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Abstract: This study focuses on the stochastic differential calculus of Itô, as an effective tool for the
analysis of noise in forest growth and yield modeling. Idea of modeling state (tree size) variable in
terms of univariate stochastic differential equation is exposed to a multivariate stochastic differential
equation. The new developed multivariate probability density function and its marginal univariate,
bivariate and trivariate distributions, and conditional univariate, bivariate and trivariate probability
density functions can be applied for the modeling of tree size variables and various stand attributes
such as the mean diameter, height, crown base height, crown width, volume, basal area, slenderness
ratio, increments, and much more. This study introduces generalized multivariate interaction
information measures based on the differential entropy to capture multivariate dependencies between
state variables. The present study experimentally confirms the effectiveness of using multivariate
interaction information measures to reconstruct multivariate relationships of state variables using
measurements obtained from a real-world data set.

Keywords: multivariate bertalanffy-type stochastic differential equation; marginal distributions;
conditional distributions; entropy; normalized interaction information

1. Introduction

Stand attributes prediction has been a popular and challenging research topic in both forestry
science and economics due to its importance to forest managers, governments, as well as economic
stakeholders in recent years. Sustainable forest management process requires growth and yield
models that enable prediction of the development of forest stands under different natural environment,
economic and sociocultural pillars. Diameter at the breast height, total tree height, crown base height
and crown width size dimensions (in the sequel—tree size variables), and the number of trees per
hectare are substantial components of stand growth and yield models whose evolution provide details
on stand development [1]. These tree size variables are the most important predictor variables for the
estimation of stem volume, biomass and carbon storage in natural forests. Rational management needs
the dynamical individual tree growth and yield models because they provide the evolution for forward
and backward directions, and produce detailed information about changes of stand structure [2]. Tree
size variables can be modeled as a complex system, each with its own regulatory mechanism and all
continuously interacting between them. The mathematical and numerical methods used to describe
the dynamic of biological system are largely concerned with the derivation, and use of ordinary
stochastic and partial differential equations [3,4]. Individual-tree and stand-level growth models
traditionally are represented by a system of ordinary differential equations [5]. The basic idea is to
describe a system of ordinary differential equations, which specifies changes of a suitable number
of tree or stand size variables via age (time) and to summarize the relevant information about the
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size variables’ dependence. One of the advantages of ordinary differential equation approach lies in
parameter interpretation, which simplifies the results’ interpretation by using asymptotic and inflection
points. Unfortunately, an ordinary differential equations approach has some limitations, including the
absence of the factor of tree size variables dependence and the variance-covariance matrix of tree size
variables [6–8]. In addition, eco-regional growth and yield models must be updated by including the
random factor of a stand quality [9]. Statistical analysis of developed relationships between tree size
components at a given stand or location is usually performed based on statistical indexes and tests for
an observed dataset. However, no single equation for tree size variables has gained global acceptance.
The traditional method is to try a variety of models and choose the best fitted equation based on a
particular mathematical norm, such as the least square error or a likelihood norm. The disadvantages
of this method of choosing are that it is laborious because too many equations need to be tried and
empirical choices of candidate equations make the results subjective. In order to overcome these
disadvantages, the multivariate stochastic differential equations have recently gained a lot of attention.
Stochastic differential equations are often used in the modeling of population dynamic [10–12], tumor
growth [13], chemical reaction networks [14], environmental pollution [15,16], forest growth and
yield [17]. The deterministic differential equation carries its solution, which is completely determined
in the value sense by knowledge of boundary and initial conditions. It means that the identical initial
and boundary conditions generate identical solutions. Conversely, a stochastic differential equation
(SDE) is a differential equation with a solution which is a stochastic process. Because tree diameter
at breast height, total tree height, crown base height and crown width are empirically correlated, the
multivariate SDE models should be considered [6,8,18].

The greatest advantage of multivariate SDE approach is that it provides sufficient flexibility to fit
a large variety of nested models for a separate tree size and stand size variable, which facilitates the
selection and comparison of newly developed models by using information measures technique [19–21].
In order to construct the multi-information measures, it is necessary to obtain the probability density
function of tree size variable, which in this study are obtained from a 4-variate Bertalanffy SDE
describing the development of the tree size variables against the age. SDEs models are much more
flexible than deterministic models, but come at a computational cost. The problem of representing
the mechanisms governing the evolution of univariate tree size distribution have been directed using
univariate SDEs in fluid mechanics [22,23]. Central research finding in tree size distributions by
Kohyama et al. [24] is the fact that they are positively skewed. Theoretical studies of tree size growth
confirmed that the size frequency distribution of trees is inverse J-shaped, with many small trees
and few larger trees due asymmetric competition [25]. The Vasicek type 4-variate fixed effects SDE
presented by Rupšys and Petrauskas [6] defines changes in stem diameter and height distribution
with age of a stand, which takes into account the 4-variate normal distribution at a given stand
age, t. This study focuses on the alternative nonsymetric Bertalanfy type 4-variate diffusion process
which links between tree diameter, height, crown base height and crown width dynamics, and their
4-variate lognormal probability density function development. Traditionally stochastic tree growth
processes are observed in multiple populations (stands), so to quantify of both between and within
stand variation the framework of the random effect parameters have been studied [6,11,26–28]. In this
basis, the introduction of only one additional random effect parameter allows capturing arbitrary wide
stand dependencies without increasing model order, hence retaining model simplicity and ease of
parameters estimation. The fixed and mixed parameters estimation for discretely observed SDE is a
complex problem and during the past decades it has attracted the attention a lot of researchers. Taking
the applicability and generality into account, maximum-likelihood estimation is in the lead among
others [29,30]. Generally, when both system noise and random effects are considered, the exact form
of the maximum likelihood function is unavailable, and then an approximated maximum likelihood
procedure is used [31].

This study focuses on a mixed-effects parameters 4-variate Bertalanffy type diffusion process
satisfying an Itô [32] SDE conditional on an initial value taken at a fixed initial time (age) point. In an
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even-aged stand tree size components’ distribution shows some asymmetry. The goal of this paper
is to present a unified perspective of the tree growth in a forest stand network as a nonsymetric
Markov process in a multidimensional vector space. Another goal is to study in a general way the
main methods of cross comparisons of all new developed growth models by using the Shannon type
differential entropy. In the Results and Discussion, we consider possible application to the study of
information sharing amongst tree size variables using a dataset of the diameter at breast height, tree
height, crown base height and crown width measurements in Scots pine (Pinus Sylvestris L.) stands in
Lithuania. All results are implemented in symbolic algebra system MAPLE.

2. Materials and Methods

This paper focuses on a 4-variate Bertalanffy type SDE to study the tree size variables (diameter
at breast height, D(t), tree height, H(t), crown base height, CH, and crown width, CW) distribution
problem in forest stands. This results in an exact 4-variate asymmetrical conditional (transition)
probability density function, whose parameters can be estimated by maximum likelihood procedure
based on discrete time observations. The random effects are included to describe between-stand
variability. Proceeding as we have in the bivariate Bertalanffy type SDE model [8] that describes the
development of the tree size variables evolving in M different stands, the mixed effect parameters
4-variate Bertalanffy type SDE model in a general manner are defined by:

dXi(t) = A
(
Xi(t)

)
dt + Q

(
Xi(t)

) 1
2
·dW(t), i = 1, 2, . . . , M (1)

here: M is the total number of stands used for model fitting, t is the time (stand age),
X(t) = (X1(t), X2(t), X3(t), X4(t))

T = (D(t), H(t), CH(t), CW(t))T, t ∈ [t0; T], t0 ≥ 0, X(t0) = x0 =

(x10, x20, x30, x40))
T, xs0 ≥ 0, 1 ≤ s ≤ 4, the drift vector Ai (x) is defined as:

Ai(x) =


(
α1 + ϕi

1

)
β1γ1

eβ1(t−t0) − γ1
x1,

(
α2 + ϕi

2

)
β2γ2

eβ2(t−t0) − γ2
x2,

(
α3 + ϕi

3

)
β3γ3

eβ3(t−t0) − γ3
x3,

(
α4 + ϕi

4

)
β4γ4

eβ4(t−t0) − γ4
x4


T

(2)

the diffusion matrix Q(x) is defined as:

Q(x) =
(
C(x)B

1
2

)(
C(x)B

1
2

)T
= C(x)BC(x) =


σ11x2

1 σ12x1x2 σ13x1x3 σ14x1x4

σ21x1x2 σ22x2
2 σ23x2x3 σ24x2x4

σ31x1x3 σ32x2x3 σ33x2
3 σ31x3x4

σ41x1x4 σ42x2x4 σ43x3x4 σ44x2
4

 (3)

B =


σ11 σ12 σ13 σ14

σ12 σ22 σ23 σ24

σ13 σ23 σ33 σ34

σ14 σ24 σ34 σ44

, C(x) =


x1 0 0 0
0 x2 0 0
0 0 x3 0
0 0 0 x4


Wi(t) =

(
Wi

1(t), Wi
2(t), Wi

3(t), Wi
4(t)

)T
, t ∈ [t0; T], i = 1, 2, . . . , M, are independent 4-variate

Brownian motions, ϕi
s, 1 ≤ s ≤ 4, i = 1, 2, . . . , M, are independent and normally

distributed random variables with zero mean and constant variances (ϕi
s ∼ N

(
0; σ2

s

)
),{

α1,α2,α3,α4, β1, β2, β3, β4,γ1,γ2,γ3,γ4, σ11, σ12, σ13, σ14, σ22, σ23, σ24, σ33, σ34, σ44, σ1, σ2, σ3, σ4
}

are fixed

effect parameters to be estimated which fulfill conditions: t ≥ t0 > min
{

ln(γ1)
β1

, ln(γ2)
β2

, ln(γ3)
β3

, ln(γ4)
β4

}
,

β1, β2, β3, β4 > 0, α1 + ϕi
1,α2 + ϕi

2,α3 + ϕi
3,α4 + ϕi

4 ≥ 1, and Wi(t), ϕi
s, are mutually independent

for all 1 ≤ i ≤ M, 1 ≤ s ≤ 4. The Bertalanffy type 4-variate SDE can be converted into
a well-studied 4-variate Ornstein-Uhlenbeck (1930) [33] process by the transformation Y(t) =(
eβit ln Xi(t), i = 1, . . . , 4

)T
and solved explicitly. The solution is a conditional random vector
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(
Xi(t)

∣∣∣Xi(t0) = x0
)
=

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0 , s = 1, . . . , 4
)T

that has a 4-variate lognormal distribution

LN4
(
µi(t); Σ(t)

)
, i = 1, 2, . . . M, with the mean vector µi(t):

µi(t) =
(
µi

s(t), 1 ≤ s ≤ 4
)T

=

(
ln(xs0) +

(
αs + ϕi

s

)
ln

(
1− γs exp(−βst)
1− γs exp(−βst0)

)
−
σss

2
(t− t0), 1 ≤ s ≤ 4

)T

(4)

the variance-covariance matrix Σ(t):

Σ(t) = (vsu(t))s,u=1,...,4 = (σsu(t− t0))s,u=1,...,4, σsu = σus, vsu(t) = vus(t) (5)

and the probability density function:

f
(
x1, x2, x3, x4, t

∣∣∣θ f ,ϕi
)
=

1

(2π)2∣∣∣Σ(t)∣∣∣ 1
2 (x1·x2·x3·x4)

exp
(
−

1
2

Ω(x1, x2, x3, x4, t)
)

(6)

Here
Ω(x1, x2, x3, x4, t) =

(
ln(x) − µi(t)

)T
(Σ(t))−1

(
ln(x) − µi(t)

)
,

θ f =
{
α1,α2,α3,α4, β1, β2, β3, β4,γ2,γ3,γ4, σ11, σ12, σ13, σ14, σ22, σ23, σ24, σ33, σ34, σ44

}
ϕi =

{
ϕi

1,ϕi
2,ϕi

3,ϕi
4

}
3. Results

3.1. Marginal Distribution

Allowing that the random vector
(
Xi(t)

∣∣∣Xi(t0) = x0
)
=

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0 , s = 1, . . . , 4
)T

, i = 1, 2,

. . . , M has a 4-variate lognormal distribution, LN4
(
µi(t); Σ(t)

)
, defined by Equations (4)–(6) and referred

to properties of multivariate lognormal distribution [34,35], the marginal univariate distribution of(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
, 1 ≤ s ≤ 4 is also lognormal LN1

(
µi

s(t); vss(t)
)

with mean and variance given by
the following forms:

µi
s(t) = ln(xs0) +

(
αs + ϕi

s

)
ln

(
1− γs exp(−βst)
1− γs exp(−βst0)

)
−
σss

2
(t− t0) (7)

vss(t) = σss(t− t0) (8)

The marginal mean, median, mode, p-quantile (0 < p < 1) and variance trajectories mi
s(t), mei

s(t),
moi

s(t), mqi
s(t, p) and ws(t), 1 ≤ s ≤ 4 are defined by [34]:

mi
s(t) ≡

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
= exp

(
µi

s(t) +
1
2

vss(t)
)

(9)

mei
s(t) ≡Median

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
= exp

(
µi

s(t)
)

(10)

moi
s(t) ≡Mode

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
= exp

(
µi

s(t) − vss(t)
)

(11)

mqi
s(t, p) ≡ Quantile

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
= exp

(
µi

s(t) +
√

vss(t)Φ−1(p)
)

(12)

wi
s(t) ≡ Var

(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
= exp

(
2µi

s(t) + vss(t)
)
·(exp(vss(t)) − 1) (13)

where: Φ−1(·) is the inverse of standard normal distribution function.
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The marginal bivariate distribution of
(
Xi

s(t), Xi
u(t)

∣∣∣Xi
s(t0) = xs0, Xi

u(t0) = xu0
)
, 1 ≤ s, u ≤ 4, i = 1,

2, . . . , M is also lognormal N2
(
µi

su(t); Σsu(t)
)

with mean vector µi
su(t) and covariance matrix Σsu(t)

given by the following forms:

µi
su(t) =

 ln(xs0) +
(
αs + ϕi

s

)
ln

(
1−γs exp(−βst)
1−γs exp(−βst0)

)
−
σss
2 (t− t0)

ln(xu0) +
(
αu + ϕi

u

)
ln

(
1−γu exp(−βut)
1−γu exp(−βut0)

)
−
σuu
2 (t− t0)

 (14)

Σsu(t) =
(

vss(t) vsu(t)
vus(t) vuu(t)

)
(15)

The covariance and correlation functions are given by:

covsu(t) ≡ Cov
(
Xi

s(t), Xi
u(t)

∣∣∣Xi
s(t0) = xs0, Xi

u(t0) = xu0
)

= exp
(
µs(t) + µu(t) + 1

2 (vss(t) + vuu(t)) + vsu(t)
)
(exp(vsu(t)) − 1)

(16)

ρi j(t) ≡ Cor
(
Xi

s(t), Xi
u(t)

∣∣∣Xi
s(t0) = xs0, Xi

u(t0) = xu0
)

=
Cov(Xi

s(t),Xi
u(t)|Xi

s(t0)=xs0,Xi
u(t0)=xu0 )√

Var(Xi
s(t)|Xi

s(t0)=xs0 )·Var(Xi
s(t)|Xi

s(t0)=xs0 )
=

exp(vsu(t))−1
√
(exp(vss(t))−1)

√
(exp(vuu(t))−1)

(17)

The marginal trivariate distribution of
(
Xi

s(t), Xi
u(t), Xi

z(t)
∣∣∣Xi

s(t0) = xs0, Xi
u(t0) = xu0, Xi

z(t0) = xz0
)
,

1 ≤ s, u, z ≤ 4, i = 1, 2, . . . , M is also lognormal LN3
(
µi

suz(t); Σsuz(t)
)

with mean vector, µi
suz(t), and

covariance matrix, Σsuz(t), given by the following forms:

µi
suz(t) =


ln(xs0) +

(
αs + ϕi

s

)
ln

(
1−γs exp(−βst)
1−γs exp(−βst0)

)
−
σss
2 (t− t0)

ln(xu0) +
(
αu + ϕi

u

)
ln

(
1−γu exp(−βut)
1−γu exp(−βut0)

)
−
σuu
2 (t− t0)

ln(xz0) +
(
αz + ϕi

z

)
ln

(
1−γz exp(−βzt)
1−γz exp(−βzt0)

)
−
σzz
2 (t− t0)

 (18)

Σsuz(t) =


vss(t) vsu(t) vsz(t)
vus(t) vuu(t) vuz(t)
vzs(t) vzu(t) vzz(t)

 (19)

3.2. Conditional Distributions

The conditional univariate distribution of
(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
, 1 ≤ s ≤ 4, i = 1, 2, . . . , M at a given(

Xi
u(t) = xu

)
, u ∈ {1, 2, 3, 4}\{s} is a univariate lognormal LN1

(
ηi(t, xu);λsu(t)

)
, respectively, with mean

and variance given by the following forms [34,35]:

ηi(t, xu) = µi
s(t) +

vsu(t)
vuu(t)

(
ln(xu) − µ

i
u(t)

)
(20)

λsu(t) = vss(t) −
(vsu(t))

2

vuu(t)
(21)

The conditional mean, median, mode, p-quantile (0 < p < 1) and variance functions, mi
s(t, xu),

mei
s(t, xu), moi

s(t, xu), mqi
s(t, p, xu) and wi

s(t, xu), 1 ≤ s ≤ 4, i = 1, 2, . . . , M, are defined by
Equations (9)–(12) after plugging the mean and variance given by Equations (20) and (21).

The conditional univariate distribution of
(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
, 1 ≤ s ≤ 4, i = 1, 2, . . . , M at a given(

Xi
u(t) = xu, Xi

z(t) = xz
)
, u, z ∈ {1, 2, 3, 4}\{s} is a univariate lognormal LN1

(
ηi(t, xu, xz);λs,uz(t)

)
, here:

ln(xuz) = (ln(xu), ln(xz))
T (22)
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ηi(t, xu, xz) = µi
s(t) + Σs,uz(t)[Σuz(t)]

−1
(
ln(xuz) − µ

2
uz(t)

)
(23)

λs,uz(t) = vss(t) − Σs,uz(t)[Σuz(t)]
−1(Σs,uz(t))

T (24)

Σs,uz(t) =
(

vsu(t) vsz(t)
)

(25)

The conditional mean, median, mode, p-quantile (0 < p < 1) and variance functions, mi
s(t, xu, xz),

mei
s(t, xu, xz), moi

s(t, xu, xz), mqi
s(t, p, xu, xz) and wi

s(t, xu, xz), 1 ≤ s ≤ 4, i = 1, 2, . . . , M, u, z ∈ {1, 2, 3, 4}\{s},
are defined by Equations (9)–(12) after plugging the mean and variance given by Equations (23)
and (24).

The conditional univariate distribution of
(
Xi

s(t)
∣∣∣Xi

s(t0) = xs0
)
, 1 ≤ s ≤ 4, i = 1, 2, . . . ,

M at a given
(
Xi

u(t) = xu, Xi
z(t) = xz, Xi

y(t) = xy
)
, u, z, y ∈ {1, 2, 3, 4}\{s} is a univariate lognormal

N1
(
ηi(t, xu, xz, xy);λs,uzy(t)

)
, here:

ln(xuzy) =
(
ln(xu), ln(xz), ln(xy)

)T
(26)

ηi(t, xu, xz, xy) = µi
s(t) + Σs,uzy(t)

[
Σuzy(t)

]−1[
ln

(
xuzy

)
− µ3,i

uzy(t)
]

(27)

λs,uzy(t) = vss(t) − Σs,uzy(t)
[
Σuzy(t)

]−1(
Σs,uzy(t)

)T
(28)

Σs,uzy(t) =
(

vsu(t) vsz(t) vsy(t)
)

(29)

The conditional mean, median, mode, p-quantile (0 < p < 1) and variance functions, mi
s(t, xu, xz, xy),

mei
s(t, xu, xz, xy), moi

s(t, xu, xz, xy), mqi
s(t, p, xu, xz, xy) and wi

s(t, xu, xz, xy), 1 ≤ s ≤ 4, i = 1, 2, . . . , M,
u, z, y ∈ {1, 2, 3, 4}\{s}, are defined by Equations (9)–(12) after plugging the mean and variance given by
Equations (27) and (28).

The conditional bivariate distribution of
(
Xi

s(t), Xi
u(t)

∣∣∣Xi
s(t0) = xs0, Xi

u(t0) = xu0
)
, 1 ≤ s, u ≤ 4, i = 1,

2, . . . , M at a given
(
Xi

z(t) = xz
)
, z ∈ {1, 2, 3, 4}\{s, u} is a bivariate lognormal LN2

(
i
suz(t, xz); Λsuz(t)

)
, here:

i
suz(t, xz) = µi

su(t) + Σ2
suz(t)

ln(xz) − µi
z(t)

vzz(t)
(30)

Λsuz(t) = Σ2
suz(t) − Σ21(t)[vzz(t)]

−1
(
Σ2

suz(t)
)T

(31)

Σ2
su(t) =

(
vsz(t)
vuz(t)

)
(32)

The conditional bivariate distribution of
(
Xi

s(t), Xi
u(t)

∣∣∣Xi
s(t0) = xs0, Xi

u(t0) = xu0
)
, 1 ≤ s, u ≤ 4,

i = 1, 2, . . . , M at a given
(
Xi

z(t) = xz, Xi
y(t) = xy

)
, z, y ∈ {1, 2, 3, 4}\{s, u} is a bivariate lognormal

LN2
(
i
su,zy(t, xz, xy); Λsu,zy(t)

)
, here:

i
su,zy

(
t, xz, xy

)
= µi

su(t) + Σsu,zy(t)
[
Σzy(t)

]−1
 ln(xz) − µi

z(t)
ln

(
xy

)
− µi

y(t)

 (33)

Λsu,zy(t) = Σsu(t) − Σsu,zy
[
Σzy(t)

]−1(
Σsu,zy

)T
(34)

Σsu,zy(t) =
(

vsz(t) vsy(t)
vuz(t) vuy(t)

)
(35)
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The conditional trivariate distribution of
(
Xi

s(t), Xi
u(t), Xi

z(t)
∣∣∣Xi

s(t0) = xs0, Xi
u(t0) = xu0, Xi

z(t0) = xz0
)
,

1 ≤ s, u, z ≤ 4, i = 1, 2, . . . , M at a given
(
Xi

y(t) = xy
)
, y ∈ {1, 2, 3, 4}\{s, u, z} is a trivariate lognormal

LN3
(
i
suz,y(t, xz); Λsuz,y(t)

)
, here:

i
suz,y

(
t, xy

)
= µ3,i

suz(t) + Σsuz,y(t)
ln

(
xy

)
− µi

y(t)

vyy(t)
(36)

Λsuz,y(t) = Σsuz(t) − Σsuz,y(t)
[
vyy(t)

]−1(
Σsuz,y(t)

)T
(37)

Σsuz,y(t) =


vsy(t)
vuy(t)
w2

zy(t)

 (38)

3.3. Maximum Likelihood Procedure

Most natural processes evolve in continuous time, but they are observed in discrete time.
To examine practical applications of the Bertalanffy type 4-variate stochastic process defined by
Equation (1) suppose that we observe the process at discrete time points

{
ti
1, ti

2, . . . , ti
ni

}
composing

an estimation dataset
{(

xi
11, xi

21, xi
31, xi

41

)
,
(
xi

12, xi
22, xi

32, xi
42

)
, . . . ,

(
xi

1ni
, xi

2ni
, xi

3ni
, xi

4ni

)}
(ni is the number of

observed trees of the ith stand, i = 1, 2, . . . , M). The associated maximum log-likelihood function for
the fixed effect scenario model takes the following form:

LL f (θ
f ) =

M∑
i=1

ni∑
j=1

ln
(

f
(
xi

1 j, xi
2 j, xi

3 j, xi
4 j, ti

j

∣∣∣θ f , 0, 0, 0, 0
))

. (39)

and for the mixed effect scenario model takes the following form:

LLm(θ
m) =

M∑
i=1

∫
R4

 ni∑
j=1

ln

 f
(
xi

1 j, xi
2 j, xi

3 j, xi
4 j, ti

j

∣∣∣θ,ϕi
1,ϕi

2,ϕi
3,ϕi

4

)
+

4∑
l=1

ln
(
p(ϕi

l

∣∣∣σ2
l )

)
dϕi

1dϕi
2dϕi

3dϕi
4 (40)

here θm = θ f
∪ {σ1, σ2, σ3, σ4}. As the 4-variate integral in Equation (40) does not have a closed-form

solution and the analytic expression is known, the maximum log-likelihood function for the 4-variate
mixed effect scenario model by using the Laplace expansion is approximately given in the following
form [36]:

LLm(θ
m, ψ̂) ≈

M∑
i=1

g
(
ϕi

∣∣∣θm
)
+ 2 ln(2π) −

1
2

ln

det


−∂2g

(
ϕi
|θm

)
∂ϕi

j∂ϕ
i
k



ϕi=ϕ̂i


 (41)

here: ϕi =
(
ϕi

1,ϕi
2,ϕi

3,ϕi
4

)
. The random effects ψ =

(
ϕ1,ϕ2, . . . ,ϕM

)
are estimated by maximization:

ψ̂ = argmax
ϕi

g
(
ϕi

∣∣∣θ̂m
)
, i = 1, 2, . . . , M, (42)

g
(
ϕi

∣∣∣θm
)
=

nl∑
j=1

ln
(

f
(
xi

1 j, xi
2 j, xi

3 j, xi
4 j, ti

j

∣∣∣θm,ϕi
))
+

4∑
k=1

ln
(
p(ϕi

k

∣∣∣σ2
k )

)
. (43)

The maximization of LLm(θm,ψ) is a two-step optimization problem. The internal optimization
step estimates the vectorϕi for every stand i = 1, 2, . . . , M with Equation (42). The external optimization
step maximizes LLm(θm, ψ̂) after plugging the ϕ̂i into Equation (41). These two steps are iterated
until convergence.



Mathematics 2019, 7, 761 8 of 22

3.4. Random Effects Calibration

A key feature of mixed effects models is that, by introducing random effects in
addition to fixed effects, they allow us to correctly account both within- and between
forest stand variations. In the forestry literature, calibration means that random effects
are calibrated using a supplementary sample of observations taken from the previous
observations

{
(x11, x21, x31, x41), (x12, x22, x3n, x42), . . . , (x1m, x2m, x3m, x4m)

}
at discrete previous times

(ages)
{
t1, t2, . . . , tm

}
. The random effects can be calibrated by:

Ψ̂ = argmax
(ϕ1,ϕ2,ϕ3,ϕ4)

m∑
j=1

ln
(

f
(
x1 j, x2 j, x3 j, x4 j, t j

∣∣∣θ̂m,ϕ1,ϕ2,ϕ3,ϕ4
))
+

4∑
i=1

ln
(
p(ϕi

∣∣∣∣σ̂2
i )

)
(44)

In the previous study [17], calibration relies on the mean trend Equation (9) to predict the random
effects in relation to fixed effects parameters θ̂m estimated by approximated maximum likelihood
procedure (see Equations (41) and (42)). Both alternative techniques deal adequately with random
effects calibration, whose are essential for analyzing large observed datasets.

3.5. Estimating Results

The data used were obtained from 17 permanent experimental Scots pine (Pinus sylvestris L.)
stands [6]. The measurements of the diameter at breast height (D), total height (H), crown base height
(CH), and crown width (CW) are presented in Figure 1.
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The results of the parameter estimates using the NLPSolve procedure in the symbolic algebra
system MAPLE [37] are summarized in Table 1.
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Table 1. Estimates of fixed effect parameters.

Model
Parameters of Drift Term

α1 β1 γ1 α2 β2 γ2 α3 β3 γ3 α4 β4 γ4

Fixed 1.3869 0.0269 1.1267 3.1491 0.0441 0.7664 4.7343 0.0392 0.6427 0.3816 3.5 × 10−4 1.0015
Mixed 1.3878 0.0269 1.1265 3.1504 0.0441 0.7663 4.7215 0.0394 0.6436 0.3818 3.5 × 10−4 1.0015

Model
Parameters of Diffusion Term

σ11 σ12 σ13 σ14 σ22 σ23 σ24 σ33 σ34 σ44

Fixed 0.0019 9.0 × 10−4 5.4 × 10−4 0.0016 6.4 × 10−4 5.6 × 10−4 5.9 × 10−4 8.3 × 10−4 0.8 × 10−4 0.0023
Mixed 0.0019 9.6 × 10−4 6.2 × 10−4 0.0015 6.9 × 10−4 5.7 × 10−4 5.7 × 10−4 7.2 × 10−4 1.1 × 10−4 0.0023

Parameters of Random Effects

Mixed
σ1 σ2 σ3 σ4

0.0306 0.1200 0.2240 0.0257
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3.6. Information Measures

Multivariate data analysis presents a wide range of mathematical and practical problems,
particularly in forestry. Datasets sampled from forest stands measurements reflect complex biological
systems confronted with diverse multiple interactions and dependencies between tree size variables.
Therefore, full-scale analysis of dependencies between size components requires the use of the
multivariable information measures. The inference of tree structure evolution, defined by Equation (1),
is related to the estimation of the information flow between tree size variables. Entropy is a useful
concept to measure the uncertainty in the multivariate stochastic systems and it can be applied to
measure multivariate dependences between tree size variables. An information theoretic approach
assumes that the development of tree size components will exhibit some dependencies among them,
and therefore such statistical dependencies among tree size components can be used to construct the
new theoretical growth and yield models. Central to this area is to determine the best relationship of
target variable with one another of tree size variables by using an entropy-based technique or more
generally to decide whether a subset of multiple tree size components is interdependent. This study
will focus on the amount of information transmitted by a set of tree size variables. The simplest
information theory measure between two variables is the interaction (mutual) information, which
defines the information contained in one variable about another, defined by McGill (1954) [38], can
also be interpreted in terms of the Shannon entropy:

I(Xs, Xu, t) = H(Xs, t) + H(Xu, t) −H(Xs, Xu, t), 1 ≤ s, u ≤ 4 (45)

The definition of the differential Shannon entropy of a stochastic process directly follows that of
a continuous random variable. Differential entropy cannot represent the uncertainty of continuous
random processes and does not have the point of information. However, mutual information retains
its interpretability in the continuous case.

Since the random vector (X1, X2, X3, X4) is lognormally distributed and for fixed effect scenario
the random effects, ϕi, i = 1, . . . , M, are assumed to be equal its mean value (ϕi) = 0, µi

s(t) ≡ µs(t),
1 ≤ s ≤ 4, moreover, taking into account stochastic representations of log-skew elliptical random
vectors [39], the expressions for univariate and multivariate Shannon entropies (measured in nats) take
the following forms [40]:

H(Xs, t) ≡ −

+∞∫
0

f
(
xs, t

∣∣∣θ̂s, 0
)

ln
(

f
(
xs, t

∣∣∣θ̂s, 0
))

dxs =
1
2

ln(2πeσss(t)) + µs(t) (46)

1 ≤ s ≤ 4, θ̂s =
{
α̂s, β̂s, γ̂s, σ̂ss

}
H(Xs, Xu, t) ≡ −

+∞∫
0

+∞∫
0

f
(
xs, xu, t

∣∣∣θ̂su, 0
)

ln
(

f
(
xs, xu, t

∣∣∣θ̂su, 0
))

dxsdxu

= 1
2 ln

(∣∣∣Σsu(t)
∣∣∣)+ ln(2πe) + µs(t) + µu(t)

(47)

1 ≤ s, u ≤ 4, θ̂su =
{
α̂s, β̂s, γ̂s, σ̂ss, α̂u, β̂u, γ̂u, σ̂uu, σ̂su

}
H(Xs, Xu, Xz, t) ≡ −

+∞∫
0

+∞∫
0

+∞∫
0

f
(
xs, xu, xz, t

∣∣∣θ̂suz, 0
)

ln
(

f
(
xs, xu, xz, t

∣∣∣θ̂suz, 0
))

dxsdxudxz

= 1
2 ln

(∣∣∣Σsuz(t)
∣∣∣)+ 3

2 ln(2πe) + µs(t) + µu(t) + µz(t)
(48)

1 ≤ s, u, z ≤ 4, θ̂su =
{
α̂s, β̂s, γ̂s, σ̂ss, α̂u, β̂u, γ̂u, σ̂uu, α̂z, β̂z, γ̂z, σ̂zz, σ̂su, σ̂sz, σ̂uz

}
H(X1, X2, X3, X4, t) ≡ −

+∞∫
0

+∞∫
0

+∞∫
0

+∞∫
0

f
(
x1, x2, x3, x4, t

∣∣∣θ̂, 0
)

ln
(

f
(
x1, x2, x3, x4, t

∣∣∣θ̂suz, 0
))

dx1dx2dx3dx4

= 1
2 ln

(∣∣∣Σ(t)∣∣∣)+ 2 ln(2πe) + µ1(t) + µ2(t) + µ3(t) + µ4(t)
(49)
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θ̂ =
{
α̂1, β̂1, γ̂1, σ̂11, α̂2, β̂2, γ̂2, σ̂22, α̂3, β̂3, γ̂3, σ̂33, α̂4, β̂4, γ̂4, σ̂44, σ̂12, σ̂13, σ̂14, σ̂23, σ̂24, σ̂34

}
As we can see from Equation (45), the mutual information, I, is calculated directly by summing

the individual entropies and subtracting the joint entropy. Mutual information, I, between two
random variables, Xs and Xu, compares the uncertainty of measuring variables jointly with the
uncertainty of measuring the two variables independently, identifies nonlinear dependence between
two variables [41–43], and is non-negative and symmetrical. A generalization of bivariate mutual
information to more than two variables have been analyzed in few different scenarios [20,21,41–43].
A direct multivariate extension of bivariate mutual information expressed by Equation (45) to n
variables X1, X2, and Xn is named as the multi-information [44,45], also known as total correlation,
and is defined by:

Ω(X1, X2, . . . , Xn, t) =
n∑

i=1

H(Xi, t) −H(X1, X2, . . . , Xn, t). (50)

The multi-information is always non-negative and a near-zero value indicates that the variables
are essentially statistically independent. Two special cases of mutual information take the normalized
forms, respectively [46–48]:

NImin(Xs, Xu, t) =
I(Xs, Xu, t)

max(H(Xs, t), H(Xu, t))
, 1 ≤ s, u ≤ 4 (51)

NID(Xs, Xu, t) = 1−
I(Xs, Xu, t)
H(Xs, Xu, t)

, 1 ≤ s, u ≤ 4 (52)

Next normalized variant of the mutual information is provided by the correlation coefficient in
the following form [49]:

NIC(Xs, Xu, t) =

√
2−

2·I(Xs, Xu, t)
H(Xs, t) + H(Xu, t)

, 1 ≤ s, u ≤ 4 (53)

A simple generalization of the normalized mutual information, defined by Equations (51)–(53),
for three variables with the target variable Xs (s = 1, . . . , 4) takes the following forms:

NI2
min(Xs, Xu, Xz, t) =

H(Xs, t) + H(Xu, Xz, t) −H(Xs, Xu, Xz, t)
max(H(Xs, t), H(Xu, Xz, t))

, u, z ∈ {1, 2, 3, 4}/{s}, (54)

NI2
D(Xs, Xu, Xz, t) =

H(Xs, t) + H(Xu, Xz, t) −H(Xs, Xu, Xz, t)
H(Xs, Xu, Xz, t)

, u, z ∈ {1, 2, 3, 4}/{s} (55)

NI2
C(Xs, Xu, Xz, t) =

√
2− 2(H(Xs,t)+H(Xu,Xz,t)−H(Xs,Xu,Xz,t))

H(Xs,t)+H(Xu,Xz,t) ,

u, z ∈ {1, 2, 3, 4}/{s}
(56)

Generalized forms of mutual information to more than two variables are called interaction
information [21,47]. The relationship between multi-information and interaction information for the
trivariate and 4-variate cases are defined in the following forms [21]:

I(X1, X2, X3, t) =
∑
s>u

I(Xs, Xu, t) −Ω(X1, X2, X3, t), (57)

I(X1, X2, X3, X4, t) =
∑

z>s>u
I(Xs, Xu, Xz, t) −

∑
s>u

I(Xs, Xu) + Ω(X1, X2, X3, X4, t). (58)
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Providing that the target variable Xs (1 ≤ s ≤ 4) is added to the set of νn−1 =

(X1, . . . ., Xs−1, Xs+1, . . . ., Xn) variables, the differential interaction information [21,47] is defined as:

∆n(νn−1; Xs, t) = I(νn, t) − I(νn−1, t), νn = (X1, . . . , Xn) (59)

In consequence of Equations (45), (46) and (59), the deltas for two variables ν2 = (Xs, Xu), 1 ≤ s ≤ 4,
u ∈ {1, 2, 3, 4}/{s} (the target variable Xs) are defined as:

∆2(ν1; Xs, t) = I(ν2, t) −H(Xs, t), ν2 = (Xs, Xu), ν1 = (Xu) (60)

for three variables ν3 = (Xs, Xu, Xz), 1 ≤ s ≤ 4, u, z ∈ {1, 2, 3, 4}/{s} (the target variable Xs) are defined as:

∆3(ν2; Xs, t) = I(ν3, t) − I(ν2, t), ν2 = (Xu, Xz) (61)

for four variables ν4 =
(
Xs, Xu, Xz, Xy

)
1 ≤ s ≤ 4, u, z, y ∈ {1, 2, 3, 4}/{s} (the target variable Xs) are

defined as:
∆4(ν3; Xs, t) = I(ν4, t) − I(ν3, t) (62)

4. Discussion

Traditionally, the used statistical metrics for goodness-of-fit linear and nonlinear regression
models mostly reflect only fitting criteria (not goodness of fit), which was used in an optimization
process to get the best-fit parameters. For example, the coefficient of determination cannot determine
whether the parameter estimates and predictions are biased. Similarly, a low value of the coefficient
of determination can produce a good model. Consequently, the best metrics possessed model is not
necessarily the one that fits best the data. Evaluation of the model fit within information measures
relies on the detection of variable dependence, estimation of the significance of such dependence
and inference of the functional form of the dependence [21,47]. Moreover, information measures
operate on probability distributions rather than directly on data. In this study, the functional forms
of inter-variable relationships are deducible using marginal densities (Equations (7), (8), (14), (15),
(18) and (19)) of the 4-variate probability density function which is a solution of a diffusion process
defined by Equation (1). In this study, the problem of inter-variable dependencies and correlations of
new developed functional forms of tree size variable dynamic is analyzed by using entropy-based
measures like interaction information, normalized interaction information, multi-information and
differential interaction information (see Equations (45)–(62)). The Shannon entropies of the evolution
of tree diameter, height, crown base height and crown width in univariate, bivariate, trivariate and
four-variate cases are graphically charted in Figure 2.

It is evident that, to some extent, entropy can be viewed as the amount of information that can
be gathered through observed dataset. It is understandable that the lower is the Shannon entropy of
the tree size variable the less information about the evolution of a tree we are missing and providing
more information about the tree development. Figure 2 shows that for all scenarios (univariate,
bivariate, trivariate and four-variate) the Shannon entropy increases against the time (age). Hence, an
information available about the tree development is actually losing with acceding a tree age. Moreover,
the differences of the Shannon entropy (uncertainty measures) between different scenarios of tree size
variables can be interpreted as an information gain or loss. It is important to note, if a tree size variable
have a small single uncertainty measure, then contribution to the multivariate entropy turns out to be
negligible. The univariate probability density function of the diameter, defined by Equations (7) and (8),
produced the supreme entropy relationship whereas the univariate probability density function of the
crown width produced the least entropy relationship. The bivariate probability density function of the
diameter and height, defined by Equations (14) and (15), produced the supreme entropy relationship
whereas the bivariate probability density function of the crown base height and crown width produced
the least entropy relationship. Lastly, the trivariate probability density function of the diameter, height
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and crown base height, defined by Equations (18) and (19), produced the supreme entropy relationship
whereas the trivariate probability density function of the height, crown base height and crown width
produced the minimal entropy relationship.
Mathematics 2019, 7, x FOR PEER REVIEW 
 14 of 23 

 

 
Figure 2. Evolution of the Shannon entropy. (a) Univariate: black—diameter; blue—height; green—
crown base height; red—crown width. (b) Bivariate: black—diameter and height; blue—diameter and 
crown base height; green—diameter and crown width; red—height and crown base height; cyan—
height and crown width; pink—crown base height and crown width. (c) Trivariate: black—diameter, 
height and crown base height; blue—diameter, height and crown width; green—diameter, crown base 
height and crown width; red—height, crown base height and crown width. (d) 4-variate: diameter, 
height, crown base height and crown width. 

It is evident that, to some extent, entropy can be viewed as the amount of information that can 
be gathered through observed dataset. It is understandable that the lower is the Shannon entropy of 
the tree size variable the less information about the evolution of a tree we are missing and providing 
more information about the tree development. Figure 2 shows that for all scenarios (univariate, 
bivariate, trivariate and four-variate) the Shannon entropy increases against the time (age). Hence, 
an information available about the tree development is actually losing with acceding a tree age. 
Moreover, the differences of the Shannon entropy (uncertainty measures) between different scenarios 
of tree size variables can be interpreted as an information gain or loss. It is important to note, if a tree 
size variable have a small single uncertainty measure, then contribution to the multivariate entropy 
turns out to be negligible. The univariate probability density function of the diameter, defined by 
Equations (7) and (8), produced the supreme entropy relationship whereas the univariate probability 
density function of the crown width produced the least entropy relationship. The bivariate 
probability density function of the diameter and height, defined by Equations (14) and (15), produced 
the supreme entropy relationship whereas the bivariate probability density function of the crown 
base height and crown width produced the least entropy relationship. Lastly, the trivariate 
probability density function of the diameter, height and crown base height, defined by Equations (18) 
and (19), produced the supreme entropy relationship whereas the trivariate probability density 
function of the height, crown base height and crown width produced the minimal entropy 
relationship. 

A complex way of quantifying statistical dependencies between tree size variables comes from 
the definition of multi-information, which is defined as the difference between the sum of single 
entropies for each tree size variables and the joint entropy of all tree size variables. The multi-
information defined by Equation (55) quantifies the total amount of information carried by 
correlations between the variables. As a measure of overall multivariable dependence or redundancy, 
this quantity goes to zero if all variables are independent. The information measure defined by 
Equations (45) and (50) is named as the total multi-information of two and n random variables, 

Figure 2. Evolution of the Shannon entropy. (a) Univariate: black—diameter; blue—height;
green—crown base height; red—crown width. (b) Bivariate: black—diameter and height;
blue—diameter and crown base height; green—diameter and crown width; red—height and
crown base height; cyan—height and crown width; pink—crown base height and crown width.
(c) Trivariate: black—diameter, height and crown base height; blue—diameter, height and crown width;
green—diameter, crown base height and crown width; red—height, crown base height and crown
width. (d) 4-variate: diameter, height, crown base height and crown width.

A complex way of quantifying statistical dependencies between tree size variables comes from the
definition of multi-information, which is defined as the difference between the sum of single entropies
for each tree size variables and the joint entropy of all tree size variables. The multi-information
defined by Equation (55) quantifies the total amount of information carried by correlations between
the variables. As a measure of overall multivariable dependence or redundancy, this quantity goes to
zero if all variables are independent. The information measure defined by Equations (45) and (50) is
named as the total multi-information of two and n random variables, respectively. Figure 3 shows that
multi-information is positive, remains stable against the age and gathers bigger values by increasing
the number of tree size variables. It is obvious that the multi-information is equal to the mutual
information when n = 2. If we range all relationships by using multi-information measure, then, for
example, examine Figure 3 we could choose the most important predictor variables for quantifying
other response variable. It follows that for a single response tree size variable—diameter (black, blue
and green curves) the superior relationship could be defined using a height (black—diameter and
height) as a predictor variable; for the height (black, red and cyan curves) the superior relationship
could be defined using a diameter (black—diameter and height); for the crown base height (blue,
cyan and pink curves) the superior relationship could be defined using height (cyan—height and
crown base height); and for the crown width (green, pink and cyan curves) the superior relationship
could be defined using a diameter (green—diameter and crown diameter). However, such ranging
procedure is not successful, as the low joint entropy value of n variables will also produce low the
value of multi-information even if the all the variables are perfectly related. Figure 3 shows that the
amount of multi-information is apparently constant via age.
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and crown width; red—height, crown base height and crown width. (c) 4-variate, diameter, height,
crown base height and crown width.

The concept of causality is commonly understandable as the capacity of one variable to influence
another. As was noted by Wiener [50] for two simultaneously measured variables, ‘if we can predict the
first variable better by using the past information from the second one than by using the information
without it, then we call the second variable causal to the first one’. In Wiener’s formulation, the causality
is a statistical concept that is based on prediction. Consequently, the best-ranked relationship is not
necessarily the one that fits best the data, but that carries superior causality information. Recognizing
the statement about causality as an information [51] about the effect of nonlinear relationship we
can examine and compare new developed nonlinear relationships by using intersection information
measures defined by Equations (45) and (51)–(62). Modeling of the evolution of tree size variables
requires better understanding which predictor exerts primary control on response tree size variable.
Mutual information quantifies the amount of information that one tree size variable reveals about
another and thus the strength of their codependency. Interconnecting causality with mutual information
we can measure how much knowing one of these tree size variables reduces uncertainty about the
other. If two tree size variables are independent, then knowing single tree size variable does not
give any information about another tree size variable and vice versa, so their mutual information is
zero. Unfortunately, the value of mutual information depends on the absolute magnitude of joint
entropy between the two chosen tree size variables and is not appropriate to use directly for relative
comparisons. Therefore, for the ranging of all developed models is advisable to use normalized
interaction measures, defined by Equations (51)–(56). The higher normalized information measure
values of the bivariate and trivariate mutual information (Equations (51), (53), (54) and (56)) show
stronger relationship. The normalized mutual information interpreted in typical distance metric form
(see Equations (52) and (55)) is closer to zero in case of a stronger similarity. Figure 4 presents the
evolution of the bivariate normalized mutual information defined by Equations (51)–(56). Eventually,
the results presented in Figure 4, provide strong evidence that information measures are powerful
tools to quantify and explain the relevance of different nonlinear relationships for tree size variables
modeling. It follows, that for the quantifying tree diameter relationship against a single predictor
variable it must be the crown width or the height, as the corresponding bivariate normalized mutual
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information curves are sufficiently close or intersects. Following this overall result for the quantifying
tree height relationship against a single predictor variable it must be the crown base height or the
diameter, as the corresponding bivariate normalized mutual information curves are sufficiently close
or intersects. For the quantifying tree crown base height relationship against a single predictor variable
it must be the height and, eventually, for the quantifying tree crown base height relationship best a
single predictor variable must be the diameter.
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Figure 4. Evolution of bivariate normalized mutual information (Equations (51)–(53)). Left
column–Equation 51. Middle column–Equation (52). Right column—Equation (53). First row for
diameter as a response variable and predictors: black—height; blue—crown base height; green—crown
width. Second row for height as a response variable and predictors: black—diameter; red—crown base
height; cyan—crown width. Third row for crown base height as a response variable and predictors:
blue—diameter, red—height, pink—crown width. Fourth row for crown width as a response variable
and predictors: green—diameter, cyan—height, pink—crown base height.

The evolution of the trivariate normalized mutual information defined by Equations (54)–(56) is
presented in Figure 5. In parallel with bivariate normalized mutual information scenario we can compare
nonlinear relationships using trivariate normalized mutual information (see Equations (54)–(56)).
Consequently, for the quantifying of tree diameter relationship against two predictor variables it must
be the crown base height and crown width. For the quantifying of tree height relationship against two
predictor variables it must be the diameter and crown base height. Moreover, for the quantifying of
tree crown base height relationship against two predictor variables it must be the height and crown
width. Eventually, for the quantifying of tree crown width relationship the best two predictor variables
must be the diameter and crown base height.
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Figure 5. Evolution of trivariate normalized interaction information (Equations (54)–(56)). Left
column—Equation (54). Middle column—Equation (55). Right column—Equation (56). First row for
diameter as a response variable and predictors: black—height and crown base height; blue—crown
base height and crown width; green—crown base height and crown width. Second row for height
as a response variable and predictors: black—diameter and crown base height; blue—diameter and
crown width; red—crown base height and crown width. Third row for crown base height as a response
variable and predictors: black—diameter and height; green—diameter and crown width; red—height
and crown width. Fourth row for crown width as a response variable and predictors: blue—diameter
and crown base height; green—diameter and crown base height; red—height and crown base height.

Given the initial state of the tree size variables, the solution of the SDE (1) determines the dynamic
of the univariate, marginal and conditional probability density functions of state variables. These
density functions of tree size variables are updated at each age. The dynamic of the univariate marginal
and conditional density functions of tree size variables provides the updated prediction by using the
mean and the conditional mean trend. For the test on predictive capacity of new derived nonlinear
relationships previously were discussed the concepts of the normalized mutual information. To make
SDE models comparison more precise, the difference of the intersection information (deltas) defined by
Equations (58)–(62) prevails over previous discussed decisions. Figure 6 presents the evolution of the
difference of the intersection information (deltas). For tree growth modeling the general problem is to
guarantee the maximum degree of dependence to be considered and to determine the number of the
best predictor variables involved. The three non-linear scenarios (one, two and three predictors) for
the mean trend of a response variable were developed in the present study. The further discussion
deals with the adequacy of the deltas defined by Equations (59)–(62) in describing the dependence and
causality of the tree size variables. The non-linear models showed that more of predictor variables is
included the higher deltas value is achieved. Therefore, the nonlinear models with three predictors (see
Figure 6 the third column) provided the best reveal of dependence of all response variables (diameter,
height, crown base height and crown width) due to the higher values of deltas than other models
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(one or two predictors). The shape of the deltas curves in the first column of Figure 6 showed that
height reveals the most part of dependence between diameter and other tree size variables (but remains
very close result when used crown width as a predictor variable). The diameter reveals the most
part of dependence between height and other tree size variables; the height reveals the most part of
dependence between crown base height and other tree size variables; eventually, the diameter reveals
the most part of dependence between crown width and other tree size variables.

In the second column of Figure 6 the deltas curve showed that the height and crown width reveal
the most part of dependence between diameter and other two tree size variables. The diameter and
crown base height reveal the most part of dependence between height and other two tree size variables;
the height and crown width reveal the most part of dependence between crown base height and
other two tree size variables; eventually, the diameter and crown base height reveal the most part of
dependence between crown width and other two tree size variables.

The ranking and selection of the mean tree size curves mi
s(t), mi

s(t, xu), mi
s(t, xu, xz) and

mi
s(t, xu, xz, xy) can be alternately performed using basic statistical measures, for example, mean bias

(MB), mean absolute bias (MAB), root mean square error (RMSE), adjusted coefficient of determination
R2, and Akaike’s information criterion (AIC) [6,17]. Statistical measures and the ranking for both fixed-
and mixed effects scenarios presented in Table 2. Therefore, from a statistical point of view (see Table 2),
for the fixed effects scenario all relationships attained lower values of statistical indexes than the mixed
effects scenario models.
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Figure 6. Evolution of deltas (Equations (60)–(62)). Left column—Equation (60). Middle
column—Equation (61). Right column—Equation (62). First row demonstrates for diameter as
a target variable. Second demonstrates for height as a target variable. Third row demonstrates for
crown base height as a target variable. Fourth row demonstrates for crown width as a target variable.
(a1,b1,c1,d1): black—diameter and height; blue—diameter and crown base height; green—diameter and
crown width; red—height and crown base height; cyan—height and crown width; pink—crown base
height and crown width. (a2,b2,c2,d2): black—height, diameter and crown base height; blue—height,
diameter and crown width; green—diameter, crown base height and crown width; red—height, crown
base height and crown width. (a3,b3,c3,d3): all tree size variables.
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Table 2. Goodness-of fit numerical statistical measures for the fixed- and mixed effects scenario models.

Predictors
Fixed Effect Scenario Mixed Effect Scenario

B
(Rank)

MAB
(Rank)

RMSE
Rank)

R2

(Rank)
AIC

(Rank)
MB

(Rank)
MAB

(Rank)
RMSE
(Rank)

R2

(Rank)
AIC

(Rank)

Diameter

(t) −0.619
(7)

5.472
(8)

6.765
(8)

0.355
(8)

26967
(8)

−0.837
(8)

4.823
(8)

5.869
(8)

0.515
(8)

26306
(8)

(t,H) 0.097
(2)

3.350
(5)

4.292
(5)

0.741
(5)

24852
(5)

−0.048
(1)

2.956
(6)

3.784
(6)

0.798
(6)

24267
(6)

(t,CH) −0.012
(1)

4.786
(7)

5.951
(7)

0.501
(7)

26374
(7)

−0.493
(6)

4.491
(7)

5.570
(7)

0.563
(7)

26068
(7)

(t,CW) −0.734
(8)

3.380
(6)

4.304
(6)

0.739
(6)

24864
(6)

−0.551
(7)

2.852
(5)

3.744
(5)

0.803
(5)

24217
(5)

(t,H,CH) −0.178
(4)

2.887
(4)

3.711
(4)

0.806
(4)

24184
(4)

−0.073
(2)

2.664
(4)

3.470
(4)

0.830
(4)

23974
(4)

(t,H,CW) −0.165
(3)

2.204
(2)

2.892
(2)

0.881
(2)

23019
(2)

−0.083
(4)

1.974
(2)

2.623
(2)

0.903
(2)

22567
(2)

(t,CH,CW) −0.223
(6)

2.707
(3)

3.584
(3)

0.819
(3)

24018
(3)

−0.261
(5)

2.600
(3)

3.446
(3)

0.833
(3)

23838
(3)

(t,H,CH,CW) −0.217
(5)

2.135
(1)

2.797
(1)

0.890
(1)

22870
(1)

−0.081
(3)

1.942
(1)

2.590
(1)

0.906
(1)

22515
(1)

Height

(t) −0.376
(7)

3.038
(8)

3.766
(8)

0.497
(8)

24238
(8)

−0.351
(8)

1.984
(8)

2.561
(8)

0.767
(8)

22433
(8)

(t,D) −0.257
(6)

1.883
(5)

2.350
(5)

0.804
(5)

22045
(5)

−0.180
(5)

1.380
(4)

1.752
(4)

0.891
(4)

20680
(4)

(t,CH) 0.166
(5)

1.676
(4)

2.114
(4)

0.841
(4)

21553
(4)

−0.088
(4)

1.521
(5)

1.929
(5)

0.868
(5)

21129
(5)

(t,CW) −0.461
(8)

2.709
(7)

3.349
(7)

0.602
(7)

23696
(7)

−0.331
(7)

1.703
(7)

2.235
(7)

0.823
(6–7)

21815
(6)

(t,D,CH) 0.065
(2)

1.029
(2)

1.312
(1–2)

0.939
(1–2)

19336
(1)

−0.048
(2)

0.939
(2)

1.215
(2)

0.948
(1–2)

18981
(1–2)

(t,D,CW) −0.118
(4)

2.189
(6)

2.857
(6)

0.710
(6)

22962
(6)

−0.203
(6)

1.668
(6)

2.234
(6)

0.823
(6–7)

21819
(7)

(t,CH,CW) 0.060
(1)

1.293
(3)

1.678
(3)

0.900
(3)

20482
(3)

−0.082
(3)

1.219
(3)

1.592
(3)

0.910
(3)

20240
(3)

(t,D,CH,CW) 0.067
(3)

1.027
(1)

1.312
(1–2)

0.939
(1–2)

19345
(2)

−0.046
(1)

0.936
(1)

1.213
(1)

0.948
(1–2)

18981
(1–2)

Crown base height

(t) −0.711
(7)

2.575
(8)

3.042
(8)

0.488
(8)

23243
(8)

−0.299
(7)

1.329
(4)

1.722
(5)

0.836
(5)

20595
(5)

(t,D) −0.685
(6)

2.231
(6)

2.689
(6)

0.600
(6)

22674
(6)

−0.254
(6)

1.371
(8)

1.748
(6)

0.831
(6)

20668
(6)

(t,H) −0.470
(4)

1.353
(4)

1.683
(4)

0.843
(4)

20492
(4)

−0.126
(3)

1.029
(3)

1.342
(3)

0.900
(3)

19437
(3)

(t,CW) −0.724
(8)

2.558
(7)

3.025
(7)

0.494
(7)

23223
(7)

−0.300
(8)

1.330
(5)

1.718
(4)

0.837
(4)

20590
(4)

(t,D,H) −0.369
(3)

1.154
(2)

1.456
(1)

0.883
(1)

19822
(2)

−0.135
(4)

1.375
(7)

1.770
(7)

0.827
(7)

20735
(7)

(t,D,CW) −0.506
(5)

2.012
(5)

2.490
(5)

0.657
(5)

22321
(5)

−0.191
(5)

1.362
(7)

1.797
(8)

0.821
(8)

20805
(8)

(t,H,CW) −0.326
(1–2)

1.181
(3)

1.514
(3)

0.873
(3)

20004
(3)

−0.081
(2)

0.948
(2)

1.264
(2)

0.912
(2)

19166
(2)

(t,D,H,CW) −0.326
(1–2)

1.146
(1)

1.461
(2)

0.882
(2)

19485
(1)

−0.078
(1)

0.933
(1)

1.243
(1)

0.915
(1)

19096
(1)

Crown width

(t) −0.009
(4)

0.884
(8)

1.108
(8)

0.180
(8)

18540
(8)

−0.091
(8)

0.834
(8)

1.038
(8)

0.281
(8)

18237
(7)

(t,D) 0.044
(8)

0.542
(4)

0.700
(4)

0.673
(4)

16402
(4)

−0.018
(1)

0.506
(4)

0.660
(4)

0.710
(4)

16129
(4)

(t,H) 0.036
(7)

0.770
(6)

0.983
(6)

0.355
(6)

17980
(6)

−0.055
(6)

0.720
(6)

0.916
(6)

0.440
(6)

17660
(6)

(t,CH) 0.001
(1)

0.878
(7)

1.102
(7)

0.189
(7)

18515
(7)

−0.090
(7)

0.831
(7)

1.037
(7)

0.282
(7)

18238
(8)

(t,D,H) 0.024
(6)

0.498
(3)

0.650
(3)

0.718
(3)

16058
(2)

−0.025
(4)

0.481
(3)

0.631
(3)

0.734
(3)

15929
(3)

(t,D,CH) 0.007
(2–3)

0.491
(2)

0.640
(1)

0.726
(1–2)

15989
(1)

−0.020
(2)

0.471
(2)

0.621
(2)

0.742
(2)

15859
(2)

(t,H,CH) −0.010
(5)

0.667
(5)

0.855
(5)

0.512
(5)

17339
(5)

−0.040
(5)

0.638
(5)

0.835
(5)

0.535
(5)

17234
(5)

(t,D,H,CH) 0.007
(2–3)

0.490
(1)

0.641
(2)

0.726
(1–2)

16293
(3)

−0.021
(3)

0.469
(1)

0.618
(1)

0.745
(1)

15842
(1)
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New developed nested statistical models, defined as a set of probability distributions on the
sample space (dataset), support growth and yield modeling by facilitating individualized outcomes
conditional on predictor variables. The goodness-of-fit of a model to dataset evaluated through the use
of numerical statistical measures and presented in Table 2 provides summary measures of the overall
accuracy of the predictions. The goodness-of-fit of new developed models to data assessed by using
numerical statistical measures MB, MAB, RMSE, R2 and AIC presented in Table 2, and information
measures defined by Equations (45)–(62) and visualized in Figures 1–5 showed very similar results.
This study presents that the interaction information measure approach is particularly powerful, but
has less general applicability because of the complicated calculations required, which are not always
presently solvable.

Forests statisticians who use mathematics but are not completely at ease with abstract mathematical
notations and formulas presented in Equations (1)–(62) can often better understand the new derived
mathematical models if these models are visually embodiment. Using the univariate marginal
distributions (Equations (7) and (8)), Figure 7 shows the mean, mode, median and both quartiles
trends via the mean stand age (in the mixed-effect scenario for randomly selected two stands). The
implementation of abstract mathematical Equations (9)–(12) visually reveals nonsymmetry that was
not apparent from the observed discrete datasets. Just such a hidden nonsymmetry, disclosed by
visualization, confirmed the fact that tree size variables are positively skewed.
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