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Abstract: The automatic identification of rock type in the field would aid geological surveying,
education, and automatic mapping. Deep learning is receiving significant research attention for pattern
recognition and machine learning. Its application here has effectively identified rock types from images
captured in the field. This paper proposes an accurate approach for identifying rock types in the field
based on image analysis using deep convolutional neural networks. The proposed approach can
identify six common rock types with an overall classification accuracy of 97.96%, thus outperforming
other established deep-learning models and a linear model. The results show that the proposed
approach based on deep learning represents an improvement in intelligent rock-type identification
and solves several difficulties facing the automated identification of rock types in the field.
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1. Introduction

Rocks are a fundamental component of Earth. They contain the raw materials for virtually all
modern construction and manufacturing and are thus indispensable to almost all the endeavors of an
advanced society. In addition to the direct use of rocks, mining, drilling, and excavating provide the
material sources for metals, plastics, and fuels. Natural rock types have a variety of origins and uses.
The three major groups of rocks (igneous, sedimentary, and metamorphic) are further divided into
sub-types according to various characteristics. Rock type identification is a basic part of geological
surveying and research, and mineral resources exploration. It is an important technical skill that must
be mastered by students of geoscience.

Rocks can be identified in a variety of ways, such as visually (by the naked eye or with a magnifying
glass), under a microscope, or by chemical analysis. Working conditions in the field generally limit
identification to visual methods, including using a magnifying glass for fine-grained rocks. Visual
inspection assesses properties such as color, composition, grain size, and structure. The attributes
of rocks reflect their mineral and chemical composition, formation environment, and genesis. The
color of rock reflects its chemical composition. For example, dark rocks usually contain dark mafic
minerals (e.g., pyroxene and hornblende) and are commonly basic, whereas lighter rocks tend to
contain felsic minerals (e.g., quartz and feldspar) and are acidic. The sizes of detrital grains provide
further information and can help to distinguish between conglomerate, sandstone, and limestone, for
example. The textural features of the rock assist in identifying its structure [1] and thus aid classification.
The colors, grain sizes, and textural properties of rocks vary markedly between different rock types,
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allowing a basis for distinguishing them [2]. However, the accurate identification of rock type remains
challenging because of the diversity of rock types and the heterogeneity of their properties [3] as well
as further limitations imposed by the experience and skill of geologists [4]. The identification of rock
type by the naked eye is effectively an image recognition task based on knowledge of rock classification.
The rapid development of image acquisition and computer image pattern recognition technology has
thus allowed the development of automatic systems to identify rocks from images taken in the field.
These systems will greatly assist geologists by improving identification accuracy and efficiency and
will also help student and newly qualified geologists practice rock-type identification. Identification
systems can be incorporated into automatic remote sensing and geological mapping systems carried
by unmanned aerial vehicles (UAVs).

The availability of digital cameras, hand-held devices and the development of computerized image
analysis provide technical support for various applications [5], so, they allow several characteristics
of rocks to be collected and assessed digitally. Photographs can clearly show the characteristics of
color, grain size, and texture of rocks (Figure 1). Although images of rocks do not show homogeneous
shapes, textures [1,6], or colors, computer image analysis can be used to classify some types of rock
images. Partio et al. [7] used gray-level co-occurrence matrices for texture retrieval from rock images.
Lepistö et al. [6] classified rock images based on textural and spectral features.

Advances in satellite and remote sensing technology have encouraged the development of
multi-spectral remote sensing technology to classify ground objects of different types [8,9], including
rock. However, it is expensive to obtain ultra-high-resolution rock images in the field with the
use of remote sensing technology. Therefore, the high cost of data acquisition using hyperspectral
technology carried by aircraft and satellites often prevents its use in teaching and the automation of
rock type identification.
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Figure 1. Digital image obtained in the field, allowing the rock type to be identified as mylonite by 
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larger tensile deformation of quartz particles; partition (C) shows larger grains than partition A and 
B. 

Figure 1. Digital image obtained in the field, allowing the rock type to be identified as mylonite by the
naked eye. Partition (A) shows the smaller changes in grain size of mylonite; partition (B) shows larger
tensile deformation of quartz particles; partition (C) shows larger grains than partition A and B.

Machine learning algorithms applied to digital image analysis have been used to improve
the accuracy and speed of rock identification, and researchers have studied automated rock-type
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classification based on traditional machine learning algorithms. Lepistö et al. [1] used image analysis
to investigated bedrock properties, and Chatterjee [2] tested a genetic algorithm on photographs of
samples from a limestone mine to establish a visual rock classification model based on imaging and the
Support Vector Machine (SVM) algorithm. Patel and Chatterjee [4] used a probabilistic neural network
to classify lithotypes based on image features extracted from the images of limestone. Perez et al. [10]
photographed rocks on a conveyor belt and then extracted features of the images to classify their types
using the SVM algorithm.

The quality of a digital image used in rock-type identification significantly affects the accuracy
of the assessment [2,4]. Traditional machine learning approaches can be effective in analyzing rock
lithology, but they are easily disturbed by the selection of artificial features [11]. Moreover, the
requirements for image quality and illumination are strict, thus limiting the choice of equipment
used and requiring a certain level of expertise on the part of the geologist. In the field, the complex
characteristics of weathered rocks and the variable conditions of light and weather, amongst others,
can compromise the quality of the obtained images, thus complicating the extraction of rock features
from digital images. Therefore, existing available methods are difficult to apply to the automated
identification of rock types in the field.

In recent years, deep learning, also known as deep neural networks, has received attention in various
research fields [12]. Many methods for deep learning have been proposed [13]. Deep convolutional
neural networks (CNNs) are able to automatically learn the features required for image classification
from training-image data, thus improving classification accuracy and efficiency without relying on
artificial feature selection. Very recent studies have proposed deep learning algorithms to achieve
significant empirical improvements in areas such as image classification [14], object detection [15],
human behavior recognition [16,17], speech recognition [18,19], traffic signal recognition [20,21], clinical
diagnosis [22,23], and plant disease identification [11,24]. The successes of applying CNNs to image
recognition have led geologists to investigate their use in identifying rock types [8,9,25], and deep
learning has been used in several studies to identify the rock types from images. Zhang et al. [26]
used transfer learning to identify granite, phyllite, and breccia based on the GoogLeNet Inception v3
deep CNNs model, achieving an overall accuracy of 85%. Cheng et al. [27] proposed a deep learning
model based on CNNs to identify three types of sandstone in image slices with an accuracy of 98.5%.
These studies show that CNNs have obtained good results when applied to geological surveying and
rock-type recognition. Deep CNNs can identify rock types from images without requiring the manual
selection of image features. However, deep CNNs have not yet been applied in the field, and the
accuracy of the above results was not sufficient for the identification of rocks.

This paper proposes a new method for automatically classifying field rock images based on deep
CNNs. A total of 2290 field rock photographs were first cropped to form a database of 24,315 image
patches. The sample patches were then utilized to train and test CNNs, with 14,589 samples being
used as the training dataset, 4863 samples being used as the validation dataset and the remaining 4863
samples being used as the testing dataset. The results show that the proposed model achieves higher
accuracy than other models. The main contributions of this paper are as follows: (1) the very high
resolution of the digital rock images allows them to include interference elements such as grass, soil,
and water, which do not aid rock type’s identification. This paper proposes a method of training-image
generation that can decrease computation and prevent overfitting of the CNNs-based model during
training. The method slices the original rock image into patches, selects patches typical of rock images
to form a dataset, and removes the interference elements that are irrelevant to rock classification.
(2) Rock Types deep CNNs (RTCNNs) model is employed to classify field rock types. Compared with
the established SVM, AlexNet, VGGNet-16, and GoogLeNet Inception v3 models, the RTCNNs model
has a simpler structure and higher accuracy for identifying rock types in the field. Based on various
factors, such as model type, sample size, and model level, a series of comparisons verified the high
performance of the RTCNNs model, demonstrating its reliability and yielding an overall identification
accuracy of 97.96%.
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The remainder of this paper is organized as follows. Section 2 presents details of the modification
and customization of the RTCNNs for the automated identification of field rock types. Section 3
describes the techniques of classifying the field rock types (including acquiring images of rock outcrops
and generating patched samples) and the software and hardware configurations of the method,
followed by a presentation of the results. Section 4 analyzes the factors that affect the identification
accuracy, such as the type of model, sample size, and model level, and presents the results. Section 5
provides the conclusions of the study.

2. Architecture of the Rock Types Deep Convolutional Neural Networks Model

Developments in deep learning technology have allowed continuous improvements to be made
in the accuracy of CNNs models. Such advances have been gained by models becoming ever deeper,
which has meant that such models demand increased computing resources and time. This paper
proposes a RTCNNs model for identifying rock types in the field. The computing time of the RTCNNs
model is much less than that of a model 10 or more layers. The hardware requirements are quite modest,
with computations being carried out with commonly used device CPUs and Graphics Processing Units
(GPUs). The RTCNNs model includes six layers (Figure 2).
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Figure 2. The Rock Types deep CNNs (RTCNNs) model for classifying rock type in the field. 
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do not undergo obvious deformation, while partition B records larger tensile deformation of quartz 
particles, and the quartz grains in the partition C are generally larger. In addition, in the proposed 
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Figure 2. The Rock Types deep CNNs (RTCNNs) model for classifying rock type in the field.

Before feeding the sample images into the model, Random_Clip and Random_Flip operations
are applied to the input samples. Each part of the image retains different feature of the target object.
Random clipping can reserve the different features of the image. For example, partition A of the image
shown in Figure 1 records smaller changes in grain size of mylonite, in which quartz particles do not
undergo obvious deformation, while partition B records larger tensile deformation of quartz particles,
and the quartz grains in the partition C are generally larger. In addition, in the proposed model, each
layers of training have fixed size parameters, such as the input size of convolution layer1 is 96 × 96
× 3, while the output size of feature is 96 × 96 × 64 (Figure 2). The input images are cropped into
sub-images with given size, while the given size is less. In the proposed model, the cropped size is 96
× 96 × 3, while the input size is 128 × 128 × 3. Through the random clipping operation of fixed size
and different positions, different partitions of the same image are fed into the model during different
training epochs. The flipping function can flip the image horizontally randomly. Both clipping and
flipping operations are realized through the corresponding functions of TensorFlow deep learning
framework [28]. The sample images fed into the model are therefore different in each epoch, which
expands the training dataset, improving the accuracy of the model and avoiding overfitting.

Before performing patch-based sampling, the various features of the rock are spread all over
the entire original field-captured image. The experiments described in Section 4 show that a smaller
convolution kernel can filter the rock features better than the bigger kernel of other models. As a
consequence, the first convolutional layer is designed to be 64 kernels of size 5 × 5 × 3, followed by a
max-pooling layer (Section 2.2), which can shrink the output feature map by 50%. A Rectified Linear
Unit (ReLU, Section 2.3) activation function is then utilized to activate the output neuron. The second
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convolutional layer has 64 kernels of size 5 × 5 × 64 connected to the outputs of the ReLU function,
and it is similarly followed by a max-pooling layer. Below this layer, two fully connected layers are
designed to predict six classes of field rock, and the final layer consists of a six-way Softmax layer.
Detailed parameters of the model, as obtained by experimental optimization, are listed in Table 1.

Table 1. Parameters and output shapes of the RTCNNs model.

Layer Name Function Weight Filter Sizes/Kernels Padding Stride Output Tensor

Input / / / / 128 × 128 × 3
Cropped image random_crop / / / 96 × 96 × 3

Conv1 conv2d 5 × 5 × 3/64 SAME 1 96 × 96 × 64
Pool1 max_pool 3 × 3 SAME 2 48 × 48 × 64
Conv2 conv2d 5 × 5 × 64/64 SAME 1 48 × 48 × 64
Pool2 max_pool 3 × 3 SAME 2 24 × 24 × 64

Output softmax / / / 6 × 1

2.1. Convolution Layer

A convolution layer extracts the features of the input images by convolution and outputs the
feature maps (Figure 3). It is composed of a series of fixed size filters, known as convolution kernels,
which are used to perform convolution operations on image data to produce the feature maps [29].
Generally, the output feature map can be realized by Equation (1):

hk
i j =

∑
i∈M j

(
(
wk
× x

)
i j
+ bk) (1)

where k represents the kth layer, h represents the value of the feature, (i, j) are coordinates of pixels, wk

represents the convolution kernel of the current layer, and bk is the bias. The parameters of CNNs, such
as the bias (bk) and convolution kernel (wk), are usually trained without supervision [11]. Experiments
optimized the convolution kernel size by comparing sizes of 3 × 3, 5 × 5, and 7 × 7; the 5 × 5 size
achieves the best classification accuracy. The number of convolution kernels also affects the accuracy
rate, so 32, 64, 128, and 256 convolution kernels were experimentally tested here. The highest accuracy
is obtained using 64 kernels. Based on these experiments, the RTCNNs model adopts a 5 × 5 size and
64 kernels to output feature maps.
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Figure 3. Learned rock features after convolution by the RTCNNs model. (a) Input patched field rock
sample images. (b) Outputted feature maps partly after the first convolution of the input image, from
the upper left corner in (a).
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Figure 3 shows the feature maps outputted from the convolution of the patched field images.
Figure 3a depicts the patch images from field photographs inputted to the proposed model during
training, and Figure 3b shows the edge features of the sample patches learned by the model after the
first layer convolution. The Figure indicates that the RTCNNs model can automatically extract the
basic features of the images for learning.

2.2. Max-Pooling Layer

The pooling layer performs nonlinear down-sampling and reduces the size of the feature map,
also accelerating convergence and improving computing performance [12]. The RTCNNs model uses
max-pooling rather than mean-pooling because the former can obtain more textural features than
can the latter [30]. The max-pooling operation maximizes the feature area of a specified size and is
formulated by

h j = max
i∈R j
αi (2)

where R j is the pooling region j in feature map α, i is the index of each element within the region, and
h is the pooled feature map.

2.3. ReLU Activation Function

The ReLU activation function nonlinearly maps the characteristic graph of the convolution layer
output to activate neurons while avoiding overfitting and improving learning ability. This function
was originally introduced in the AlexNet model [14]. The RTCNNs model uses the ReLU activation
function (Equation (3)) for the output feature maps of every convolutional layer:

f (x) = max(0, x) (3)

2.4. Fully Connected Layers

Each node of the fully connected layers is connected to all the nodes of the upper layer. The fully
connected layers are used to synthesize the features extracted from the image and to transform the
two-dimensional feature map into a one-dimensional feature vector [12]. The fully connected layers
map the distributed feature representation to the sample label space. The fully connected operation is
formulated by Equation (4):

ai =
m∗n∗d−1∑

j = 0

wi j ∗ xi + bi (4)

where i is the index of the output of the fully connected layer; m, n, and d are the width, height, and
depth of the feature map outputted from the last layer, respectively; w represents the shared weights;
and b is the bias.

Finally, the Softmax layer generates a probability distribution over the six classes using the output
from the second fully connected layer as its input. The highest value of the output vector of the Softmax
is considered the correct index type for the rock images.

3. Rock-Type Classification Method for Field Images of Rocks

The main steps for classifying field samples are acquiring images, collecting typical rock-type
images, establishing databases of rock-type images, setting up deep learning neural networks, and
identifying rock types (Figure 4).
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EOS 5D Mark III (above) and a Phantum 4 Pro DJi UAV with FC300C camera (below). (b) Rock images
obtained from outcrops. (c) Cutting images (512 × 512 pixels) of marked features from the originals.
(d) Rock-type identification training using CNNs. (e) Application of the trained model to related
geological fields.

3.1. Acquisition of Original Field Rock Images

The Xingcheng Practical Teaching Base of Jilin University in Xingcheng (southwest Liaoning
Province in NE China) was the field site for the collection of rock images. The site is situated in
Liaodong Bay and borders the Bohai Sea. There are various types of rock with good outcrops in this
area, mainly granite, tuff and other magmatic rocks, limestone, conglomerate, sandstone, and shale
and other sedimentary rocks as well as some mylonite. This diverse geological environment enables
the collected images to be used to test the reliability and consistency of the classification method.

The development of UAVs has led to their use in geological research [31–33], as they allow image
acquisition to take place in inaccessible areas. As part of this study’s objective of obtaining as many
photographs of surface rocks as possible, a UAV carrying a camera captured images of many of the
better outcrops of rocks on cliffs and in other unapproachable areas. Two cameras were used: a
Canon EOS 5D Mark III (EF 24–70 mm F2.8L II USM) was used to take photographs (5760 × 3840
pixels) of outcrops that field geologists could access, and a Phantum 4 Pro DJi UAV with FC300C
camera (FOV 84◦8.8 mm/24 mm f/2.8–f/11 with autofocus) captured images (4000 × 3000 pixels) of
inaccessible outcrops.

Figure 5 shows typical images of the six rock types. There are clear differences in grain size
distribution, structure, and color between the rocks, allowing them to be distinguished. However,
weathering and other factors in the field can significantly affect the color of sedimentary rocks, for
example, which increases the complexity of rock-type identification in the field.

The photographic image capture used different subject distances and focal lengths for different
rock types to best capture their particular features. For example, for conglomerates with large grains,
the subject distance was 2.0 m, and the focal length was short (e.g., 20 mm), so that the structural
characteristics of these rocks could be recorded. For sandstones with smaller grains, the subject distance
was 0.8 m with a longer focal length (e.g., 50 mm), allowing the grains to be detectable.
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(e) shale, and (f) limestone.

A total of 2290 images with typical rock characteristics of six rock types were obtained: 95 of
mylonite, 625 of granite, 530 of conglomerate, 355 of sandstone, 210 of shale, and 475 of limestone.
These six rock types include four sedimentary rocks (conglomerate, sandstone, shale, and limestone),
one metamorphic rock (mylonite), and one igneous rock (granite). After every three samples, one
sample was selected as the validation date, and then another sample as selected as the testing data,
so 60% of the images of each rock type were selected for the training dataset, 20% for the validation
dataset, and leaving 20% for the testing dataset (Table 2).

Table 2. Numbers of original field rock images.

Type Training Dataset Validation Dataset Number of Testing Data

Mylonite 57 19 19
Granite 375 125 125

Conglomerate 318 106 106
Sandstone 213 71 71

Shale 126 42 42
Limestone 285 95 95

Total 1374 458 458

3.2. Preprocessing Field Rock Image Data

In the field, a variety of features may obscure rocks or otherwise detract from the quality of rock
images obtained. Grass, water, and soil commonly appear in the collected images (e.g., area A in
Figure 6). These features hinder recognition accuracy and consume computing resources. In addition,
any image of a three-dimensional rock outcrop will contain some areas that are out of focus and which
cannot therefore be seen clearly or properly analyzed (e.g., area B in Figure 6). Furthermore, if the
captured image is directly used for training, then the image size of 5760 × 3840 pixels consumes large
amounts of computing resources. Therefore, before training the model, it is necessary to crop the
original image into sample patches without the interfering elements, thus reducing the total size of
imagery used in the analysis.

The color, mineral composition, and structure of a rock are the basic features for identifying its
type. These features have to be identifiable in the cropped images. The original images (of either 5760
× 3840 pixels or 4000 × 3000 pixels) are first labeled according to the clarity of the rock and are then
cropped into a variable number of sample patches of 512 × 512 pixels (e.g., boxes 1–7 in Figure 6), before
being compressed to 128 × 128 pixels. Labeling is performed manually and is based on the open-source
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software “LabelImg” [34], a graphical image annotation tool. Cropping is achieved automatically by a
python script based on the QT library. The steps used for processing are as follows:

(1) Open the original field rock image;
(2) Label the areas in the image with typical rock features (Figure 6);
(3) Save the current annotation, after the labeling operation; and
(4) Read all annotated locations and crop the annotated image locations to the specified pixel size for

the sample patches.

After the above-mentioned steps, the sample patch images were separated into a training dataset
containing 14,589 samples (60% of the total), a validation dataset of 4863 images (20% of the total) and
a testing dataset of 4863 images (20% of the total). Table 3 gives the specific distribution of training,
validation and testing images across rock types. Using sample patches retains the best representation
of rock features and benefits the training of the RTCNNs model.
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Figure 6. The extraction of typical rock samples from high-resolution images. Two or more image
samples (512 × 512 pixels) are cropped from an original field rock image of 5760 × 3840 pixels. Area A
is identified as vegetation cover, and area B is out of focus. Boxes 1–7 are manually labeled as sample
patch images.

Table 3. Datasets for image classification of field rocks.

Type Training Data Validation Data Testing Data

Mylonite 1584 528 528
Granite 3753 1251 1251

Conglomerate 3372 1124 1124
Sandstone 2958 986 986

Shale 1686 562 562
Limestone 1236 412 412

Total 14589 4863 4863
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3.3. Training the Model

3.3.1. Software and Hardware Configurations

As the RTCNNs model has fewer layers than VGGNet-16 and other models, the computations
were carried out on laptops. Table 4 gives the detailed hardware and software specifications. The
RTCNNs model was realized under the TensorFlow deep learning framework [28].

Table 4. Software and hardware configurations.

Configuration Item Value

Type and specification Dell Inspiron 15-7567-R4645B
CPU Intel Core i5-7300HQ 2.5 GHz

Graphics Processor Unit NVIDIA GeForce GTX 1050Ti with 4GB RAM
Memory 8 GB

Hard Disk 1 TB
Solid State Disk 120 GB

Operating System Windows 10 Home Edition
Python 3.5.2

Tensorflow-gpu 1.2.1

3.3.2. Experimental Results

Training employs random initial weights. After each batch of training is complete, the learning rate
changes and the weights are constantly adjusted to find the optimal value, which decreases the loss value
of training. After each epoch, the trained parameters are saved in files and used to evaluate the validation
dataset and obtain the identification accuracy of each epoch. After 200 epochs, the training loss gradually
converged to the minimum. The trained parameters trained after 200 epochs are used to evaluate the
testing dataset and obtain the identification accuracy. 10 identical experiments are established totally
Figure 7 shows the average loss and accuracy curves for the training and validation datasets from the
model using sample patch images of 128 × 128 pixels in the same 10 experiments. The curves show that
the model has good convergence after 50 training epochs, with the loss value being below 1.0, and the
training accuracy being 95.7%, validation accuracy achieved 95.4%. The highest accuracy of training and
validation achieved was 98.6% and 98.2% at 197th epoch. After 200 training epochs, the final training and
validation accuracy of the model reached 98.5% and 98.0% respectively. The saved parameters at 197th
epoch with the highest validation accuracy was used to test the testing dataset, and the confusion matrix
was gained (Table 5). Finally, the testing accuracy achieved was 97.96%.
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The confusion matrix in Table 5 shows that the RTCNNs model can effectively classify mylonite,
but is less effective in classifying sandstone and limestone, which yielded error rates of 4.06% and
3.4%, respectively.

Table 5. Confusion matrix of the RTCNNs model based on the testing dataset.

Actual

Predicted Mylonite Granite Conglomerate Sandstone Shale Limestone Error Rate

mylonite 528 0 0 0 0 0 0.00%
granite 0 1221 6 18 4 2 2.40%

conglomerate 0 0 1114 2 2 6 0.89%
sandstone 5 16 2 946 2 15 4.06%

shale 0 0 2 3 557 0 0.89%
limestone 2 0 4 8 0 398 3.4%

The sample images in Figure 8 show sandstone (a and b) and limestone (c and d) incorrectly
classified as granite, limestone, conglomerate, and sandstone, respectively. These samples have similar
characteristics to the predicted rock types and are thus misclassified. For example, the grain size,
texture, and shape of minerals in the sandstone in (a) are similar to those of minerals in granite.
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4. Discussion

The identification of rock type from field images is affected by many factors. The choice of model,
the size of training images, and the training parameters used will all influence training accuracy. This
section reports and discusses various comparative tests and related results.

4.1. Influence of Model Choice on Recognition Accuracy

To test the effectiveness of classification, the RTCNNs model’s performance was compared with
three other learning models (SVM, AlexNet, GoogLeNet Inception v3, and VGGNet-16) using the same
training and testing datasets. All models were trained in 200 epochs using the batch size parameters
listed in Table 6. The linear SVM classifier was applied to the datasets to test the performance using
the super parameters listed in Table 6. Three other existing models, AlexNet, GoogLeNet Inception v3,
and VGGNet-16, were also run using transfer learning, with initial learning rates of 0.01, 0.01, and
0.001, respectively (Table 6). During transfer learning, all the convolution and pooling layers of each
model are frozen, and the trainings are conducted only for the fully-connected layers. For AlexNet
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model, the final FC6, FC7, and FC8 layers are trained. While training the GoogLeNet Inception V3
model, the final FC layer is trained. For VGGNet-16 model, the final FC7 and FC8 layers are trained.

The experimental results show that the RTCNNs model proposed in the present study achieved
the highest overall accuracy (97.96%) on the testing dataset. Given that the same training and testing
images were used for each model, we ascribe this high accuracy mainly to the proposed CNNs model.
The next best performing model was GoogLeNet Inception v3, which obtained an overall accuracy of
97.1% with transfer learning. Although the overall testing accuracy of RTCNNs model is only 0.86%
higher than that of GoogLeNet Inception V3 model, it leads to 42 more images identified by RTCNNs
model than by GoogLeNet Inception V3 model. When identifying larger dataset, the advantage of
RTCNNs model will be more obvious. Meanwhile, the results show that the CNNs model outperforms
the linear SVM model in terms of classifying rocks from field images.

In addition, the RTCNNs model has fewer layers than the other models, meaning it is less
computationally expensive and can be easily trained on common hardware (see Section 3.3.1). It also
requires less time for training than the other deep learning models (Table 6).

Table 6. Recognition performance and related parameters.

Method Accuracy (%) Batch Size Initial Learning Rate Computing Time

SVM 85.5 200 0.001 3:32:20
AlexNet 92.78 128 0.01 4:49:28

GoogLeNet Inception v3 97.1 100 0.01 7:12:53
VGGNet-16 94.2 100 0.001 5:18:42

Our present study 97.96 16 0.03 4:41:47

4.2. The Effect of Sample Patch Images’ Size on Rock-Type Identification

The sample patch images preserve those rock features (e.g., structure, mineral composition, and
texture) that are most important to its identification. To test the influence of the size of sample patch
images on the accuracy of rock identification, we compressed the sample patches from 512 × 512 pixels
to 32 × 32, 64 × 64, 128 × 128, and 256 × 256 pixels and compared the results under otherwise identical
conditions. The results show that using a training dataset with patches of 128 × 128 pixels achieved
the best performance (Figure 9).
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4.3. The Effect of Model Depth on Identification Accuracy

Many previous studies have established that increasing the depth of a model improves its
recognition accuracy. Two modifications to the proposed model with different depths are shown
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in Figure 10; Figure 11 plots the performance accuracy of the two modified models and of the
original model.Mathematics 2019, 7, x FOR PEER REVIEW 13 of 16 
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The results of the comparison show that increasing the depth of the model (model Test A and Test
B) does not improve the accuracy of recognition/identification in the present case; in fact, increasing
the depth reduces such identification (Figure 11). We infer that the feature extraction operation of the
proposed CNNs for rock image recognition does not require additional levels, with the convolution
operation at a deeper level serving only to lose features and cause classification errors.
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5. Conclusions

The continuing development of CNNs has made them suitable for application in many fields.
A deep CNNs model with optimized parameters is proposed here for the accurate identification
of rock types from images taken in the field. Novelly, we sliced and patched the original obtained
photographic images to increase their suitability for training the model. The sliced samples clearly
retain the relevant features of the rock and augment the training dataset. Finally, the proposed deep
CNNs model was trained and tested using 24,315 sample rock image patches and achieved an overall
accuracy of 97.96%. This accuracy level is higher than those of established models (SVM, AlexNet,
VGNet-16, and GoogLeNet Inception v3), thereby signifying that the model represents an advance in
the automated identification of rock types in the field. The identification of rock type using a deep
CNN is quick and easily applied in the field, making this approach useful for geological surveying and
for students of geoscience. Meanwhile, the method of identifying rock types proposed in the paper can
be applied to the identification of other textures after retraining the corresponding parameters, such as
rock thin section images, sporopollen fossil images and so on.

Although CNNs have helped to identify and classify rock types in the field, some challenges
remain. First, the recognition accuracy still needs to be improved. The accuracy of 97.96% achieved
using the proposed model meant that 99 images were misidentified in the testing dataset. The model
attained relatively low identification accuracy for sandstone and limestone, which is attributed to the
small grain size and similar colors of these rocks (Table 5; Figure 8). Furthermore, only a narrow range of
sample types (six rock types overall) was considered in this study. The three main rock groups (igneous,
sedimentary, and metamorphic) can be divided into hundreds of types (and subtypes) according
to mineral composition. Therefore, our future work will combine the deep learning model with a
knowledge library, containing more rock knowledge and relationships among different rock types, to
classify more rock types and improve both the accuracy and the range of rock-type identification in the
field. In addition, each field photograph often contains more than one rock type, but the proposed
model can classify each image into only one category, stressing the importance of the quality of the
original image capture.

Our future work will aim to apply the trained model to field geological surveying using UAVs,
which are becoming increasingly important in geological data acquisition and analysis. The geological
interpretation of these high-resolution UAV images is currently performed mainly using manual
methods, and the workload is enormous. Therefore, the automated identification of rock types will
greatly increase the efficiency of large-scale geological mapping in areas with good outcrops. In such
areas (e.g., western China), UAVs can collect many high-resolution outcrop images, which could be
analyzed using the proposed method to assist in both mapping and geological interpretation while
improving efficiency and reducing costs. In order to improve the efficiency of labeling, the feature
extraction algorithm [35] will be studied to automatically extract the advantageous factors in the image.
We also plan to apply other deep learning models, such as the state-of-art Mask RCNN [36], to identify
many types of rock in the same image. In addition, we will study various mature optimization
algorithms [37–39] to improve computing efficiency. These efforts should greatly improve large-scale
geological mapping and contribute to the automation of mapping.
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