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Abstract: In this article, we make a detailed study of some mathematical aspects associated with a
generalized Lévy process using fractional diffusion equation with Mittag–Leffler kernel in the context
of Atangana–Baleanu operator. The Lévy process has several applications in science, with a particular
emphasis on statistical physics and biological systems. Using the continuous time random walk, we
constructed a fractional diffusion equation that includes two fractional operators, the Riesz operator
to Laplacian term and the Atangana–Baleanu in time derivative, i.e., AB

a Dα
t ρ(x, t) = Kα,µ ∂

µ
x ρ(x, t).

We present the exact solution to model and discuss how the Mittag–Leffler kernel brings a new point
of view to Lévy process. Moreover, we discuss a series of scenarios where the present model can be
useful in the description of real systems.

Keywords: fractional calculus; continuous time random walks; Lévy process; exact solutions

1. Introduction

The generalization of mathematical diffusion models have a crucial role in the production of
non-Gaussian distributions. Recently, a series of generalized Gaussian distributions were reported in
a huge quantity of contexts. Among them, in super-statistical [1–3], diffusion with memory kernels [4–6],
stochastic resetting process [7,8], controlled-diffusion [9–11], complex fluids [12], etc. In this scenario,
a huge quantity of systems present a relation between a non-Gaussian distribution and anomalous
diffusion process by nonlinear growth of the mean square displacement (MSD) in time [13,14], i.e.,
〈(∆x)2〉 = 2Kαtα, in which Kα is a general diffusion coefficient with fractional dimension. The MSD
relation is associated with different diffusive behaviors, classified as follows: 0 < α < 1, the system
is sub-diffusive; α = 1 usual diffusion; and 1 < α < 2 occurs the super-diffusion. In particular cases,
when α = 2 the diffusion is ballistic and for 2 < α occurs the hyper diffusive process. Moreover, there
are fractional dynamics that imply an infinity MSD behavior, i.e.,∫ ∞

−∞
(∆x)2ρ(x)dx ∼ +∞, (1)

in which ρ(x) is a probability function and ∆x = x− 〈x〉. In math, the relation (1) is justified in Lévy
statistic [15,16]. In physics, the relation (1) occurs due to instantaneous propagation velocity, that is the
central idea of Lévy flights.

The Lévy statistic is a powerful tool to approach some complex systems in physics [17,18].
A central point of the Lévy statistic is the Lévy-distribution that has the following structure:

Lµ(z) ∼
1

2π

∫ ∞

−∞

eikz−a|k|µ dk
Z , (2)

which have a long-tailed and is characterized by a power-law function [19,20]. The Lévy distribution,
which retrieves the Gaussian distribution from µ = 2 to µ = 1, obtains the Cauchy distribution.
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In addition, the Lévy distribution is a consequences of a generalized version of the central limit
theorem [21], in which the sum of random variables (identically distributed) with distributions having
power-law tails converge to one of the Lévy distributions. In works [22,23], the authors showed that
the Lévy-stable distribution emerges as a natural consequence of fractional collisions models (Rayleigh,
driven Maxwell gas). Another option is the fractional Fokker Planck (FFP) equation that has a broad
field of investigation. A typical example of an application of the FFP equation occurs to the free
particle in the context of diffusion equations, which was reported by Metzler, Barkai, and Klafter [24].
In this scenario, there is a different class of generalized random walks, that may include nonlocality
and memory, among other effects [25]. A way to build the fractional random walks is by use of the
Scher–Montroll equation (continuous time random walk or CTRW theory) [26–28]. In this sense, the
Riesz–Feller fractional derivative appears in diffusion equations as a natural consequence of big jumps
that sometimes occur to random walks [16]. Thereby, using the CTRW formalism, it is possible to write
the following equation:

∂α

∂tα
ρ(x, t) = Kα,µ

∂µ

∂|x|µ ρ(x, t), 1 < µ < 2 and 0 < α < 1, (3)

in which ∂µ

∂|x|µ and ∂α

∂tα are the Riesz–Feller and Caputo fractional derivative, respectively [29].
The solution of Equation (3) is well-known and ρ(x, 0) = δ(x) can be written as follows:

ρ(x, t) =
1

2π

∫ +∞

−∞
dy exp[ixy]Eα

[
−tα|y|µKα,µ

]
, (4)

in which Eα[·] is the Mittag–Leffler function. The solution of Equation (3) was found by Mainardi et al.
in [30] and expressed in term of the Fox function in [31]. Considering α = 1 and Kα,µ = 1, we have

ρ(x, t) =
1

t
1
µ

Lµ

[
|x|
t

1
µ

]
. (5)

Moreover, for µ = 2 and α = 1, we retrieve the Gaussian distribution; for µ = 1 and α = 1, we
have another particular case that corresponds to the Cauchy distribution. In this decade, the Lévy
process was reported in several contexts: Optics [32], chaos [33], cold atoms [34], turbulence [35],
glass [36], quantum dots [37], bio-physics [38], single-molecule spectroscopy [39], etc. Motivated by
huge amount of applications in science, in this work, we constructed a generalization of Lévy process
in the context of temporal memory. To do this, we consider the most investigated kernel in actuality,
the Mittag–Leffler (ML) memory kernels.

The ML function, represented by Eα symbol, is a generalization of the exponential function in the
context of fractional calculus [40,41]. The Eα,β-function for two parameters is given by

Eα,β (z) =
∞

∑
k=0

zk

Γ[αk + β]
, (6)

in which z, α, β ∈ C.
Some complexities present in the actual scenario of the diffusion process are deeply linked

with memory process [42]. Examples, there are several biological systems in which the collective
movement of particles (or organisms) needs some type of special dynamical approach, which can
include analytical models and simulations [43]. In recent works [44,45] Hristov shows a series of
diffusive models which include memory effects due to generalized kernels. In works [46–48] the
authors suggest that the new fractional the operator can capture a more substantial memory effect
in a series of particular cases. Hence, investigate the mechanisms which lead to anomalous process
and non-Gaussian distributions are central themes in mathematical of diffusion. In particular, the
Lévy process (in Riesz–Feller sense [13]) can be determined through analytical calculus of probability
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distribution in CTRW approach, and applications for it is present in many fields of physics [17]. In this
direction, the present work investigates how memory kernel modifies the Lévy process.

The paper is outlined as follows: In Section 2, we present the preliminary concepts about fractional
calculus. In Section 3 we introduce our model that consists of a construction of the fractional diffusion
equation with Riesz derivative and Mittag–Leffler kernels. We present the exact solution for the model.
In the following, we present a series of behavior to exemplify the different behaviors to the generalized
Lévy process in the context of Mittag–Leffler kernel. Finally, in Section 4, we present the conclusions
and discuss possible scenarios where results can be applied.

2. Preliminaries Concepts: Fractional Derivatives

In this section, we review some notions and concepts used throughout the paper.
Nowadays, there are several definitions and references that bring in detail mathematical and

applicable aspects of fractional derivatives [40]. The best-known definitions for the fractional derivative
are associated with formulations made by Riemann, Liouville, and Caputo.

Definition 1. Considering a continuous function f : R+ → R. The fractional derivative of Caputo, to arbitrary
order α ∈ [0,+∞) is defined by

CDα
t f (t) =

1
Γ[n− α]

∫ t

0

1
(t− t′)1+α−n

dn

dt′n
f (t′)dt′, t ∈ R, (7)

in which Γ[. . . ] is the Gamma function and n− 1 < α < n. Considering α ∈ (0, 1], the Laplace transform
(
∫ ∞

0 dte−st f (t) = f̃ (s)) implies

L{CDα
t f (t)} = sα f̃ (s)− sα−1 f (0). (8)

To α → n, Equation (7) retrieves the usual n-order derivative. For more details, see [40]. In the
same way that the fractional derivative was defined, a corresponding fractional integral can be
defined [40].

To exemplify the applicability of definition (7), we can consider a fractional order α = 1/2 and a
power-law function tn to n > 1. Thereby, we obtain

d
1
2

dt
1
2

tn =
Γ[n + 1]
Γ[n + 1

2 ]
tn− 1

2 . (9)

To α ∈ [0, 1) we obtain

dα

dtα
tn =

Γ[n + 1]
Γ[n + 1− α]

tn−α. (10)

Therefore, the fractional derivative for power-law function has a similar mathematical structure
of the integer-order derivative (Leibniz–Newton), for example, Equation (10) followed limit to α = 1

lim
α→1

dα

dtα
tn = ntn−1. (11)

There are several other definitions of fractional derivatives, and these satisfy several mathematical
properties that are detailed in references [40,49,50]. The fractional derivatives applied in differential
equations generate a series of special functions [51,52], for example, the application of fractional
derivatives on the diffusion equation implies solutions that are written by uses of Mittag–Leffler and
Fox functions. In fact, the versatility of the fractional α index introduces the memory concept if we
consider a fractional derivative applied in a temporal variable. The fractional derivative can be applied
into the spatial variable which can imply a nonlocality effect, an example of this occurs in fractional
Schrödinger equation [53].
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Another definition that we use in this work is the Riesz–Feller fractional derivative, which is
defined as follows:

θDµ
x f (x) =

Γ[µ + 1]
π

sin
[
(µ + θ)π

2

] ∫ +∞

0
dξ

f (x + ξ)− f (x)
ξ1+µ

+
Γ[µ + 1]

π
sin
[
(µ− θ)π

2

] ∫ +∞

0
dξ

f (x− ξ)− f (x)
ξ1+µ

, (12)

in which 1 < µ < 2 and skewness θ (|θ| < min{µ, µ− 2}, θ 6= ±1). The fractional derivatives such
as Riemann–Liouville, Letnikov, Riesz, and others, are constituted by convolution integrals with
power-law kernels. In this scenario, a huge quantity of kernels were investigated in more different
contexts [41,44,54]. Particularly, the diffusion with fractional derivatives generalize the Gaussian
solution (Einstein sense) to a rich class of non-Gaussian distributions [4,8].

Recently, the presence of temporal memory kernels on descriptions of physical systems has
been an interesting mathematical tool to investigate complexity in nature [55–59]. In this sense,
a series of news kernels was proposed to approach mathematical models that have become limited.
A successful proposal in the description of many systems was the proposal of Atangana and Baleanu,
which introduces a particular Mittag–Leffler function as a kernel [46,60,61]. The Atangana–Baleanu
operator obtained complete success and was used to describe chaotic systems [62], memory effects [44],
non-Gaussian processes [4], epidemic systems [63], and others. In this sense, new approaches to
fractional dynamics have come to light [4,8,64]. They opened up new discussions and introduced new
memory effects on physical systems. In this way, the study of memory kernels attracted more and
more scientists. Here, we defined a general Mittag–Leffler operator to exemplify the mathematical
structure of discussed theme, so

AB
0 Dα

t f (t) =
b(α)
1− α

∫ t

a
Eα

[
− α

1− α
(t− t′)α

]
d
dt′

f (t′)dt′, t ∈ R, (13)

in which Eα(z) = Eα,1(z) is the Mittag–Leffler function [40] with 0 < α < 1. To α → 1, we obtain
the integer derivative of first order. The kernel Eα(z) is not singular (i.e., limz→0 Eα(z) 6= ±∞). Here,
one question may be considered, how can the nonsingular Mittag–Leffler kernel in Lévy-diffusion
equation be linked with continuous time random walk (CTRW)? In the next section, we applied the
CTRW formalism to build the fractional diffusion equation that implies the Lévy process in the context
of Mittag–Leffler memory kernel.

3. From CTRW to Generalized Lévy Process

In fact, the CTRW [16] brings the fractional derivative in the diffusion process as a consequence of
disorder, traps, memory, or other mechanisms [65]. In the case of the CTRW [16], the walker run in a
medium that can admit some irregularities, and is thereby conventional, takes a step λ as a random
variable in an arbitrary direction in x. Moreover, we assume a given time interval between each step of
the walker. All steps are statistically independent, occurring at random time intervals. We can then
write the length of the jump as a probability density function,

λ(x) =
∫ ∞

0
ψ(x, t)dt, (14)

as well as the waiting time

w(t) =
∫ ∞

−∞
ψ(x, t)dx, (15)

in which λ(x)dx corresponds to the density probability of a long jump L in a given range x → x + dx,
and the density probability of τ (waiting time), w(t)dt, will be chosen from between two steps. Thus,
the walker can be described by a probability density function ψ(x, t), where L and τ are random
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variables. The function ψ(x, t) can be decoupled, i.e., ψ(x, t) = w(t)λ(x). In this sense, the waiting
time and the length of the jumps may present divergences depending on the nature of the functions w(t)
and λ(t). These quantities may bring elementary pieces of information about the system. For example,
if the mean of waiting time distribution is finite and jump length variance is divergent, we obtain Lévy
distributions, or else in the case that the average waiting time distribution diverges, keeping the jump
length variance constant implies the random walker with a fractal nature on time [16].

Thus, considering time as a discrete variable, we can establish a parallel between random walkers
with discrete and continuous time. Therefore, we have successive jumps occurring between uniform
time intervals, but, in case that time continuously evolves, the duration between jumps constitutes a
random variable. In this way, the prediction of the walker in the next position may not only want local
knowledge of walker but also of positions in earlier times. Thereby, the system has a dependence of past
history, and reveals that the non-Markovian process can be described by use of CTRW theory [13,16].

Now, using the CTRW theory, we want to build a fractional diffusion equation that is associated
with generalized Lévy process. The average waiting time is considered,

τ =
∫ ∞

0
dtw(t)t, (16)

as well as the jump length variance

σ2 =
∫ ∞

−∞
dxλ(x)x2. (17)

By means of such averages, and considering the finite or divergent nature of these quantities, we
can characterize different types of CTRW. In a more general case, any of these different CTRWs can be
described by the integral equation:

η(x, t) =
∫ ∞

−∞
dx′

∫ t

0
dt′η(x′, t′)ψ(x− x′, t− t′) + δ(x)δ(t), (18)

where η(x, t) is the probability per unit of displacement and time of a random hiker who has left
the x in the time t, to the position x′ in time t′, and the last term (δ(t)δ(x)) is the initial condition of
the walker.

Therefore, the probability density function ρ(x, t) of the walker to be found in position x in the
time t is given by

ρ(x, t) =
∫ t

0
dt′η(x, t′) Φ(t− t′), (19)

in which

Φ(t) = 1−
∫ t

0
dt′w(t′), (20)

is the probability of the walker not jumping during the time interval (0, t), that is, to remain in the
initial position. Applying the Laplace transform in Equations (19) and (20) and using the convolution
theorem, we have

ρ(x, s) =
1
s

η(x, s)[1− w(s)]. (21)

To determine η(x, s), we must return to (18) and apply the Laplace transform on the temporal
variable and Fourier transform on the spatial variable. Making use of integral transformations, we have

η(k, s)[1− ψ(k, s)] = 1. (22)
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Using the previous result (Equation (21)) and considering an initial condition as ρ0(x), we obtain
the following equation

ρ(k, s) =
1− w(s)

s
ρ0(k)

1− ψ(k, s)
, (23)

which is known as the Scher–Montroll equation. This equation can be applied to systems that have the
jump length coupled to the waiting time. In 1987, Klafter, Blumen, and Shlesinger [16] demonstrated
how the continuous random walk can be used to approach anomalous diffusive behaviors.

Here, we consider that the waiting time distribution in Laplace space assumes the following form:

w(s) =
1

1 + τsL
{

b(α)
1− α

Eα

[
− αtα

1− α

]} , (24)

with w(s) ∼ 1− csα to t→ ∞. Equation (24) has a structure present in the following works [4,66]. If we
consider that 〈x2〉 is infinite, the λ-distribution in Fourier space has the following asymptotic limit:

λ(k) ∼ 1− σ|k|µ, (25)

as presented by Metzler et al. in [16], we can rewrite the Scher–Montroll equation as follows:

ρ(k, s) =

b(α)
1− α

sα−1

sα +
α

1− α

ρ(k, 0)

b(α)
1− α

sα−1

sα +
α

1− α

s +Kα|k|µ
, (26)

in which Kα = σ/τ. Using the relation

F
{

∂µ

∂|x|µ f (x)
}

= F
{

θDµ
x f (x)

} ∣∣∣∣∣
θ=0

= −|k|µF{ f (x)}, (27)

and performing the inverse Laplace–Fourier transforms, we obtain the following equation:

AB
0 Dα

t ρ(x, t) = Kα
∂µ

∂|x|µ ρ(x, t), (28)

that corresponds to the Atangana–Baleanu diffusion in the context of Lévy flights. The particular case in
which µ = 2 was investigated was in [4], in this work, the author found exact solutions and performing
applications in the stochastic resetting problem. The solution corresponds to Fourier–Laplace the
inverse function of the following expression:

ρ(k, s) =
ρ(k, 0)sα−1 b(α)

1− α

sα

(
b(α)
1− α

+Kαkµ

)
+

αKαkµ

1− α

=
1

b(α) + (1− α)Kαkµ

b(α)ρ(k, 0)sα−1

sα +
αKαkµ

b(α) + (1− α)Kαkµ

, (29)

performing the Laplacian–Fourier inverse transforms we obtain
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ρ(x, t) =
1

2π

∫ +∞

−∞

∫ +∞

−∞
dy′dy

b(α)ρ(y′, 0) exp[i(x− y′)y]
b(α) + (1− α)Kα|y|µ

Mα,µ(y, t), (30)

in which

Mα,µ(y, t) = Eα

[ −αtα|y|µKα

b(α) + (1− α)Kα|y|µ
]

, (31)

to ρ(x, 0) = δ(x) we have

ρ(x, t) =
1

2π

∫ +∞

−∞
dy

b(α) exp[ixy]
b(α) + (1− α)Kα|y|µ

Eα

[ −αtα|y|µKα

b(α) + (1− α)Kα|y|µ
]

. (32)

The solution (32) implies a rich class of Lévy-like distribution. The solution (32) is composed
by integration of the product of two positive functions, thereby ρ(x, t) > 0 to all x ∈ R with t 6= 0,
a detailed analysis about non-negativity of solution (32) was made by Sandev et al. in [67], considering
a class of function with the same mathematical structure as Equation (29) (in Laplace-space). In Figure 1,
we show Lévy distributions under Atangana–Baleanu operator and fractional Caputo operator.
In Figure 2, we fixed α = 0.1 in Atangana–Baleanu operator and fractional Caputo operator, we
choose different values of µ-index of the Riesz–Feller fractional derivative.
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Figure 1. These figures show a series of distributions that represent the differences among Mittag–Leffler
kernel (a) and power-law kernel (b) in Lévy process. The Mittag–Leffler Lévy flights are represented by
Equation (32); and the fractional Caputo derivative in the Lévy process is represented by Equation (4).
In both figures, we consider the follow values: µ = 1.5 (Lévy process), t = 100, K = 102, and different
α-index. Moreover, in both figures, we use the same scale to make the differences clear.
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Figure 2. These figures show a series of distributions that represent the differences among Mittag–Leffler
kernel (a) and power-law kernel (b) in Lévy process. The Mittag–Leffler Lévy flights are represented by
Equation (32); and the fractional Caputo derivative in the Lévy process is represented by Equation (4).
In both figures, we consider the follow values: α = 0.1 (fractional dynamic in the time), t = 10−2,
K = 102, and different µ-index (to µ 6= 2 we have Lévy process). Moreover, in both figures, we use the
same scale to make the differences clear.
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As mentioned in Equation (1), the second moment of this type of distribution is infinity. However,
in [68], Sokolov, Chechkin, and Klafter proposed a way to analyze the evolution of Lévy distributions in
diffusion context, they consider ρ(x = 0, t) in that x = 0 is the position in initial time, where ρ(x, 0) =
δ(x)—the quantity ρ(0, t) allows us to understand how the function sinks into the relaxation process,
applications of this technique can be founded in [69]. To obtain an analytic expression of ρ(0, t),
consider ζ = tαyµ, we obtain

ρ(0, t) =
1

πµ

∫ +∞

0
dζ

ζ
1
µ−1

t
α
µ

tαb(α)
tαb(α) + (1− α)|ζ|Kα

Eα

[ −αtαζKα

tαb(α) + (1− α)ζKα

]
. (33)

In this sense, we perform the numerical integration present in ρ(0, t) that is represented in Figure 3.
To t→ ∞, in Equation (33) we obtain

ρ(0, t) ∼ Iα,µt−
α
µ (34)

as the asymptotic limit, this limit was represented in Figure 3 to five situations for two points of view the
Mittag–Leffler kernel and the well-known power-law kernel. The particular case in both figures occurs
to α = 1, a well-known case presented in [68]. Another interesting observation in Mittag–Leffler case in
Figure 3 is that, for times less than 100, there a transient that Lévy flight with power-law (Figure 3b)
does not present. It occurs due to the relation that ML function has with exponential function to short
times. Moreover, Figure 3a shows that the asymptotic effect of Lévy flights (34) appears only for a short
time and to t ∼ 1 there is a crossover behavior from the non-Lévy process to a Lévy process.
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Figure 3. These figures show a series of curves (Sokolov analysis [68]) that represent the differences
among Mittag–Leffler kernel (a) and power-law kernel (b) in Lévy process. The Mittag–Leffler cases
are represented by Equation (33) and power-law cases are represented by Equation (4) to x = 0. In both
figures, we consider the following values: µ = 1.5 (Lévy process), K = 102, and different α-index.
Moreover, in both figures, we use the same scale to make the differences clear.

The model proposed in this work has connections with other models, as presented in Figure 4.
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Mittag-Le✏er memory in Lévy process

Non-singular di↵usion Lévy di↵usion

µ ! 2 ↵ ! 1

1

Figure 4. The diagram represents how our model recovers well-known models [4,17].

4. Discussion and Conclusions

In this work, we have investigated the Lévy flight to Atangana–Baleanu fractional derivative.
Using the continuous time random walks, we build a generalized diffusion equation with two fractional
operators, with the fractional Riesz–Feller Laplacian operator and Atangana–Baleanu fractional-time
operator. The physical means of the obtained model is a new approach to Lévy flight in the context
of a nonsingular fractional time operator. We presented the exact analytic solution to the problem.
The results and techniques employed in this work are important tools for studying memory effects
in Lévy process, thus opening new possibilities in future research and applications of fractional
Atangana–Baleanu-Lévy process.

• Biological systems present a complexity that the usual models (with usual calculus) not are
suitable on the description of some experimental results. In this sense, the Lévy flights have been
a powerful approach in Biology. Some examples make mention of following problems:

1. Animals search for food [70–72]. This is one of directions where the fractional models obtain
success, maybe the main reason for this is the presence of a single big jump that probability
distribution admits. However, the usual Lévy-diffusion is subordinated to Brownian motion,
thereby, locally (excluding the big jumps) the Lévy process presents local-Brownian motion.
Our model showed that Ml kernel generalizes the behaviors of distribution to small time
regimes, making possible a new characterization of the animals search process.

2. Organism movement patterns [73–76]. This is one of the most important recent application
of random walks that sometimes requires Lévy flights or Lévy walks for a deeper approach.
A typical application occurs in the run-and-tumble problem of bacteria, bacteria is a small
organism that presents a complex motion which depends on the sense that the flagellum
rotates, Reynolds number, swimming type, etc. In this context, the "run" is when bacteria
(or cell) swims following an almost straight path; and the "tumble" the bacteria (or cell)
rotates almost on the same spot. Recently, the Lévy process has been on description of
run-time distribution [77].

• Transport in complex systems has been a research line of many scientists in diverse fields of
investigation. In this scenario, the Lévy process is present in most different contexts. Below, we
present some examples of relevant problems:

1. Reaction–diffusion process [9,78,79]. The reaction-diffusion process in fractional context
implies a new class of reaction process that is suitable to approaches of reaction–diffusion
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with long-range. This way we can employ to approach complexity in reactions process.
When we think in the reaction process, we think in reaction order. The linear reaction term is
the most ordinary approach, due to the existence of analytical solutions. In this scenario, the
fractional dynamics can be employed to experimentally adjust experimental data, associated
with the fluorescence process [80].

2. Intermittent process [38,81–84]. This investigation line has a particular mechanism in
which the movement state alternates between “motion” and “pauses” (or Brownian motion
alternating between the state with force or free). The intermittent process can describe
the motion of particles immersed in a turbulent fluid, biological environments, and other
complex systems.

Finally, a study of consequences obtained in applications is expected in future works (for instance,
in the intermittent process, reaction–diffusion, search process, etc. [13]) in order to establish with more
details the role of the generalized Lévy process on statistical physics. Regarding this, it is important to
point out that, in this work, the continuous time random walks was analyzed in a complex context
which emerges the general Lévy process. New studies relaxing this distribution could extend the
present contribution, thus allowing new directions to be studied.

Funding: This research received no external funding.

Acknowledgments: This work was supported by Brazilian agency INCT-CAPES. We thank the referees for their
comments and recommendations.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Sposini, V.; Chechkin, A.V.; Seno, F.; Pagnini, G.; Metzler, R. Random diffusivity from stochastic equations:
Comparison of two models for Brownian yet non-Gaussian diffusion. New J. Phys. 2018, 20, 043044.
[CrossRef]

2. Chechkin, A.V.; Seno, F.; Metzler, R.; Sokolov, I.M. Brownian yet non-Gaussian diffusion: From superstatistics
to subordination of diffusing diffusivities. Phys. Rev. X 2017, 7, 021002. [CrossRef]

3. Ślęzak, J.; Metzler, R.; Magdziarz, M. Superstatistical generalised Langevin equation: Non-Gaussian
viscoelastic anomalous diffusion. New J. Phys. 2018, 20, 023026. [CrossRef]

4. Dos Santos, M. Non-Gaussian distributions to random walk in the context of memory kernels. Fractal Fract.
2018, 2, 20. [CrossRef]

5. Hristov, J. Response functions in linear viscoelastic constitutive equations and related fractional operators.
Math. Model. Nat. Phenom. 2019, 14, 305. [CrossRef]

6. Sene, N.; Abdelmalek, K. Analysis of the fractional diffusion equations described by Atangana-Baleanu-Caputo
fractional derivative. Chaos Solitons Fractals 2019, 127, 158–164. [CrossRef]

7. Bodrova, A.S.; Chechkin, A.V.; Sokolov, I.M. Nonrenewal resetting of scaled Brownian motion. Phys. Rev. E
2019, 100, 012119. [CrossRef]

8. Dos Santos, M.A.F. Fractional Prabhakar Derivative in Diffusion Equation with Non-Static Stochastic
Resetting. Physics 2019, 1, 40–58. [CrossRef]

9. Dos Santos, M.A.F. From continuous-time random walks to controlled-diffusion reaction. J. Stat. Mech.
Theory Exp. 2019, 2019, 033214. [CrossRef]

10. Reid, B.A.; Täuber, U.C.; Brunson, J.C. Reaction-controlled diffusion: Monte Carlo simulations. Phys. Rev. E
2003, 68, 046121. [CrossRef]

11. Dos Santos, M. A fractional diffusion equation with sink term. Indian J. Phys. 2019. [CrossRef]
12. Song, S.; Park, S.J.; Kim, M.; Kim, J.S.; Sung, B.J.; Lee, S.; Kim, J.H.; Sung, J. Transport dynamics of complex

fluids. Proc. Natl. Acad. Sci. USA 2019, 201900239. [CrossRef] [PubMed]
13. Dos Santos, M.A.F. Analytic approaches of the anomalous diffusion: A review. Chaos Solitons Fractals 2019,

124, 86–96. [CrossRef]

http://dx.doi.org/10.1088/1367-2630/aab696
http://dx.doi.org/10.1103/PhysRevX.7.021002
http://dx.doi.org/10.1088/1367-2630/aaa3d4
http://dx.doi.org/10.3390/fractalfract2030020
http://dx.doi.org/10.1051/mmnp/2018067
http://dx.doi.org/10.1016/j.chaos.2019.06.036
http://dx.doi.org/10.1103/PhysRevE.100.012119
http://dx.doi.org/10.3390/physics1010005
http://dx.doi.org/10.1088/1742-5468/ab081b
http://dx.doi.org/10.1103/PhysRevE.68.046121
http://dx.doi.org/10.1007/s12648-019-01543-2
http://dx.doi.org/10.1073/pnas.1900239116
http://www.ncbi.nlm.nih.gov/pubmed/31175151
http://dx.doi.org/10.1016/j.chaos.2019.04.039


Mathematics 2019, 7, 766 11 of 13

14. Oliveira, F.A.; Ferreira, R.M.D.S.; Lapas, L.C.; Vainstein, M.H. Anomalous diffusion: A basic mechanism for
the evolution of inhomogeneous systems. Front. Phys. 2019, 7, 18. [CrossRef]

15. Lévy, P.; Borel, M.É. Théorie de L’addition des Variables Aléatoires; Gauthier-Villars: Paris, France, 1954; Volume 1.
16. Metzler, R.; Klafter, J. The random walk’s guide to anomalous diffusion: A fractional dynamics approach.

Phys. Rep. 2000, 339, 1–77. [CrossRef]
17. Zaburdaev, V.; Denisov, S.; Klafter, J. Lévy walks. Rev. Mod. Phys. 2015, 87, 483. [CrossRef]
18. Bertoin, J. Lévy Processes; Cambridge University Press: Cambridge, UK, 1996; Volume 121.
19. Nolan, J. Stable Distributions: Models for Heavy-Tailed Data; Birkhauser: New York, NY, USA, 2003.
20. Tsallis, C. Lévy distributions. Phys. World 1997, 10, 42. [CrossRef]
21. Gnedenko, B.V.; Kolmogorov, A. N. Limit Distributions for Sums of Independent Random Variables;

Addison Wesley: Reading, MA, USA, 1954.
22. Barkai, E. Stable equilibrium based on Lévy statistics: Stochastic collision models approach. Phys. Rev. E

2003, 68, 055104. [CrossRef]
23. Barkai, E. Stable equilibrium based on Lévy statistics: A linear Boltzmann equation approach. J. Stat. Phys.

2004, 115, 1537–1565. [CrossRef]
24. Metzler, R.; Barkai, E.; Klafter, J. Anomalous diffusion and relaxation close to thermal equilibrium:

A fractional Fokker-Planck equation approach. Phys. Rev. Lett. 1999, 82, 3563. [CrossRef]
25. Brockmann, D.; Sokolov, I. Lévy flights in external force fields: From models to equations. Chem. Phys. 2002,

284, 409–421. [CrossRef]
26. Montroll, E.W.; Weiss, G.H. Random walks on lattices. II. J. Math. Phys. 1965, 6, 167–181. [CrossRef]
27. Scher, H.; Montroll, E.W. Anomalous transit-time dispersion in amorphous solids. Phys. Rev. B 1975, 12, 2455.

[CrossRef]
28. Montroll, E.W.; Scher, H. Random walks on lattices. IV. Continuous-time walks and influence of absorbing

boundaries. J. Stat. Phys. 1973, 9, 101–135. [CrossRef]
29. Tomovski, Ž.; Sandev, T.; Metzler, R.; Dubbeldam, J. Generalized space–time fractional diffusion equation

with composite fractional time derivative. Phys. A Stat. Mech. Its Appl. 2012, 391, 2527–2542. [CrossRef]
30. Mainardi, F.; Luchko, Y.; Pagnini, G. The fundamental solution of the space-time fractional diffusion equation.

Fract. Calc. Appl. Anal. 2001, 4, 153–192.
31. Mainardi, F.; Pagnini, G.; Saxena, R. Fox H functions in fractional diffusion. J. Comput. Appl. Math. 2005,

178, 321–331. [CrossRef]
32. Bardou, F.; Bouchaud, J.; Emile, O.; Aspect, A.; Cohen-Tannoudji, C. Subrecoil laser cooling and Lévy flights.

Phys. Rev. Lett. 1994, 72, 203. [CrossRef]
33. Solé, J.L.; Utzet, F.; Vives, J. Chaos expansions and Malliavin calculus for Lévy processes. In Stochastic

Analysis and Applications; Springer: Berlin, Germany, 2007; pp. 595–612.
34. Kessler, D.A.; Barkai, E. Theory of fractional Lévy kinetics for cold atoms diffusing in optical lattices.

Phys. Rev. Lett. 2012, 108, 230602. [CrossRef] [PubMed]
35. Shlesinger, M.; West, B.; Klafter, J. Lévy dynamics of enhanced diffusion: Application to turbulence.

Phys. Rev. Lett. 1987, 58, 1100. [CrossRef] [PubMed]
36. Barkai, E.; Silbey, R.; Zumofen, G. Lévy distribution of single molecule line shape cumulants in glasses.

Phys. Rev. Lett. 2000, 84, 5339. [CrossRef]
37. Jung, Y.; Barkai, E.; Silbey, R.J. Lineshape theory and photon counting statistics for blinking quantum dots:

A Lévy walk process. Chem. Phys. 2002, 284, 181–194. [CrossRef]
38. Lomholt, M.A.; Tal, K.; Metzler, R.; Joseph, K. Lévy strategies in intermittent search processes are

advantageous. Proc. Natl. Acad. Sci. USA 2008, 105, 11055–11059. [CrossRef]
39. Barkai, E.; Jung, Y.; Silbey, R. Theory of single-molecule spectroscopy. Annu. Rev. Phys. Chem 2004, 55, 457–507.

[CrossRef]
40. Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential

Equations, to Methods of Their Solution and Some of Their Applications; Elsevier: Amsterdam, The Netherlands,
1998; Volume 198.

41. Sene, N. Mittag-Leffler input stability of fractional differential equations and its applications. Discret. Contin.
Dyn. Syst. Ser. S 2019. [CrossRef]

42. Sokolov, I.M.; Klafter, J. From diffusion to anomalous diffusion: A century after Einstein’s Brownian motion.
Chaos Interdiscip. J. Nonlinear Sci. 2005, 15, 026103. [CrossRef] [PubMed]

http://dx.doi.org/10.3389/fphy.2019.00018
http://dx.doi.org/10.1016/S0370-1573(00)00070-3
http://dx.doi.org/10.1103/RevModPhys.87.483
http://dx.doi.org/10.1088/2058-7058/10/7/32
http://dx.doi.org/10.1103/PhysRevE.68.055104
http://dx.doi.org/10.1023/B:JOSS.0000028068.93241.3a
http://dx.doi.org/10.1103/PhysRevLett.82.3563
http://dx.doi.org/10.1016/S0301-0104(02)00671-7
http://dx.doi.org/10.1063/1.1704269
http://dx.doi.org/10.1103/PhysRevB.12.2455
http://dx.doi.org/10.1007/BF01016843
http://dx.doi.org/10.1016/j.physa.2011.12.035
http://dx.doi.org/10.1016/j.cam.2004.08.006
http://dx.doi.org/10.1103/PhysRevLett.72.203
http://dx.doi.org/10.1103/PhysRevLett.108.230602
http://www.ncbi.nlm.nih.gov/pubmed/23003938
http://dx.doi.org/10.1103/PhysRevLett.58.1100
http://www.ncbi.nlm.nih.gov/pubmed/10034339
http://dx.doi.org/10.1103/PhysRevLett.84.5339
http://dx.doi.org/10.1016/S0301-0104(02)00547-5
http://dx.doi.org/10.1073/pnas.0803117105
http://dx.doi.org/10.1146/annurev.physchem.55.111803.143246
http://dx.doi.org/10.3934/dcdss.2020050
http://dx.doi.org/10.1063/1.1860472
http://www.ncbi.nlm.nih.gov/pubmed/16035905


Mathematics 2019, 7, 766 12 of 13

43. Höfling, F.; Franosch, T. Anomalous transport in the crowded world of biological cells. Rep. Prog. Phys. 2013,
76, 046602. [CrossRef] [PubMed]

44. Hristov, J. On the Atangana–Baleanu Derivative and Its Relation to the Fading Memory Concept:
The Diffusion Equation Formulation. In Fractional Derivatives with Mittag-Leffler Kernel; Springer: Berlin,
Germany, 2019; pp. 175–193.

45. Hristov, J. Linear viscoelastic responses and constitutive equations in terms of fractional operators with
non-singular kernels. Eur. Phys. J. Plus 2019, 134, 283. [CrossRef]

46. Atangana, A.; Baleanu, D. New fractional derivatives with nonlocal and non-singular kernel: Theory and
application to heat transfer model. arXiv 2016, arXiv:1602.03408.

47. Atangana, A.; Alqahtani, R.T. Tumour model with intrusive morphology, progressive phenotypical
heterogeneity and memory. Eur. Phys. J. Plus 2018, 133, 85. [CrossRef]

48. Atangana, A.; Mekkaoui, T. Capturing complexities with composite operator and differential operators with
non-singular kernel. Chaos Interdiscip. J. Nonlinear Sci. 2019, 29, 023103. [CrossRef] [PubMed]

49. Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives; Gordon and Breach Science
Publishers: Yverdon, Switzerland, 1993; Volume 1993.

50. Cattani, C.; Srivastava, H.M.; Yang, X.J. (Eds.) Fractional Dynamics. In Lecture Notes of the Unione Matematica
Italiana (Book 20); De Gruyter Open: Berlin, Germany, 2016.

51. Tomovski, Ž.; Hilfer, R.; Srivastava, H. Fractional and operational calculus with generalized fractional
derivative operators and Mittag–Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814.
[CrossRef]

52. Dalir, M.; Bashour, M. Applications of fractional calculus. Appl. Math. Sci. 2010, 4, 1021–1032.
53. Laskin, N. Fractional schrödinger equation. Phys. Rev. E 2002, 66, 056108. [CrossRef] [PubMed]
54. De Oliveira, E.C.; Jarosz, S.; Vaz, J., Jr. Fractional calculus via Laplace transform and its application in

relaxation processes. Commun. Nonlinear Sci. Numer. Simul. 2019, 69, 58–72. [CrossRef]
55. Yang, S.; Zhou, H.; Zhang, S.; Ren, W. A fractional derivative perspective on transient pulse test for

determining the permeability of rocks. Int. J. Rock Mech. Min. Sci. 2019, 113, 92–98. [CrossRef]
56. Chang, A.; Sun, H. Time-space fractional derivative models for CO2 transport in heterogeneous media.

Fract. Calc. Appl. Anal. 2018, 21, 151–173. [CrossRef]
57. Liu, L.; Zheng, L.; Liu, F. Temporal anomalous diffusion and drift of particles in a comb backbone with

fractional Cattaneo- Christov flux. J. Stat. Mech. Theory Exp. 2017, 2017, 043208. [CrossRef]
58. Dos Santos, M.A.F.; Gomez, I.S. A fractional Fokker–Planck equation for non-singular kernel operators.

J. Stat. Mech. Theory Exp. 2018, 2018, 123205. [CrossRef]
59. Jena, R.M.; Chakraverty, S.; Baleanu, D. On New Solutions of Time-Fractional Wave Equations Arising in

Shallow Water Wave Propagation. Mathematics 2019, 7, 722. [CrossRef]
60. Fernandez, A.; Özarslan, M.A.; Baleanu, D. On fractional calculus with general analytic kernels. Appl. Math.

Comput. 2019, 354, 248–265. [CrossRef]
61. Gómez-Aguilar, J.F.; Atangana, A. Power and exponentials laws: Theory and application. J. Comput. Appl. Math.

2019, 354, 52–65. [CrossRef]
62. Owolabi, K.M.; Atangana, A. Chaotic behaviour in system of noninteger-order ordinary differential

equations. Chaos Solitons Fractals 2018, 115, 362–370. [CrossRef]
63. Owolabi, K.M.; Atangana, A. Mathematical analysis and computational experiments for an epidemic system

with nonlocal and nonsingular derivative. Chaos Solitons Fractals 2019, 126, 41–49. [CrossRef]
64. Koca, I. Efficient numerical approach for solving fractional partial differential equations with non-singular

kernel derivatives. Chaos Solitons Fractals 2018, 116, 278–286. [CrossRef]
65. Bouchaud, J.P.; Georges, A. Anomalous diffusion in disordered media: Statistical mechanisms, models and

physical applications. Phys. Rep. 1990, 195, 127–293. [CrossRef]
66. Sandev, T.; Metzler, R.; Chechkin, A. From continuous time random walks to the generalized diffusion

equation. Fract. Calc. Appl. Anal. 2018, 21, 10–28. [CrossRef]
67. Sandev, T.; Deng, W.; Xu, P. Models for characterizing the transition among anomalous diffusions with

different diffusion exponents. J. Phys. A Math. Theor. 2018, 51, 405002. [CrossRef]
68. Sokolov, I.; Chechkin, A.; Klafter, J. Fractional diffusion equation for a power-law-truncated Lévy process.

Phys. A Stat. Mech. Its Appl. 2004, 336, 245–251. [CrossRef]

http://dx.doi.org/10.1088/0034-4885/76/4/046602
http://www.ncbi.nlm.nih.gov/pubmed/23481518
http://dx.doi.org/10.1140/epjp/i2019-12697-7
http://dx.doi.org/10.1140/epjp/i2018-11932-1
http://dx.doi.org/10.1063/1.5085927
http://www.ncbi.nlm.nih.gov/pubmed/30823732
http://dx.doi.org/10.1080/10652461003675737
http://dx.doi.org/10.1103/PhysRevE.66.056108
http://www.ncbi.nlm.nih.gov/pubmed/12513557
http://dx.doi.org/10.1016/j.cnsns.2018.09.013
http://dx.doi.org/10.1016/j.ijrmms.2018.11.013
http://dx.doi.org/10.1515/fca-2018-0010
http://dx.doi.org/10.1088/1742-5468/aa64fa
http://dx.doi.org/10.1088/1742-5468/aae5a2
http://dx.doi.org/10.3390/math7080722
http://dx.doi.org/10.1016/j.amc.2019.02.045
http://dx.doi.org/10.1016/j.cam.2019.01.003
http://dx.doi.org/10.1016/j.chaos.2018.07.034
http://dx.doi.org/10.1016/j.chaos.2019.06.001
http://dx.doi.org/10.1016/j.chaos.2018.09.038
http://dx.doi.org/10.1016/0370-1573(90)90099-N
http://dx.doi.org/10.1515/fca-2018-0002
http://dx.doi.org/10.1088/1751-8121/aad8c9
http://dx.doi.org/10.1016/j.physa.2003.12.044


Mathematics 2019, 7, 766 13 of 13

69. Chechkin, A.V.; Gonchar, V.Y.; Gorenflo, R.; Korabel, N.; Sokolov, I.M. Generalized fractional diffusion
equations for accelerating subdiffusion and truncated Lévy flights. Phys. Rev. E 2008, 78, 021111. [CrossRef]

70. Viswanathan, G.M.; Buldyrev, S.V.; Havlin, S.; Da Luz, M.; Raposo, E.; Stanley, H.E. Optimizing the success
of random searches. Nature 1999, 401, 911. [CrossRef] [PubMed]

71. Humphries, N.E.; Weimerskirch, H.; Queiroz, N.; Southall, E.J.; Sims, D.W. Foraging success of biological
Lévy flights recorded in situ. Proc. Natl. Acad. Sci. USA 2012, 109, 7169–7174. [CrossRef] [PubMed]

72. Palyulin, V.V.; Chechkin, A.V.; Metzler, R. Lévy flights do not always optimize random blind search for
sparse targets. Proc. Natl. Acad. Sci. USA 2014, 111, 2931–2936. [CrossRef]

73. Pyke, G.H. Understanding movements of organisms: It’s time to abandon the Lévy foraging hypothesis.
Methods Ecol. Evol. 2015, 6, 1–16. [CrossRef]

74. Reynolds, A.M. Passive particles Lévy walk through turbulence mirroring the diving patterns of marine
predators. J. Phys. Commun. 2018, 2, 085003. [CrossRef]

75. Nagaya, N.; Mizumoto, N.; Abe, M.S.; Dobata, S.; Sato, R.; Fujisawa, R. Anomalous diffusion on the servosphere:
A potential tool for detecting inherent organismal movement patterns. PLoS ONE 2017, 12, e0177480. [CrossRef]
[PubMed]

76. Weber, S.C.; Spakowitz, A.J.; Theriot, J.A. Bacterial chromosomal loci move subdiffusively through a
viscoelastic cytoplasm. Phys. Rev. Lett. 2010, 104, 238102. [CrossRef] [PubMed]

77. Ariel, G.; Rabani, A.; Benisty, S.; Partridge, J.D.; Harshey, R.M.; Be’Er, A. Swarming bacteria migrate by Lévy
Walk. Nat. Commun. 2015, 6, 8396. [CrossRef]

78. Lenzi, E.K.; dos Santos, M.A.F.; Lenzi, M.K.; Neto, R.M. Solutions for a mass transfer process governed by
fractional diffusion equations with reaction terms. Commun. Nonlinear Sci. Numer. Simul. 2017, 48, 307–317.
[CrossRef]

79. Stamova, I.M.; Simeonov, S. Delayed Reaction–Diffusion Cellular Neural Networks of Fractional Order:
Mittag–Leffler Stability and Synchronization. J. Comput. Nonlinear Dyn. 2018, 13, 011015. [CrossRef]

80. Weiss, M. Crowding, diffusion, and biochemical reactions. In International Review of Cell and Molecular Biology;
Elsevier: Amsterdam, The Netherlands, 2014; Volume 307, pp. 383–417.

81. Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 2011,
83, 81. [CrossRef]

82. Gherardi, M.; Calabrese, L.; Tamm, M.; Cosentino Lagomarsino, M. Model of chromosomal loci dynamics
in bacteria as fractional diffusion with intermittent transport. Phys. Rev. E 2017, 96, 042402. [CrossRef]
[PubMed]

83. Bénichou, O.; Coppey, M.; Moreau, M.; Suet, P.; Voituriez, R. Optimal search strategies for hidden targets.
Phys. Rev. Lett. 2005, 94, 198101. [CrossRef] [PubMed]

84. Bénichou, O.; Loverdo, C.; Moreau, M.; Voituriez, R. Two-dimensional intermittent search processes: An
alternative to Lévy flight strategies. Phys. Rev. E 2006, 74, 020102. [CrossRef] [PubMed]

c© 2019 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevE.78.021111
http://dx.doi.org/10.1038/44831
http://www.ncbi.nlm.nih.gov/pubmed/10553906
http://dx.doi.org/10.1073/pnas.1121201109
http://www.ncbi.nlm.nih.gov/pubmed/22529349
http://dx.doi.org/10.1073/pnas.1320424111
http://dx.doi.org/10.1111/2041-210X.12298
http://dx.doi.org/10.1088/2399-6528/aad498
http://dx.doi.org/10.1371/journal.pone.0177480
http://www.ncbi.nlm.nih.gov/pubmed/28570562
http://dx.doi.org/10.1103/PhysRevLett.104.238102
http://www.ncbi.nlm.nih.gov/pubmed/20867274
http://dx.doi.org/10.1038/ncomms9396
http://dx.doi.org/10.1016/j.cnsns.2017.01.009
http://dx.doi.org/10.1115/1.4038290
http://dx.doi.org/10.1103/RevModPhys.83.81
http://dx.doi.org/10.1103/PhysRevE.96.042402
http://www.ncbi.nlm.nih.gov/pubmed/29347533
http://dx.doi.org/10.1103/PhysRevLett.94.198101
http://www.ncbi.nlm.nih.gov/pubmed/16090215
http://dx.doi.org/10.1103/PhysRevE.74.020102
http://www.ncbi.nlm.nih.gov/pubmed/17025381
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Preliminaries Concepts: Fractional Derivatives
	From CTRW to Generalized Lévy Process
	Discussion and Conclusions
	References

