108 1.5062 5.63 × 10−6 290 1164 13.30930 9.75 × 10−6

x3 15 63 0.66683 3.77 × 10−6 26 104 1.166 9.9 × 10−6 144 579 6.68150 9.96 × 10−6

x4 14 59 0.62697 9.24 × 10−6 26 104 1.3961 6.78 × 10−6 141 567 6.50800 9.92 × 10−6

x5 14 59 0.62891 7.41 × 10−6 26 104 1.2711 5.44 × 10−6 70 282 3.30510 8.07 × 10−6

x6 14 59 0.62422 4.37 × 10−6 25 100 1.1685 6.4 × 10−6 34 137 1.64510 6.37 × 10−6

Mathematics 2019, 7, 767 15 of 25

Table 7. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 7 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 6 28 0.25689 2 × 10−6 17 69 1.2275 6.98 × 10−6 14 57 0.00953 5.28 × 10−6

x2 6 28 0.008469 1.26 × 10−6 15 61 0.23396 9.89 × 10−6 13 53 0.00896 9.05 × 10−6

x3 4 20 0.003619 9.25 × 10−6 16 65 0.008095 5.79 × 10−6 3 12 0.00426 8.47 × 10−6

x4 5 24 0.004345 5.7 × 10−6 16 65 0.010077 5.21 × 10−6 15 61 0.01169 6.73 × 10−6

x5 6 28 0.007146 4.42 × 10−6 19 77 0.05354 4.95 × 10−6 31 126 0.03646 9.03 × 10−6

x6 6 27 0.004299 4.43 × 10−6 18 72 0.025677 8.93 × 10−6 15 60 0.01082 3.99 × 10−6

5000

x1 6 28 0.012915 4.47 × 10−6 18 73 0.17722 7.6 × 10−6 15 61 0.03215 4.25 × 10−6

x2 6 28 0.012272 2.81 × 10−6 17 69 0.027729 5.25 × 10−6 14 57 0.02942 7.40 × 10−6

x3 5 24 0.014669 1.16 × 10−6 17 69 0.02985 6.31 × 10−6 4 16 0.01107 1.01 × 10−7

x4 6 28 0.012765 7.14 × 10−7 17 69 0.028176 5.68 × 10−6 16 65 0.04331 5.43 × 10−6

x5 6 28 0.01331 9.89 × 10−6 20 81 0.032213 5.39 × 10−6 33 134 0.09379 7.78 × 10−6

x6 6 27 0.015828 9.91 × 10−6 19 76 0.044328 9.73 × 10−6 15 60 0.04077 8.92 × 10−6

10,000

x1 6 28 0.022346 6.32 × 10−6 19 77 0.17863 5.23 × 10−6 15 61 0.06484 6.01 × 10−6

x2 6 28 0.022669 3.97 × 10−6 17 69 0.049242 7.42 × 10−6 15 61 0.07734 3.77 × 10−6

x3 5 24 0.039342 1.64 × 10−6 17 69 0.048238 8.92 × 10−6 4 16 0.02707 1.42 × 10−7

x4 6 28 0.021017 1.01 × 10−6 17 69 0.04807 8.03 × 10−6 16 65 0.07941 7.69 × 10−6

x5 7 32 0.031654 7.83 × 10−7 20 81 0.063156 7.62 × 10−6 34 138 0.14942 6.83 × 10−6

x6 7 31 0.023456 7.85 × 10−7 20 80 0.059438 6.7 × 10−6 34 138 0.15224 8.81 × 10−6

50,000

x1 7 32 0.092452 7.91 × 10−7 20 81 1.0808 5.7 × 10−6 16 65 0.25995 4.89 × 10−6

x2 6 28 0.1068 8.88 × 10−6 18 73 0.32804 8.08 × 10−6 15 61 0.24674 8.42 × 10−6

x3 5 24 0.065684 3.66 × 10−6 18 73 0.2189 9.71 × 10−6 4 16 0.09405 3.18 × 10−7

x4 6 28 0.10193 2.26 × 10−6 18 73 0.3497 8.75 × 10−6 36 146 0.55207 6.39 × 10−6

x5 7 32 0.095676 1.75 × 10−6 21 85 0.22595 8.3 × 10−6 35 142 0.54679 9.05 × 10−6

x6 7 31 0.092855 1.76 × 10−6 21 84 0.22374 7.3 × 10−6 36 146 0.55764 7.59 × 10−6

100,000

x1 7 32 0.17597 1.12 × 10−6 20 81 2.1675 8.06 × 10−6 17 69 0.52595 5.68 × 10−6

x2 7 32 0.1741 7.03 × 10−7 19 77 0.45553 5.57 × 10−6 16 65 0.52102 4.34 × 10−6

x3 5 24 0.17522 5.18 × 10−6 19 77 0.43219 6.69 × 10−6 4 16 0.14864 4.50 × 10−7

x4 6 28 0.20785 3.19 × 10−6 19 77 0.52259 6.03 × 10−6 36 146 1.05360 9.04 × 10−6

x5 7 32 0.23979 2.48 × 10−6 22 89 0.6171 5.72 × 10−6 74 299 2.10730 8.55 × 10−6

x6 7 31 0.23128 2.48 × 10−6 22 88 0.57384 5.03 × 10−6 37 150 1.08240 6.66 × 10−6

Mathematics 2019, 7, 767 16 of 25

Table 8. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 8 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

1000

x1 7 28 0.11495 3.03 × 10−6 9 32 0.85797 7.6 × 10−6 69 279 0.05538 8.95 × 10−6

x2 7 28 0.005034 3.03 × 10−6 9 32 0.034675 7.6 × 10−6 270 1085 0.18798 9.72 × 10−6

x3 7 28 0.006743 3.03 × 10−6 9 32 0.005985 7.6 × 10−6 24 52 0.02439 6.57 × 10−6

x4 7 28 0.005856 3.03 × 10−6 9 32 0.004808 7.6 × 10−6 27 58 0.01520 7.59 × 10−6

x5 7 28 0.004635 3.03 × 10−6 9 32 0.015026 7.6 × 10−6 28 61 0.04330 9.21 × 10−6

x6 7 28 0.006487 3.03 × 10−6 9 32 0.15778 7.6 × 10−6 40 85 0.02116 8.45 × 10−6

5000

x1 5 22 0.009068 4.52 × 10−6 7 26 0.67239 1.3 × 10−6 658 2639 1.13030 9.98 × 10−6

x2 5 22 0.009369 4.52 × 10−6 7 26 0.010651 1.3 × 10−6 27 58 0.05101 7.59 × 10−6

x3 5 22 0.010895 4.52 × 10−6 7 26 0.015758 1.3 × 10−6 49 104 0.08035 8.11 × 10−6

x4 5 22 0.014958 4.52 × 10−6 7 26 0.014935 1.3 × 10−6 40 85 0.07979 8.45 × 10−6

x5 5 22 0.01507 4.52 × 10−6 7 26 0.01524 1.3 × 10−6 18 40 0.09128 9.14 × 10−6

x6 5 22 0.008716 4.52 × 10−6 7 26 0.1999 1.3 × 10−6 17 38 0.18528 8.98 × 10−6

10,000

x1 6 27 0.031198 3.81 × 10−6 5 19 0.044387 5.06 × 10−6 49 104 0.20443 7.62 × 10−6

x2 6 27 0.02098 3.81 × 10−6 5 19 0.0223 5.06 × 10−6 40 85 0.15801 8.45 × 10−6

x3 6 27 0.01991 3.81 × 10−6 5 19 0.018209 5.06 × 10−6 19 42 0.37880 7.66 × 10−6

x4 6 27 0.025402 3.81 × 10−6 5 19 0.021654 5.06 × 10−6 90 187 1.25802 9.7 × 10−6

x5 6 27 0.025816 3.81 × 10−6 5 19 0.017353 5.06 × 10−6 988 1988 12.68259 9.93 × 10−6

x6 6 27 0.025065 3.81 × 10−6 5 19 0.019763 5.06 × 10−6 27 58 0.32859 7.59 × 10−6

50,000

x1 4 21 0.083641 2.34 × 10−7 8 33 0.42902 5.15 × 10−6 19 42 0.52291 6.42 × 10−6

x2 4 21 0.074156 2.34 × 10−7 8 33 0.11525 5.15 × 10−6 148 304 3.93063 9.92 × 10−6

x3 4 21 0.078596 2.34 × 10−7 8 33 0.14432 5.15 × 10−6 937 1886 22.97097 9.87 × 10−6

x4 4 21 0.078289 2.34 × 10−7 8 33 0.11562 5.15 × 10−6 27 58 0.68467 7.59 × 10−6

x5 4 21 0.073535 2.34 × 10−7 8 33 0.11674 5.15 × 10−6 346 702 8.45043 9.79 × 10−6

x6 4 21 0.081909 2.34 × 10−7 8 33 0.10486 5.15 × 10−6 40 85 0.99230 8.45 × 10−6

100,000

x1 4 22 0.1663 6.25 × 10−6 6 25 1.2922 6.81 × 10−7 - - - -
x2 4 22 0.15147 6.25 × 10−6 6 25 0.18839 6.81 × 10−7 - - - -
x3 4 22 0.15582 6.25 × 10−6 6 25 0.16153 6.81 × 10−7 - - - -
x4 4 22 0.15465 6.25 × 10−6 6 25 0.17397 6.81 × 10−7 - - - -
x5 4 22 0.16744 6.25 × 10−6 6 25 0.18586 6.81 × 10−7 - - - -
x6 4 22 0.1687 6.25 × 10−6 6 25 0.17938 6.81 × 10−7 - - - -

Mathematics 2019, 7, 767 17 of 25

Table 9. Numerical Results for Algorithm 1 (DCG), PCG and PDY for Problem 9 with given initial points and dimensions.

Algorithm 1 PCG PDY

DIMENSION INITIAL POINT ITER FVAL TIME NORM ITER FVAL TIME NORM ITER FVAL TIME NORM

4

x1 51 215 0.23665 9.01 × 10−6 79 321 0.5978 9.76 × 10−6 59 241 0.71268 9.36 × 10−6

x2 51 215 0.04968 9.99 × 10−6 77 313 0.016326 9.85 × 10−6 58 237 0.045441 9.73 × 10−6

x3 53 223 0.017211 9.46 × 10−6 80 325 0.16529 9.38 × 10−6 59 241 0.019552 9.9 × 10−6

x4 53 223 0.019004 9.68 × 10−6 83 337 0.041713 9.57 × 10−6 62 253 0.022007 8.07 × 10−6

x5 57 239 0.023447 8.87 × 10−6 81 329 0.11972 9.04 × 10−6 61 249 0.040117 8.36 × 10−6

x6 54 227 0.020832 9.31 × 10−6 82 333 0.016127 9.3 × 10−6 61 249 0.017374 9.18 × 10−6

0 1 2 3 4 5 6 7 8

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

PCG

PDY

Algorithm 2.3

Figure 1. Performance profiles for the number of iterations.

Mathematics 2019, 7, 767 18 of 25

0 1 2 3 4 5 6 7 8 9 10

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

PCG

PDY

Algorithm 2.3

Figure 2. Performance profiles for the CPU time (in seconds).

0 1 2 3 4 5 6 7

t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
(t

)

PDY

PCG

Algorithm 2.3

Figure 3. Performance profiles for the number of function evaluations.

10 15 20 25 30 35 40 45 50 55 60 65

ITERATION

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
E

S
ID

U
A

L
S

 N
O

R
M

Algorithm2.2

PCG

PDY

Figure 4. Convergence histories of Algorithm 1, PCG and PDY on Problem 9.

Mathematics 2019, 7, 767 19 of 25

Applications in Compressive Sensing

There are many problems in signal processing and statistical inference involving finding sparse
solutions to ill-conditioned linear systems of equations. Among popular approach is minimizing
an objective function which contains quadratic (`2) error term and a sparse `1−regularization term,
that is,

min
x

1
2
‖y− Bx‖2

2 + η‖x‖1, (24)

where x ∈ Rn, y ∈ Rk is an observation, B ∈ Rk×n (k << n) is a linear operator, η is a non-negative
parameter, ‖x‖2 denotes the Euclidean norm of x and ‖x‖1 = ∑n

i=1 |xi| is the `1−norm of x. It is easy
to see that problem (24) is a convex unconstrained minimization problem. Due to the fact that if the
original signal is sparse or approximately sparse in some orthogonal basis, problem (24) frequently
appears in compressive sensing and hence an exact restoration can be produced by solving (24).

Iterative methods for solving (24) have been presented in many papers (see References [5,31–35]).
The most popular method among these methods is the gradient based method and the earliest gradient
projection method for sparse reconstruction (GPRS) was proposed by Figueiredo et al. [5]. The first step
of the GPRS method is to express (24) as a quadratic problem using the following process. Let x ∈ Rn

and splitting it into its positive and negative parts. Then x can be formulated as

x = u− v, u ≥ 0, v ≥ 0,

where ui = (xi)+, vi = (−xi)+ for all i = 1, 2, ..., n and (.)+ = max{0, .}. By definition of `1-norm, we
have ‖x‖1 = eT

n u + eT
n v, where en = (1, 1, ..., 1)T ∈ Rn. Now (24) can be written as

min
u,v

1
2
‖y− B(u− v)‖2

2 + ηeT
n u + ηeT

n v, u ≥ 0, v ≥ 0, (25)

which is a bound-constrained quadratic program. However, from Reference [5], Equation (25) can be
written in standard form as

min
z

1
2

zT Dz + cTz, such that z ≥ 0, (26)

where z =

(
u
v

)
, c = ωe2n +

(
−b
b

)
, b = BTy, D =

(
BT B −BT B
−BT B BT B

)
.

Clearly, D is a positive semi-definite matrix, which implies that Equation (26) is a convex
quadratic problem.

Xiao et al. [19] translated (26) into a linear variable inequality problem which is equivalent
to a linear complementarity problem. Furthermore, it was noted that z is a solution of the linear
complementarity problem if and only if it is a solution of the nonlinear equation:

F(z) = min{z, Dz + c} = 0. (27)

The function F is a vector-valued function and the “min” is interpreted as component-wise minimum.
It was proved in References [36,37] that F(z) is continuous and monotone. Therefore problem (24) can
be translated into problem (1) and thus Algorithm 1 (DCG) can be applied to solve it.

In this experiment, we consider a simple compressive sensing possible situation, where our goal
is to restore a blurred image. We use the following well-known gray test images; (P1) Cameraman,
(P2) Lena, (P3) House and (P4) Peppers for the experiments. We use 4 different Gaussian blur kernals
with standard deviation σ to compare the robustness of DCG method with CGD method proposed
in Reference [19]. CGD method is an extension of the well-known conjugate gradient method for
unconstrained optimization CG-DESCENT [20] to solve the `1-norm regularized problems.

Mathematics 2019, 7, 767 20 of 25

To access the performance of each algorithm tested with respect to metrics that indicate a better
quality of restoration, in Table 10 we reported the number of iterations, the objective function (ObjFun)
value at the approximate solution, the mean of squared error (MSE) to the original image x̃,

MSE =
1
n
‖x̃− x∗‖2,

where x∗ is the reconstructed image and the signal-to-noise-ratio (SNR) which is defined as

SNR = 20× log10
(‖x̄‖
‖x− x̄‖

)
.

We also reported the structural similarity (SSIM) index that measure the similarity between the original
image and the restored image [38]. The MATLAB implementation of the SSIM index can be obtained
at http://www.cns.nyu.edu/~lcv/ssim/.

Table 10. Efficiency comparison based on the value of the number of iterations (Iter), objective function
(ObjFun) value, mean-square-error (MSE) and signal-to-noise-ratio (SNR) under different Pi (σ).

Image Iter ObjFun MSE SNR

DCG CGD DCG CGD DCG CGD DCG CGD
P1(1E-8) 8 9 4.397 × 103 4.398 × 103 3.136 × 10−2 3.157 × 10−2 9.42 9.39
P1(1E-1) 8 9 4.399 × 103 4.401 × 103 3.147 × 10−2 3.163 × 10−2 9.40 9.38
P1(0.11) 11 8 4.428 × 103 4.432 × 103 3.229 × 10−2 3.232 × 10−2 9.29 9.29
P1(0.25) 12 8 4.468 × 103 4.473 × 103 3.365 × 10−2 3.289 × 10−2 9.11 9.21

P1(1E-8) 9 9 4.555 × 103 4.556 × 103 3.287 × 10−2 3.3412 × 10−2 9.14 9.07
P1(1E-1) 9 9 4.558 × 103 4.559 × 103 3.298 × 10−2 3.348 × 10−2 9.12 9.06
P1(0.11) 12 12 4.588 × 103 4.591 × 103 3.416 × 10−2 3.446 × 10−2 8.97 8.93
P1(0.25) 7 8 4.628 × 103 4.630 × 103 3.621 × 10−2 3.500 × 10−2 8.72 8.86

P1(1E-8) 9 9 5.179 × 103 5.179 × 103 3.209 × 10−2 3.3259 × 10−2 10.03 9.96
P1(1E-1) 9 9 5.182 × 103 5.182 × 103 3.231 × 10−2 3.267 × 10−2 10.00 9.95
P1(0.11) 7 9 5.209 × 103 5.209 × 103 3.436 × 10−2 3.344 × 10−2 9.73 9.85
P1(0.25) 10 8 5.250 × 103 5.254 × 103 3.557 × 10−2 3.438 × 10−2 9.58 9.73

P1(1E-8) 9 9 4.388 × 103 4.389 × 103 3.299 × 10−2 3.335 × 10−2 9.03 8.99
P1(1E-1) 9 9 4.391 × 103 4.393 × 103 3.308 × 10−2 3.340 × 10−2 9.02 8.98
P1(0.11) 12 8 4.421 × 103 4.424 × 103 3.425 × 10−2 3.411 × 10−2 8.87 8.89
P1(0.25) 7 8 4.461 × 103 4.463 × 103 3.621 × 10−2 3.483 × 10−2 8.63 8.80

The original, blurred and restored images by each of the algorithm are given in Figures 5–8.
The figures demonstrate that both the two tested algorithm can restored the blurred images. It can be
observed from Table 10 and Figures 5–8 that Algorithm 1 (DCG) compete with the CGD algorithm,
therefore, it can be used as an alternative to CGD for restoring blurred image.

http://www.cns.nyu.edu/~lcv/ssim/

Mathematics 2019, 7, 767 21 of 25

Original Blurred

Recovered by CGD Recovered by DCG

Figure 5. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 20.05, SSIM = 0.83 and by DCG (bottom right) with SNR = 20.12, SSIM = 0.83.

Original Blurred

Recovered by CGD Recovered by DCG

Figure 6. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 22.93, SSIM = 0.87 and by DCG (bottom right) with SNR = 24.36, SSIM = 0.90.

Mathematics 2019, 7, 767 22 of 25

Original Blurred

Recovered by CGD Recovered by DCG

Figure 7. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 25.65, SSIM = 0.86 and by DCG (bottom right) with SNR = 26.37, SSIM = 0.87.

Original Blurred

Recovered by CGD Recovered by DCG

Figure 8. The original image (top left), the blurred image (top right), the restored image by CGD
(bottom left) with SNR = 21.50, SSIM = 0.84 and by DCG (bottom right) with SNR = 21.81, SSIM = 0.85.

Mathematics 2019, 7, 767 23 of 25

4. Conclusions

In this research article, we present a CG method which possesses the sufficient descent property
for solving constrained nonlinear monotone equations. The proposed method has the ability to
solve non-smooth equations as it does not require matrix storage and Jacobian information of the
nonlinear equation under consideration. The sequence of iterates generated converge the solution
under appropriate assumptions. Finally, we give some numerical examples to display the efficiency of
the proposed method in terms of number of iterations, CPU time and number of function evaluations
compared with some related methods for solving convex constrained nonlinear monotone equations
and its application in image restoration problems.

Author Contributions: conceptualization, ABA; methodology, ABA; software, HM; validation, PK and AMA;
formal analysis, PK and HM; investigation, PK and AMA; resources, PK ; data curation, ABA and HM;
writing–original draft preparation, ABA; writing–review and editing, HM; visualization, AMA ; supervision, PK;
project administration, PK ; funding acquisition, PK.

Funding: Petchra Pra Jom Klao Doctoral Scholarship for Ph.D. program of King Mongkut’s University of
Technology Thonburi (KMUTT) and Theoretical and Computational Science (TaCS) Center. Moreover, this project
was partially supported by the Thailand Research Fund (TRF) and the King Mongkut’s University of Technology
Thonburi (KMUTT) under the TRF Research Scholar Award (Grant No. RSA6080047).

Acknowledgments: We thank Associate Professor Jin Kiu Liu for providing us with the access of the CGD-CS
MATLAB codes. The authors acknowledge the financial support provided by King Mongkut’s University of
Technology Thonburi through the “KMUTT 55th Anniversary Commemorative Fund”. This project is supported
by the theoretical and computational science (TaCS) center under computational and applied science for smart
research innovation (CLASSIC), Faculty of Science, KMUTT. The first author was supported by the “Petchra Pra
Jom Klao Ph.D. Research Scholarship from King Mongkut’s University of Technology Thonburi”.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gu, B.; Sheng, V.S.; Tay, K.Y.; Romano, W.; Li, S. Incremental support vector learning for ordinal regression.
IEEE Trans. Neural Netw. Learn. Syst. 2015, 26, 1403–1416.

2. Li, J.; Li, X.; Yang, B.; Sun, X. Segmentation-based image copy-move forgery detection scheme. IEEE Trans.
Inf. Forensics Secur. 2015, 10, 507–518.

3. Wen, X.; Shao, L.; Xue, Y.; Fang, W. A rapid learning algorithm for vehicle classification. Inf. Sci. 2015, 295, 395–406.
4. Michael, S.V.; Alfredo, I.N. Newton-type methods with generalized distances for constrained optimization.

Optimization 1997, 41, 257–278.
5. Figueiredo, M.A.T.; Nowak, R.D.; Wright, S.J. Gradient projection for sparse reconstruction: Application to

compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 2007, 1, 586–597.
6. Magnanti, T.L.; Perakis, G. Solving variational inequality and fixed point problems by line searches and

potential optimization. Math. Program. 2004, 101, 435–461.
7. Pan, Z.; Zhang, Y.; Kwong, S. Efficient motion and disparity estimation optimization for low complexity

multiview video coding. IEEE Trans. Broadcast. 2015, 61, 166–176.
8. Xia, Z.; Wang, X.; Sun, X.; Wang, Q. A secure and dynamic multi-keyword ranked search scheme over

encrypted cloud data. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 340–352.
9. Zheng, Y.; Jeon, B.; Xu, D.; Wu, Q.M.; Zhang, H. Image segmentation by generalized hierarchical fuzzy

c-means algorithm. J. Intell. Fuzzy Syst. 2015, 28, 961–973.
10. Solodov, M.V.; Svaiter, B.F. A globally convergent inexact newton method for systems of monotone equations.

In Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and Smoothing Methods; Springer: Dordrecht,
The Netherlands, 1998; pp. 355–369.

11. Mohammad, H.; Abubakar, A.B. A positive spectral gradient-like method for nonlinear monotone equations.
Bull. Comput. Appl. Math. 2017, 5, 99–115.

12. Zhang, L.; Zhou, W. Spectral gradient projection method for solving nonlinear monotone equations.
J. Comput. Appl. Math. 2006, 196, 478–484.

Mathematics 2019, 7, 767 24 of 25

13. Zhou, W.J.; Li, D.H. A globally convergent BFGS method for nonlinear monotone equations without any
merit functions. Math. Comput. 2008, 77, 2231–2240.

14. Zhou, W.; Li, D. Limited memory BFGS method for nonlinear monotone equations. J. Comput. Math. 2007,
25, 89–96.

15. Abubakar, A.B.; Waziria, M.Y. A matrix-free approach for solving systems of nonlinear equations. J. Mod.
Methods Numer. Math. 2016, 7, 1–9.

16. Abubakar, A.B.; Kumam, P. An improved three-term derivative-free method for solving nonlinear equations.
Comput. Appl. Math. 2018, 37, 6760–6773.

17. Abubakar, A.B.; Kumam, P.; Awwal, A.M. A descent dai-liao projection method for convex constrained
nonlinear monotone equations with applications. Thai J. Math. 2018, 17, 128–152.

18. Wang, C.; Wang, Y.; Xu, C. A projection method for a system of nonlinear monotone equations with convex
constraints. Math. Methods Oper. Res. 2007, 66, 33–46.

19. Xiao, Y.; Zhu, H. A conjugate gradient method to solve convex constrained monotone equations with
applications in compressive sensing. J. Math. Anal. Appl. 2013, 405, 310–319.

20. Hager, W.; Zhang, H. A new conjugate gradient method with guaranteed descent and an efficient line search.
SIAM J. Optim. 2005, 16, 170–192.

21. Liu, S.-Y.; Huang, Y.-Y.; Jiao, H.-W. Sufficient descent conjugate gradient methods for solving convex
constrained nonlinear monotone equations. Abstr. Appl. Anal. 2014, 2014, 305643.

22. Liu, J.K.; Li, S.J. A projection method for convex constrained monotone nonlinear equations with applications.
Comput. Math. Appl. 2015, 70, 2442–2453.

23. Ding, Y.; Xiao, Y.; Li, J. A class of conjugate gradient methods for convex constrained monotone equations.
Optimization 2017, 66, 2309–2328.

24. Liu, J.; Feng, Y. A derivative-free iterative method for nonlinear monotone equations with convex constraints.
Numer. Algorithms 2018, 1–18.

25. Muhammed, A.A.; Kumam, P.; Abubakar, A.B.; Wakili, A.; Pakkaranang, N. A new hybrid spectral gradient
projection method for monotone system of nonlinear equations with convex constraints. Thai J. Math. 2018,
16, 125–147.

26. La Cruz, W.; Martínez, J.; Raydan, M. Spectral residual method without gradient information for solving
large-scale nonlinear systems of equations. Math. Comput. 2006, 75, 1429–1448.

27. Bing, Y.; Lin, G. An efficient implementation of Merrill’s method for sparse or partially separable systems of
nonlinear equations. SIAM J. Optim. 1991, 1, 206–221.

28. Yu, Z.; Lin, J.; Sun, J.; Xiao, Y.H.; Liu, L.Y.; Li, Z.H. Spectral gradient projection method for monotone
nonlinear equations with convex constraints. Appl. Numer. Math. 2009, 59, 2416–2423.

29. Yamashita, N.; Fukushima, M. Modified Newton methods for solving a semismooth reformulation of
monotone complementarity problems. Math. Program. 1997, 76, 469–491.

30. Dolan, E.D.; Moré, J.J. Benchmarking optimization software with performance profiles. Math. Program. 2002,
91, 201–213.

31. Figueiredo, M.A.T.; Nowak, R.D. An EM algorithm for wavelet-based image restoration. IEEE Trans.
Image Process. 2003, 12, 906–916.

32. Hale, E.T.; Yin, W.; Zhang, Y. A Fixed-Point Continuation Method for `1-Regularized Minimization with
Applications to Compressed Sensing; CAAM TR07-07; Rice University: Houston, TX, USA, 2007; pp. 43–44.

33. Beck, A.; Teboulle, M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2009, 2, 183–202.

34. Van Den Berg, E.; Friedlander, M.P. Probing the pareto frontier for basis pursuit solutions. SIAM J.
Sci. Comput. 2008, 31, 890–912.

35. Birgin, E.G.; Martínez, J.M.; Raydan, M. Nonmonotone spectral projected gradient methods on convex sets.
SIAM J. Optim. 2000, 10, 1196–1211.

36. Xiao, Y.; Wang, Q.; Hu, Q. Non-smooth equations based method for `1-norm problems with applications to
compressed sensing. Nonlinear Anal. Theory Methods Appl. 2011, 74, 3570–3577.

Mathematics 2019, 7, 767 25 of 25

37. Pang, J.-S. Inexact Newton methods for the nonlinear complementarity problem. Math. Program. 1986, 36, 54–71.
38. Wang, Z.; Bovik, A.C.; Sheikh, H.R.; Simoncelli, E.P. Image quality assessment: From error visibility to

structural similarity. IEEE Trans. Image Process. 2004, 13, 600–612.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Algorithm: Motivation and Convergence Result
	Numerical Examples
	Conclusions
	References

