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Abstract: Iterative methods were employed to obtain solutions of linear and non-linear systems of
equations, solutions of differential equations, and roots of equations. In this paper, it was proved that
s-iteration with error and Picard–Mann iteration with error converge strongly to the unique fixed
point of Lipschitzian strongly pseudo-contractive mapping. This convergence was almost F-stable
and F-stable. Applications of these results have been given to the operator equations Fx = f and
x + Fx = f, where F is a strongly accretive and accretive mappings of X into itself.

Keywords: Banach space; iterative sequences; stability; fixed points

1. Introduction and Preliminaries

Consider a normed space X, F :X→ X is a mapping, M is an iteration procedure and λn,ηn ∈ (0, 1),
we present the following iterative sequences.

w0 ∈ X,
wn+1 = M(F, wn),

is called s-iteration [1] if:
wn+1 = λnFzn + (1− λn)Fwn,

zn = ηnFwn + (1− ηn)wn, ∀ n ≥ 0.
(1)

x0 ∈ X,
xn+1 = M(F, xn)

is called Picard–Mann iteration [2] if:

xn+1 = Fyn
yn = λnFxn + (1− λn)xn,∀ n ≥ 0.

(2)

w0 ∈ X,
wn+1 = M(F, wn),

is called s-iteration with errors if

wn+1 = λnFzn + (1− λn)Fwn + an,
zn = ηnFwn + (1− ηn)wn + cn, ∀ n ≥ 0.

(3)

where
∑
∞

n=0 ‖an‖ < ∞,
∑
∞

n=0 ‖cn‖ < ∞.
x0 ∈ X,

xn+1 = M(F, xn)
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is called Picard–Mann iteration with errors if:

xn+1 = Fyn + an

yn = λnFxn + (1− λn)xn,∀ n ≥ 0.
(4)

where
∑
∞

n=0 ‖an‖ < ∞.
Throughout this paper, we studied three cases: convergence, almost stability, and stability of

schemes of sequences defined in Equations (3) and (4). In the following, we recall the needed definitions
and lemmas.

Definition 1 ([3]). Let xn+1 = M(F, xn) be an arbitrary iteration procedure such that {xn} converges to a fixed
point p of F. For a sequence

{
qn

}
suppose that

δn = ‖qn+1 − M(F, xn)‖, n ≥ 0.

Then the iteration procedure is said to be F –stable if lim
n→∞

δn = 0, implies to lim
n→∞

qn = p.

Definition 2 ([4]). Let F,
{
xn + 1

}
, δn, qn, and p be as shown in Definition 1. Then, the iteration procedure is

said to be almost F-stable if
∑
∞

n=0 δn < ∞ implies that lim
n→∞

qn = p.

Definition 3 ([5]). Let X be a normed space and F : X→ X be a mapping then for fixed m, 0 ≤ m < ∞, F is
said to be Lipschitzian if:

‖Fx− Fy‖ ≤ m ‖x− y‖ ∀x, y ∈ X. (5)

Let X′ be the dual of X, a set valued mapping J : X→ 2X′ is said to be the normalized duality
mapping [5] if:

J(x) =
{
j ∈ X′ :

〈
x, j

〉
= ‖j‖‖x‖, ‖j‖ = ‖x‖

}
, ∀ x ∈ X

where 〈 , 〉 denotes the duality pairing, i.e., 〈 , 〉 : X ×X′ → K ,
〈
x, j

〉
= j(x).

It is known that a Banach space X is smooth if and only if the duality mapping J is single [5].

Definition 4 ([6]). Let X be a normed space, F : X→ X be a mapping. Then, F is called strongly
pseudo-contractive if for all x, y ∈ X, the following inequality holds:∣∣∣∣∣∣x− y

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣(1 + r)(x− y) – rt(Fx− Fy)
∣∣∣∣∣∣ (6)

∀r > 0 and some t > 1.
Or equivalently [7], if there exist r = 1

l , where, l > 1 such that〈
Fx− Fy, j(x− y)

〉
≤ r‖x− y‖2,∀x, y ∈ X.

If t = 1 in inequality (6), then F is called pseudo-contractive.

Definition 5 ([8]). A mapping F : X→ X is said to be

i- Strongly accretive, if there is r > 0 such that for each x, y ∈ Xthere exists j(x− y) ∈ J(x− y)〈
Fx− Fy, j(x− y)

〉
≥ r‖x− y‖2. (7)

ii- Accretive, if r = 0 in Equation (7).

Or equivalently [9]
‖x− y‖ ≤ ‖x− y + r(Fx− Fy)‖, for some r > 0 (8)
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Proposition 1 ([10]). The relation between (strong) pseudo-contractive mapping and (strong) accretive mapping
is that: F is (strong) pseudo-contractive if and only if (I − F) is (strong) accretive.

Lemma 1 ([11]). Let
{
ρn

}
be a non-negative sequence such that, ρn+1 ≤ (1− γn)ρn + µn, where γn ∈ (0, 1),

∀n ∈ N,
∑
γn = ∞, and µn = o(γn). Then lim

n→∞
ρn = 0 .

A general version of Lemma 1 is:

Lemma 2 ([12]). Let {ξn} be a non-negative sequence such that ξn+1 ≤ (1− γn)ξn + bn +µn, n ≥ 0, whereγn ∈

[0, 1], ∀n ∈ N,
∑
γn = ∞, and bn = o(γn),

∑
∞

n=0 µn < ∞. Then lim
n→∞

ξn = 0.

Lemma 3 ([13,14]). Let X be a real Banach space, F : X→ X be a mapping

i- If F is continuous and strongly pseudo-contractive, then F has a unique fixed point.
ii- If F is continuous and strongly accretive, then the equation Fx = f has a unique solution for any f ∈ X.
iii- If F is continuous and accretive, then F is m-accretive and the equation x + Fx = f has a unique solution

for any f ∈ X.

For more details about previous preliminaries and to determine the important aspects of the
convergence of iterative sequences, we recommend the book by C. Chidume [5] and the paper by B.E.
Rhoades and L. Saliga [15].

2. Main Results

The following condition is needed:
(∆1): If λn,ηn ∈ (0, 1), r ∈ (0, 1) and m > 0, then
m
(
(m + 1)(1 + ηn) + λnm2(2 + (m− 1)ηn)

)
− (2− r)λn(2m + m(m− 1)ηn) ≤ rm − e, where e ∈

(0, m).

Theorem 1. Let X be a real Banach space and F : X→ X be Lipschitzian strongly pseudo-contractive mapping
with Lipschitz constant m. Suppose that {wn} be in (3), lim

n→∞
an = lim

n→∞
cn = 0 and (∆1) is verified. Then:

1- {wn} converges strongly to the unique fixed point p.

2- ‖qn+1 − p‖ ≤ δn + ‖an‖+ (1− λne
1+λn

)‖qn − p‖+ (3m + m2)‖cn‖, ∀n ≥ 0.

Proof. From Lemma 3, we obtain that F has a unique fixed point, and from Equations (3), (6), and
Proposition 1 we have:

Fwn = wn+1 + λnFwn − λnFzn − an

= wn+1 + λnFwn − λnFzn − an + 2λnwn+1 − 2λnwn+1 − rλnwn+1

+rλnwn+1 − λnFwn+1 + λnFwn+1

= (1 + λn)wn+1 + λn(I− F− rI)wn+1 − (1− r)λnFwn + (2− r)λ2
n(Fwn − Fzn) + λn(Fwn+1 − Fzn)

−(1+ (2− r)λn)an

(9)

Let p be a fixed point of F:

p = (1 + λn)p + λn(I− F− rI)p− (1− r)λnp (10)

Fwn − p = (1 + λn)(wn+1 − p) + λn[(I− F− rI)wn+1 − (I− F− rI)p]−
(1− r)λn(Fwn − p) + (2− r)λ2

n(Fwn − Fzn) + λn(Fwn+1 − Fzn) − (1 + (2− r)λn)
(11)
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‖Fwn − p‖ ≥ (1 + λn)‖(wn+1 − p) + λn
1+λn

[(I− F− rI)wn+1 − (I− F− rI)p]‖
− (1− r)λn‖Fwn − p‖ − (2− r)λ2

n‖Fwn − Fzn‖ − λn‖Fwn+1 − Fzn‖

−3‖an‖

Thus:

(1 + λn)‖wn+1 − p‖
≤ (1 + (1− r)λn)‖Fwn − p‖+ (2− r)λ2

n‖Fwn − Fzn‖+ λn‖Fwn+1 − Fzn‖

+3‖an‖

‖wn+1 − p‖ ≤ 1
1+λn

[(1 + (1− r)λn)‖Fwn − p‖+ (2− r)λ2
n‖Fwn − Fzn‖

+ λn‖Fwn+1 − Fzn‖+ 3‖an‖]

‖wn+1 − p‖ ≤ 1
1+λn

[(1 + (1− r)λn)m‖wn − p‖+ (2− r)λ2
n‖Fwn − Fzn‖

+λn‖Fwn+1 − Fzn‖+ 3‖an‖]

(12)

Observe that

‖Fwn − Fzn‖ ≤ ‖Fwn − p‖+ ‖p− Fzn‖ ≤ m‖wn − p‖+ m‖zn − p‖
≤ 2m + m(m− 1)ηn‖wn − p‖+ m‖cn‖

(13)

‖Fwn+1 − Fzn‖ ≤ m‖wn+1 − zn‖ ≤ [m(m + 1) + λnm(2m + m(m− 1)ηn‖wn−

p‖)+ηnm(m + 1)]‖wn − p‖+ m‖an‖+ m‖cn‖+ λnm2
‖cn‖

(14)

By substituting Equations (14) and (13) in (12), we get:

‖wn+1 − p‖ ≤ 1
1+λn

[(1 + (1− r)λn)m‖wn − p‖
+λn([m(m + 1) + λnm(2m + m(m− 1)ηn) + ηnm(m + 1)]‖wn − p‖
+m‖an‖+ m‖cn‖+ λnm2

‖cn‖) + (2− r)λ2
n((2m + m(m

−1)ηn‖wn − p‖+ m‖cn‖) + 3‖an‖]

= 1
1+λn

[(1 + (1− r)λn)m + λnm(m + 1)(1 + ηn) + 2λ2
nm2 + λ2

nm2(m− 1)ηn

+(2− r)λ2
n((2m + m(m− 1)ηn]‖wn − p‖+

[
λn

1+λn
m + 3

1+λn

]
‖an‖

+
[
(2−r)λ2

n
1+λn

m +
λ2

n
1+λn

(
m2 + m

)]
‖cn‖

≤ [1− λn
1+λn

[mr−m
(
(m + 1)(1 + ηn) + λnm2(2 + (m− 1)ηn)

)
+ − (2− r)λn((2m + m(m− 1)ηn]‖wn − p‖+ [m + 3]‖an‖

+
[
3m + m2

]
‖cn‖

= [1− λne
1+λn

‖wn − p‖+ [m + 3]‖an‖+
[
3m + m2

]
‖cn‖

Lemma 1 yied to lim
n→∞

wn = p.
For part(2):
Let

{
qn

}
be a sequence in X, defined {δn} by δn = ‖qn+1 − gn − an‖, where

gn = λnFzn + (1− λn)Fqn, zn = ηnFqn + (1− ηn)qn + cn , n ≥ 0.

‖qn+1 − p‖ ≤ ‖qn+1 − gn − an‖+ ‖an‖+ ‖gn − p‖ ≤ δn + ‖an‖+ ‖gn − p‖ (15)

Since:

Fqn = gn + λnFqn − λnFzn

= (1 + λn)gn + λn(I− F− rI)gn − (2− r)λngn + λnFqn + λn(Fgn − Fzn)

= (1 + λn)gn + λn(I− F− rI)gn − (1− r)λnFqn + (2− r)λ2
n

(
Fqn − Fzn

)
+λn(Fgn − Fzn)

(16)

Thus:
p = (1 + λn)p + λn(I− F− rI)p− (1− r)λnp (17)
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Fqn − p = (1 + λn)(gn − p) + λn[(I− F− rI)gn − (I− F− rI)p] − (1− r)λn
(
Fqn − p

)
+(2− r)λ2

n

(
Fqn − Fzn

)
+ λn(Fgn − Fzn).

So that:

‖Fqn − p‖ ≥ (1 + λn)‖(gn − p) + λn
1+λn

[(I− F− rI)gn − (I− F− rI)p]‖
−(1− r)λn × ‖Fqn − p‖ − (2− r)λ2

n‖Fqn − Fzn‖ − λn‖Fgn − Fzn‖

≥ (1 + λn)‖gn − p‖ − (1− r)λn‖Fqn − p‖ − (2− r)λ2
n‖Fqn − Fzn‖

−λn‖Fgn − Fzn‖

Thus:

‖gn − p‖ ≤ 1
1+λn

[
(1 + (1− r)λn)‖Fqn − p‖+ (2− r)λ2

n‖Fqn − Fzn‖+ λn‖Fgn − Fzn‖
]

‖gn − p‖ ≤ 1
1+λn

[
(1 + (1− r)λn)m‖qn − p‖+ (2− r)λ2

n‖Fqn − Fzn‖+ λn‖Fgn − Fzn‖
] (18)

Observe that

‖Fqn − Fzn‖ ≤ ‖Fqn − p‖+ ‖p− Fzn‖ ≤ m‖qn − p‖+ m‖zn − p‖
≤ 2m + m(m− 1)ηn‖qn − p‖+ m‖cn‖

(19)

‖Fgn − Fzn‖ ≤ m‖gn − zn‖ ≤ m
[
‖Fqn − qn‖+ λn‖Fqn − Fzn‖+ ηn‖qn − Fqn‖+ ‖cn‖

]
≤ [m(m + 1) + λnm(2m + m(m− 1)ηn) + ηnm(m + 1)]‖qn − p‖
+m‖cn‖

(20)

By substituting Equations (20) and (19) in (18), we get:

‖gn − p‖ ≤ 1
1+λn

[(1 + (1− r)λn)m‖qn − p‖+ λn([m(m + 1) + λnm(2m + m(m− 1)ηn)+

ηnm(m + 1)]‖qn − p‖+ m‖cn‖+ λnm2
‖cn‖) + (2− r)λ2

n(
2m + m(m− 1)ηn‖qn − p‖+ m‖cn‖

)
]

= 1
1+λn

[(1 + (1− r)λn)m + λnm(m + 1)(1 + ηn) + 2λ2
nm2 + λ2

nm2(m− 1)ηn+

(2− r)λ2
n((2m + m(m− 1)ηn]‖qn − p‖+

[
(2−r)λ2

n
1+λn

m +
λ2

n
1+λn

(
m2 + m

)]
‖cn‖

≤ [1− λn
1+λn

[mr−m
(
(m + 1)(1 + ηn) + λnm2(2 + (m− 1)ηn)

)
+(2− r)λn((2m + m(m− 1)ηn]‖qn − p‖
+

[
(2− r)λ2

nm +
(
m2 + m

)
λ2

n

]
‖cn‖

= [1− λne
1+λn

‖qn − p‖+
[
3m + m2

]
‖cn‖‖cn‖.

(21)

Substituting Equation (21) in (15) we obtain:

‖qn+1 − p‖ ≤ ‖qn+1 − gn − an‖+ ‖an‖+ ‖gn − p‖ ≤ δn + ‖an‖+ ‖gn − p‖
≤ δn + ‖an‖+

[
1− λne

1+λn

]
‖qn − p‖+

[
3m + m2

]
‖cn‖.

(22)

�

Theorem 2. Assume that X, F, p, m, {wn}, {zn},
{
qn

}
, {λn},

{
ηn

}
, and {δn} be as in Theorem 1 and (∆1) is

satisfied. Then the sequence (3) is almost F-stable.

Proof. Assume that
∑
∞

n=0 δn < ∞. Then, we prove that lim
n→∞

qn = p.

Now, using Equation (22) such that ξn = ‖qn − p‖,γn = λne
1+λn

, bn = [3m + m2]‖cn‖+ ‖an‖, and
µn = δn, ∀ n ≥ 0.

Note that lim
n→∞

bn = 0, thus Lemma (1.8) holds, such that lim
n→∞

ξn = 0 yields lim
n→∞

qn = p. �
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Theorem 3. Let X, F, p, m,
{
qn

}
, {λn},

{
ηn

}
, {an}, {cn}, and {δn} be as in Theorem 1 and (∆1) is satisfied.

Then {wn} is F-stable.

Proof. Suppose that lim
n→∞

δn = 0, then by applying Lemma 1 on (22) of Theorem 1, we obtain lim
n→∞

qn = p.
�

Example 1. Let X = (0, 1]), F : X→ X by Fx = x
2 , hence, the conditions in Equations (5) and (6) are satisfied

as shown below.

‖Fx− Fy‖ = ‖ x
2 −

y
2 ‖ ≤

1
2‖x− y‖

〈
Fx− Fy, j(x− y)

〉
≤ r‖x− y‖2 ≤ (Fx− Fy)(x− y)

≤

∣∣∣ x
2 −

y
2

∣∣∣|x− y| = 1
2‖x− y‖2

Now, put λn = 1
2 , qn = 1

n , ∀ n ≥ 0, since lim
n→∞

qn = 0, to show that lim
n→∞

δn = p = 0.

δn = ‖qn+1 − xn+1‖ = ‖qn+1 − Fqn + an‖ = ‖
1

n+1 −
qn
2 ‖

= ‖ 1
n+1 −

(1−λn)
2 qn −

λn
2

qn
2 ‖

= ‖ 1
n+1 −

1
4n −

1
8n‖ =⇒ lim

n→∞
δn = 0.

Corollary 1. Let X, F, p, m,
{
qn

}
, {λn},

{
ηn

}
, {an}, {cn}, {δn} be as in Theorem 1, and {wn} defined by

Equation (1), then {wn} :

1. converges strongly to the unique fixed point p.
2. is almost F-stable
3. is F-stable.

To prove the next results, we replace the inequality in the condition (∆1) by

(∆2) : m
(
1 + m2 + λn(1 + m)

)
≤ rm2

− e

Theorem 4. Suppose that X is a real Banach space F : X→ X is Lipschitzian strongly pseudo-contractive
mapping with Lipschitz constant m. For w0 ∈ X, let {xn} be in Equation (4), lim

n→∞
an = 0 (∆2) is satisfied. Then:

1- {xn} converges strongly to the unique fixed point p.

2- ‖qn+1 − p‖ ≤ δn + [1− λne
1+λn

]‖qn − p‖+ ‖an‖, ∀n ≥ 0.

Proof. From Lemma 3, we obtained that F has a unique fixed point.

Fyn = xn+1 − an

= xn+1 + 2λnxn+1 − 2λnxn+1 − rλnxn+1 + rλnFxn+1 − λnFxn+1

+λnFxn+1 − an

= (1 + λn)xn+1 + λn(I− F− rI)xn+1 + λn
(
Fxn+1 − Fyn

)
− (1− r)λnFyn

−(1 + (2− r)λn)an

(23)

= (1 + λn)p + λn(I− F− rI)p− (1− r)λnp (24)



Mathematics 2019, 7, 765 7 of 12

So that:

Fyn − p = (1 + λn)(xn+1 − p) + λn[(I− F− rI)xn+1 − (I− F− rI)p] − (1− r)λn
(
Fyn − p

)
+λn

(
Fxn+1 − Fyn

)
− (1 + (2− r)λn)an

‖Fyn − p‖ ≥ (1 + λn)‖(xn+1 − p) + λn
1+λn

[(I− F− rI)xn+1 − (I− F− rI)p]‖
−(1− r)λn‖Fyn − p‖ − λn‖Fxn+1 − Fyn‖ − 3‖an‖

Thus:

(1 + λn)‖xn+1 − p‖ ≤ (1 + (1− r)λn)‖Fyn − p‖+ λn‖Fxn+1 − Fyn‖+ 3‖an‖

‖xn+1 − p‖ ≤ 1
1+λn

[
(1 + (1− r)λn)‖Fyn − p‖+ λn‖Fxn+1 − Fyn‖+ 3‖an‖

] (25)

Observe that:

‖Fyn − p‖ ≤ m[(1− λn)‖xn − p‖+ λn‖Fxn − p‖] = m(1− λn + mλn)‖xn − p‖
≤ m2

‖xn − p‖
(26)

Since 1 ≤ m yields (1− λn + mλn) ≤ m

‖Fxn+1 − Fyn‖ ≤ m‖xn+1 − yn‖ ≤ m
[
‖Fyn − xn‖+ λn‖xn − Fxn‖+ ‖an‖

]
= m

[(
1 + m2 + λn(1 + m)

)
‖xn − p‖+ ‖an‖

] (27)

By substituting Equations (27) and (26) in (25), we yielded:

‖xn+1 − p‖ ≤ 1
1+λn

[
[(1 + (1− r)λn)m2 + λnm

[(
1 + m2 + λn(1 + m)

)
]‖xn − p‖+ ‖an‖

]
+3‖an‖]

‖xn+1 − p‖ = 1
1+λn

[(1 + (1− r)λn)m2 + λnm
((

1 + m2 + λn(1 + m)
)]
‖xn − p‖

+
[

λn
1+λn

m + 3
1+λn

]
‖an‖

≤ [1− λn
1+λn

[m2r−m
(
1 + m2 + λn(1 + m)

)
]‖xn − p‖+ [m + 3]‖an‖

= [1− λne
1+λn

‖xn − p‖+ [m + 3]‖an‖

By applying Lemma 1, we get lim
n→∞

xn = p .
For prove part (2):
Let

{
qn

}
⊂ X, defined {δn} by δn = ‖qn+1 − gn − an‖, where

gn = Fyn, yn = λnFqn + (1− λn)qn + cn , n ≥ 0.
‖qn+1 − p‖ ≤ ‖qn+1 − gn − an‖+ ‖an‖+ ‖gn − p‖ ≤ δn + ‖an‖+ ‖gn − p‖

(28)

Since:

Fyn = gn = gn + 2λngn − 2λngn − rλngn + rλnFgn − λnFgn + λnFgn
= (1 + λn)gn + λn(I− F− rI)gn − (2− r)λnFyn + λnFgn
= (1 + λn)gn + λn(I− F− rI)gn + λn

(
Fgn − Fyn

)
− (1− r)λnFyn

(29)

= (1 + λn)p + λn(I− F− rI)p− (1− r)λnp (30)

So that:

Fyn − p = (1 + λn)(gn − p) + λn[(I− F− rI)gn − (I− F− rI)p] − (1− r)λn
(
Fyn − p

)
+λn

(
Fgn − Fyn

)
‖Fyn − p‖ ≥ (1 + λn)‖(gn − p) + λn

1+λn
[(I− F− rI)gn − (I− F− rI)p]‖

−(1− r)λn‖Fyn − p‖ − λn‖Fgn − Fyn‖

≥ (1 + λn)‖gn − p‖ − (1− r)λn‖Fyn − p‖ − λn‖Fgn − Fyn‖
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This implies that:

‖gn − p‖ ≤
1

1 + λn

[
(1 + (1− r)λn)‖Fyn − p‖+ λn‖Fgn − Fyn‖

]
(31)

Hence:

‖Fyn − p‖ ≤ m
[
(1− λn)‖qn − p‖+ λn‖Fqn − p‖

]
= m(1− λn + mλn)‖qn − p‖

≤ m2
‖qn − p‖

(32)

Since 1 ≤ m yields (1− λn + mλn) ≤ m

‖Fgn − Fyn‖ ≤ m‖gn − yn‖ ≤ m
[
‖Fyn − qn‖+ λn‖qn − Fqn‖

]
= m

[(
1 + m2 + λn(1 + m)

)]
‖qn − p‖

(33)

Substituting Equations (33) and (32) in (31) yielded that:

‖gn − p‖ ≤ 1
1+λn

[
(1 + (1− r)λn)m2 + λnm

(
1 + m2 + λn(1 + m)

)]
‖qn − p‖

≤ [1− λn
1+λn

[m2r−m
(
1 + m2 + λn(1 + m)

)
]‖qn − p‖

= [1− λne
1+λn

]‖xn − p‖
(34)

Substitute Equation (34) in (28), to obtain:

‖qn+1 − p‖ ≤ δn + [1−
λne

1 + λn
]‖qn − p‖+ ‖an‖. (35)

�

Theorem 5. Assume that X, F, p, m, {xn},
{
qn

}
, {λn}, and {δn} be as in Theorem 4 and the hypothesis that the

condition (∆2) is satisfied. Then {xn} in Equation (4) is almost F-stable.

Proof. Let
∑
∞

n=0 δn < ∞, to prove that lim
n→∞

qn = p.
By using the conclusion of Equation (35) of Theorem 4 and an application of Lemma 1, we get

lim
n→∞

qn = p. �

Theorem 6. Let X, F, p, m,
{
qn

}
, {λn}, {an}, and {δn} be as in Theorem 4 and (∆2) is satisfied. Then {xn} in (2)

is F-stable.

Proof. Suppose that lim
n→∞

δn = 0. �

By expressing Equation (35) in the form ρn+1 ≤ (1− γn)ρn + µn, of Lemma 1,where γn = λne
1+λn

,
ρn = ‖qn − p‖ and µn = δn + ‖an‖, this implies to lim

n→∞
qn = p.

Corollary 2. Let X, F, p, m,
{
qn

}
, {λn}, {an}, and {δn} be as in Theorem 4 and {xn} be in Equation (2).

Then {xn} :

1. converges strongly to the unique fixed point p.
2. is almost F-stable.
3. is F -stable.
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3. Applications

Theorem 7. Let X be a real Banach space and F : X→ X be Lipschitzian strongly accretive mapping with
Lipschitz constant m. Define S : X→ X by Sx = f + x− Fx. Let {λn},

{
ηn

}
, {an}, and {cn} as are in Theorem

1. For w0, f ∈ X,
wn+1 = λnSzn + (1− λn)Swn + an,

zn = ηnSwn + (1− ηn)wn + cn, ∀ n ≥ 0.

Then {wn}:

1. converges strongly the unique solution p∗ of the equation Fx = f .
2. is almost S-stable.
3. is S-stable.

Proof. The mapping S is Lipschitzian with a constant m∗ = 1 + m, and from Lemma 3 the equation
Fx = f has a unique solution p∗, this implies that S has a unique fixed point p∗.

From Equation (7) and Proposition (6), hence〈
(I −S)x− (I −S)y, j(x− y)

〉
=

〈
Fx− Fy, j(x− y)

〉
≥ r‖x − y‖2, this implies S is strongly

pseudo-contractive, therefore, the proof follows from Theorems 1–3. �

Corollary 3. Let X, F, S, p∗, m,
{
qn

}
, {λn},

{
ηn

}
, and{δn} be as in Theorem 7 and {wn} defined by

wn+1 = λnSzn + (1− λn)Swn,
zn = ηnSwn + (1− ηn)wn, ∀ n ≥ 0.

Then {wn} :

1. converges strongly to the unique solutionp∗of the equation Fx = f .
2. is almost S-stable.
3. is S-stable.

Theorem 8. Let X be a real Banach space and F : X→ X be Lipschitzian accretive mapping with Lipschitz
constant. Define S : X→ X by Sx = f − Fx. Let {λn},

{
ηn

}
, {an}, and {cn} as are in Theorem 1. For

w0, f ∈ X,
wn+1 = λnSzn + (1− λn)Swn + an,

zn = ηnSwn + (1− ηn)wn + cn, ∀ n ≥ 0.

Then {wn}:

1. converges strongly to the unique solution p∗ of the equation x + Fx = f .
2. is almost S-stable.
3. is S-stable.

Proof. From Lemma 3, hence, the equation x + Fx = f has a unique fixed point p∗, (i.e., S has a unique
fixed point p∗). By using Equation (8), we obtained:

‖x− y‖ ≤ ‖x− y + r(Fx− Fy)‖ = ‖x− y + r(Sx−Sy)‖ (36)
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Since:

Swn = wn+1 + λnSwn − λnSzn − an

= (1 + λn)wn+1 − λnSwn+1 + λn(Swn+1 −Szn)Swn + λn
2(Swn −Szn)

− (1 + λn)an

p∗ = (1 + λn)p∗ − λnSp∗

By using Equation (36), we obtained:

‖Swn − p∗‖ ≥ (1 + λn)‖(wn+1 − p∗) + λn
1+λn

(Swn+1 −Sp∗)‖ − λn‖Swn+1 −Szn‖

−λ2
n‖Swn −Szn‖ − (1 + λn)‖an‖

≥ (1 + λn)‖wn+1 − p∗‖ − λ2
n‖Swn −Szn‖ − λn‖Swn+1 −Szn‖

−(1 + λn)‖an‖

This implies:

‖wn+1 − p∗‖ ≤
1

1 + λn
‖Swn − p∗‖+

λn

1 + λn
‖Swn+1 −Szn‖+

λ2
n

1 + λn
‖Swn −Szn‖+ ‖an‖

The proof completes by the same way as Theorems 1–3. �

Corollary 4. Let X, F, S, p∗, m,
{
qn

}
, {λn},

{
ηn

}
, {δn} be as in Theorem 8 and {wn} defined by

wn+1 = λnSzn + (1− λn)Swn,
zn = ηnSwn + (1− ηn)wn, ∀ n ≥ 0.

Then {wn}:

1. converges strongly to the unique solution p∗of the equation x + Fx = f .
2. is almost S-stable.
3. is S-stable.

Theorem 9. Suppose that X is a real Banach space and F : X→ X is Lipschitzian strongly accretive mapping.
Define S : X→ X by Sx = f + x− Fx. Let {λn} and {an}, as are in Theorem 4. For x0, f ∈ X,

xn+1 = Syn + an,
yn = λnSxn + (1− λn)xn,∀ n ≥ 0.

Then {xn}

1. converges strongly to the unique solution p∗ of the equation Fx = f .
2. is almost S-stable.
3. is S-stable.

Proof. We can prove this the same way for Theorem 7. �

Corollary 5. Let X, F, S, p∗, m,
{
qn

}
, {λn}, and {δn} be as in Theorem 8 and {xn} defined by

xn+1 = Syn,
yn = λnSxn + (1− λn)xn,∀ n ≥ 0.

Then{xn}:

1. converges strongly to the fixed point p∗ the unique solution of the equation Fx = f .
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2. is almost S-stable.
3. is S-stable.

Theorem 10. Let X be a real Banach space , F : X→ X is Lipschitzian accretive mapping with Lipschitz
constant m. Define S : X→ X by Sx = f − Fx. Let {λn} and {an}, be as in Theorem 4. For x0, f ∈ X,

xn+1 = Syn + an,
yn = λnSxn + (1− λn)xn,∀ n ≥ 0.

Then {xn}:

1. converges strongly to the unique solution p∗ of the equation x + Fx = f .
2. is almost S-stable.
3. is S-stable.

Proof. The proof follows the same way as Theorem 8. �

Corollary 6. Let X, F, S, p∗, m,
{
qn

}
, {λn}, and{δn} be as in Theorem 10 and{xn} defined by

xn+1 = Syn,
yn = λnSxn + (1− λn)xn,∀ n ≥ 0.

Then {xn} :

1. converge strongly to the unique solution p∗ of the equation x + Fx = f .
2. is almost S-stable.
3. is S -stable.

4. Conclusions

For real Banach spaces, very interesting results were proved which say that for a Lipschitzian
strongly pseudo-contractive operator, the s-iteration with error and Picard–Mann iteration with error
processes converge strongly to the unique fixed point of the operator (Theorems 1 and 4). Some
applications were also given (Theorem 7).

Open Problem

Let B be a non-empty closed convex subset of a Banach space X and {Ti, Si, ∀i = 1, 2, . . . , k} be
two families of total asymptotically quasi-nonexpansive self-mappings. Abed and Hasan [16] studied
the convergence of the iterative sequence {wn}, defined as:

w1 ∈ B

wn+1 = (1− αin)Sn
i wn + winTn

i bin

bin = (1−win)Sn
i an + winTn

i b(i−1)n

b(i−1)n =
(
1− α(i−1)n

)
Sn

i−1wn + α(i−1)nTn
i−1b(i−2)n

b2n = (1−w2n)Sn
2an + α2nTn

2 b1n

b1n = (1− α1n)Sn
1wn + α1nTn

1 b0n,

where b0n = wn and {αn}
∞

n=1 are sequences in (0, 1).
We suggest studying the stability of this iterative sequence.
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