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Abstract: New versions of a Gronwall–Bellman inequality in the frame of the generalized
(Riemann–Liouville and Caputo) proportional fractional derivative are provided. Before proceeding
to the main results, we define the generalized Riemann–Liouville and Caputo proportional fractional
derivatives and integrals and expose some of their features. We prove our main result in light of some
efficient comparison analyses. The Gronwall–Bellman inequality in the case of weighted function
is also obtained. By the help of the new proposed inequalities, examples of Riemann–Liouville
and Caputo proportional fractional initial value problems are presented to emphasize the solution
dependence on the initial data and on the right-hand side.

Keywords: Gronwall–Bellman inequality; proportional fractional derivative; Riemann–Liouville and
Caputo proportional fractional initial value problem

1. Introduction

Integral inequalities have been used as fabulous instruments to explore the qualitative properties
of differential equations [1]. Over the years, there have appeared many inequalities which have been
established by many authors such as Ostrowski type inequality, Hardy type inequality, Olsen type
inequality, Gagliardo–Nirenberg type inequality, Lyapunove type inequality, Opial type inequality and
Hermite–Hadamard type inequality [2,3]. However, the most common and significant inequality is
the Gronwall–Bellman inequality, which they introduced in [4,5]. The Gronwall–Bellman inequality
allows one to provide an estimate for a function that is known to satisfy a certain integral inequality by
the solution of the corresponding integral equation. In particular, it has been employed to provide a
comparison that can be used to prove uniqueness of a solution to an initial value problem (see some
recent relevant papers [6–9]).

Fractional differential equations (FDEs) is a rich area of research that has widespread applications
in science and engineering. Indeed, it describes a large number of nonlinear phenomena in
different fields such as physics, chemistry, biology, viscoelasticity, control hypothesis, speculation,
fluid dynamics, hydrodynamics, aerodynamics, information processing system networking, notable
and picture processing, control theory, etc. FDEs also provide marvellous tools for the depiction of
memory and inherited properties of many materials and processes. In view of recent developments,
one can consequently conclude that FDEs have emerged significant achievements in the last couple of
decades [10–16]. The study of integral equations in the scope of non-integer-order equations has been
in the spotlight in the recent years. Many mathematicians in the field of applied and pure mathematics
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have dedicated their efforts to extend, generalize and refine the integral inequalities carried over
from integer order equations to the non-integer order equations. Meanwhile, different definitions of
fractional derivatives have been recently introduced [17,18]. The Gronwall–Bellman inequality, which
is our concern herein, has been under investigation and different versions of it have been established
for different types of fractional operators [19–25].

In this paper, new versions for a Gronwall–Bellman inequality in the frame of the newly defined
generalized (Riemann–Liouville and Caputo) proportional fractional derivative are provided. Before
proceeding to the main results, we define the generalized Riemann–Liouville and Caputo proportional
fractional derivatives and integrals and expose some of their features [26]. We prove our main result in
light of some efficient comparison analysis. The Gronwall–Bellman inequality in the case of a weighted
function is also obtained. By the help of the new proposed inequalities, examples of Riemann–Liouville
and Caputo generalized proportional fractional initial value problems are presented to emphasize the
solution dependence on the initial data and on the right-hand side. It worth mentioning that the new
proposed derivative is well-behaved. Indeed, it has nonlocal character and satisfies the semigroup
or the so-called index property. Besides, the resulting inequalities converge to the classical ones
upon considering particular cases of the derivative. That is, our results not only extend the classical
inequalities but also generalize the existing ones for non-integer-order equations.

2. The GPF Derivatives and Integrals

We assemble in this section some fundamental preliminaries that are used throughout the
remaining part of the paper. For their justifications and proofs, the reader can consult the work
in [26].

In control theory, a proportional derivative controller (PDC) for controller output u at time t with
two tuning parameters has the algorithm

u(t) = κpE(t) + κd
d
dt

E(t),

where κp is the proportional gain, κd is the derivative gain, and E is the input deviation or the error
between the state variable and the process variable. Recent investigations have shown that PDC has
direct incorporation in the control of complex networks models (see [27] for more details).

For ρ ∈ [0, 1], let the functions κ0, κ1 : [0, 1]×R → [0, ∞) be continuous such that for all t ∈ R
we have

lim
ρ→0+

κ1(ρ, t) = 1, lim
ρ→0+

κ0(ρ, t) = 0, lim
ρ→1−

κ1(ρ, t) = 0, lim
ρ→1−

κ0(ρ, t) = 1,

and κ1(ρ, t) 6= 0, ρ ∈ [0, 1), κ0(ρ, t) 6= 0, ρ ∈ (0, 1]. Then, Anderson et al. [28] defined the proportional
derivative of order ρ by

Dρξ(t) = κ1(ρ, t)ξ(t) + κ0(ρ, t)ξ ′(t) (1)

provided that the right-hand side exists at t ∈ R and ξ ′ := d
dt ξ. For the operator given in Equation (1),

κ1 is a type of proportional gain κp, κ0 is a type of derivative gain κd, ξ is the error and u = Dρξ is the
controller output. The reader can consult the work in [29] for more details about the control theory
of the proportional derivative and its component functions. We only consider here the case when
κ1(ρ, t) = 1− ρ and κ0(ρ, t) = ρ. Therefore, Equation (1) becomes

Dρξ(t) = (1− ρ)ξ(t) + ρξ ′(t). (2)

It is easy to find that lim
ρ→0+

Dρξ(t) = ξ(t) and lim
ρ→1−

Dρξ(t) = ξ ′(t). Thus, the derivative in

Equation (2) is somehow more general than the conformable derivative, which certainly does not
converge to the original functions as ρ tends to 0.

In what follows, we define the generalized proportional fractional (GPF) integral and derivative:
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Definition 1 ([26]). For 0 < ρ ≤ 1, α ∈ C and Re(α) > 0, the GPF integral of ξ of order α is

(a Iα,ρξ)(t) =
1

ραΓ(α)

∫ t

a
e

ρ−1
ρ (t−τ)

(t− τ)α−1ξ(τ)dτ = ρ−αe
ρ−1

ρ t(
a Iα
(
e

1−ρ
ρ t

ξ(t)
))

. (3)

Definition 2 ([26]). For 0 < ρ ≤ 1, α ∈ C, Re(α) ≥ 0 and n = [Re(α)] + 1. Then, the Riemann–Liouville
type GPF derivative of f of order α is

(aDα,ρξ)(t) = Dn,ρ
a In−α,ρξ(t) =

Dn,ρ
t

ρn−αΓ(n− α)

∫ t

a
e

ρ−1
ρ (t−τ)

(t− τ)n−α−1ξ(τ)dτ. (4)

Remark 1. If we let ρ = 1 in Definition 2, then one can obtain the left Riemann–Liouville fractional
derivative [12,14,15]. Moreover, it is obvious that

lim
α→0

(Dα,ρξ)(t) = ξ(t) and lim
α→1

(Dα,ρξ)(t) = (Dρξ)(t).

Proposition 1 ([26]). Let α, β ∈ C be such that Re(α) ≥ 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1, we have

(1)
(

a Iα,ρe
ρ−1

ρ t
(t− a)β−1)(x) = Γ(β)

Γ(β+α)ρα e
ρ−1

ρ x
(x− a)α+β−1, Re(α) > 0.

(2)
(

aDα,ρe
ρ−1

ρ t
(t− a)β−1)(x) = ραΓ(β)

Γ(β−α)
e

ρ−1
ρ x

(x− a)β−1−α, Re(α) ≥ 0.

In the following lemmas, we expose some features of Riemann–Liouville type GPF operator.
The first result concerns with the index property of GPF which is of great significance.

Lemma 1 ([26]). If 0 < ρ ≤ 1, Re(α) > 0 and Re(β) > 0. For a continuous function ξ defined on [a, ∞),
we have

a Iα,ρ(a Iβ,ρξ)(t) =a Iβ,ρ(a Iα,ρξ)(t) = (a Iα+β,ρξ)(t). (5)

The action of the operator aDα,ρ on the integral operator is demonstrated in the following results.

Lemma 2 ([26]). Let 0 < ρ ≤ 1, 0 ≤ m < [Re(α)] + 1 and ξ be integrable in each interval [a, t], t > a. Then,

aDm,ρ(a Iα,ρξ)(t) = (a Iα−m,ρξ)(t). (6)

Corollary 1 ([26]). Let 0 < ρ ≤ 1, 0 < Re(β) < Re(α) and m− 1 < Re(β) ≤ m. Then, we have

aDβ,ρ(a Iα,ρξ)(t) = (a Iα−β,ρξ)(t).

Lemma 3 ([26]). Let f be integrable on t ≥ a and Re[α] > 0, 0 < ρ ≤ 1, n = [Re(α)] + 1. Then, we have

aDα,ρ(a Iα,ρξ)(t) = ξ(t).

Lemma 4 ([26]). Let 0 < ρ ≤ 1, Re(α) > 0, n = [Re(α)] + 1, ξ ∈ L1(a, b) and (a Iα,ρξ)(t) ∈ ACn[a, b]. Then,

a Iα,ρ(aDα,ρξ)(t) = ξ(t)− e
ρ−1

ρ (t−a)
n

∑
j=1

(a I j−α,ρξ)(a+)
(t− a)α−j

ρα−jΓ(α + 1− j)
. (7)

The GPF derivative of Caputo type is defined as follows:
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Definition 3 ([26]). For 0 < ρ ≤ 1, α ∈ C, Re(α) ≥ 0 and n = [Re(α)] + 1. Then, the GPF derivative of
Caputo type of ξ of order α is

(C
a D

α,ρ
ξ)(t) = a In−α,ρ(Dn,ρξ)(t) =

1
ρn−αΓ(n− α)

∫ t

a
e

ρ−1
ρ (t−τ)

(t− τ)n−α−1(Dn,ρξ)(τ)dτ. (8)

Proposition 2 ([26]). Let α, β ∈ C be such that Re(α) > 0 and Re(β) > 0. Then, for any 0 < ρ ≤ 1 and
n = [Re(α)] + 1, we have

(C
a D

α,ρ
e

ρ−1
ρ t

(t− a)β−1)(x) =
ραΓ(β)

Γ(β− α)
e

ρ−1
ρ x

(x− a)β−1−α, Re(β) > n.

For k = 0, 1, . . . , n− 1, we have
(C

a Dα,ρe
ρ−1

ρ t
(t− a)k)(x) = 0.

Lemma 5 ([26]). For ρ ∈ (0, 1], Re(α) > 0 and n = [Re(α)] + 1. Then, we have

a Iα,ρ( C
a D

α,ρ
ξ)(t) = ξ(t)− e

ρ−1
ρ (t−a)

n−1

∑
k=0

(aDk,ρξ)(a)
ρkk!

(t− a)k. (9)

3. Main Results

This section is devoted to provide our main results of this paper. We formulate new versions of
the Gronwall–Bellman inequality within GPF operators in Riemann–Liouville and Caputo settings.

3.1. Gronwall–Bellman Inequality via the GPF Derivative of Riemann–Liouville Type

Consider the following generalized proportional Riemann–Liouville fractional initial value problem
(

aDα,ρy
)
(t) = f (t, y(t)), 0 < α ≤ 1, t ∈ [a, b],

lim
t→a+

(
a I1−α,ρy

)
(t) = y(a) = ya.

(10)

Applying the operator a Iα,ρ to both sides of Equation (10), we obtain

y(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + a Iα,ρ f (t, y(t)), (11)

In the following, we present a comparison result for the GPF integral operator.

Theorem 1. Let η and ζ be nonnegative continuous functions defined on [a, b] and satisfying

η(t) ≥ e
ρ−1

ρ (t−a)
(t− a)α−1η(a) + a Iα,ρ f (t, η(t)), (12)

and
ζ(t) ≤ e

ρ−1
ρ (t−a)

(t− a)α−1ζ(a) + a Iα,ρ f (t, ζ(t)), (13)

respectively. Suppose further that f satisfies a one-sided Lipschitz condition of the form

f (t, x)− f (t, y) ≤ L

e
ρ−1

ρ (a−t)[e ρ−1
ρ (t−a)

(t− a)α−1 + (t−a)α

α + 1
] (x− y), for x ≥ y, L > 0, (14)

and f (t, y) is nondecreasing in y. Then, η(a) ≥ ζ(a) and L <
(
1 + α

(t−a)α

)
Γ(α)ραe−

ρ−1
ρ (t−a) imply that

η(t) ≥ ζ(t) for all t ∈ [a, b].
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Proof. We start by setting

ηε(t) = η(t) + ε
[
e

ρ−1
ρ (t−a)

(t− a)α−1 +
(t− a)α

α
+ 1
]
, for small ε > 0, (15)

so that we have
ηε(a) = η(a) + ε > η(a) and ηε(t) > η(t), t ∈ [a, b]. (16)

It follows that

ηε(t) ≥ e
ρ−1

ρ (t−a)
(t− a)α−1η(a) +

1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, η(s))ds

+ ε
[
e

ρ−1
ρ (t−a)

(t− a)α−1 +
(t− a)α

α
+ 1
]

or

ηε(t) ≥ e
ρ−1

ρ (t−a)
(t− a)α−1η(a) +

1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, η(s))ds

− 1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, ηε(s))ds

+
1

Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, ηε(s))ds

+ ε
[
e

ρ−1
ρ (t−a)

(t− a)α−1 +
(t− a)α

α
+ 1
]
.

Using the Lipschitz condition in Equation (14) and the relations in Equations (15) and (16),
we obtain

ηε(t) ≥ e
ρ−1

ρ (t−a)
(t− a)α−1ηε(a)− εL

Γ(α)ρα

∫ t

a
(t− s)α−1ds

+
1

Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, ηε(s))ds + ε
[ (t− a)α

α
+ 1
]

Since
∫ t

a (t− s)α−1ds = (t−a)α

α and L <
(
1 + α

(t−a)α

)
Γ(α)ραe−

ρ−1
ρ (t+a), we arrive at

ηε(t) > e
ρ−1

ρ (t−a)
(t− a)α−1ηε(a) +

1
Γ(α)ρα

∫ t

a
e

ρ−1
ρ (t−s)

(t− s)α−1 f (s, ηε(s))ds.

The remaining part of the proof can be completed by adopting the same steps followed in the proof
of Theorem 2.1 in [30,31] to get ηε(t) ≥ ζ(t), t ∈ [a, b]. However, and since ε is arbitrary, we conclude
that η(t) ≥ ζ(t), t ∈ [a, b] holds true.

Remark 2. The Lipschitz condition in Equation (14) can be relaxed by relaxing the upper bound for the
constant L.

For our purpose, we replace f (t, y(t)) in Equation (11) by x(t)y(t) where |x(t)| < 1, t ∈ [a, b].
Define the following operator

Ωxφ = a Iα,ρx(t)φ(t). (17)

The following results are important in the proof of the main theorem. We only state these lemmas
as their proofs are straightforward.
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Lemma 6. For any constant λ, one has

∣∣Ωλe
ρ−1

ρ (t−a)
(t− a)α−1∣∣ ≤ Ω|λ|e

ρ−1
ρ (t−a)

(t− a)α−1. (18)

Lemma 7. For any constant λ, one has

∣∣Ωn
λe

ρ−1
ρ (t−a)

(t− a)α−1∣∣ = |λ|n(t− a)(n+1)α−1Γ(α)
ρnαΓ((n + 1)α)

e
ρ−1

ρ (t−a), n = 0, 1, 2, · · · . (19)

Lemma 8. Let λ > 0 be such that |y(t)| ≤ λ for t ∈ [a, b]. Then,

∣∣Ωn
y e

ρ−1
ρ (t−a)

(t− a)α−1∣∣ ≤ Ωn
λe

ρ−1
ρ (t−a)

(t− a)α−1, n = 0, 1, 2, · · · . (20)

Theorems 1 and 2 together give us the desired proportional Riemann–Liouville fractional
Gronwall–Bellman-type inequality.

Theorem 2. Let y be a nonnegative function on [a, b]. Then, the GPF integral equation

y(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + a Iα,ρx(t)y(t), t ∈ [a, b], (21)

has a solution

y(t) = y(a)
∞

∑
k=0

Ωk
xe

ρ−1
ρ (t−a)

(t− a)α−1. (22)

Proof. The proof is accomplished by applying the successive approximation method. Set

y0(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a)

and

yn(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + a Iα,ρx(t)yn−1(t), n ≥ 1.

We observe that

y1(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + a Iα,ρx(t)y0(t)

= y(a)Ω0
xe

ρ−1
ρ (t−a)

(t− a)α−1 + y(a)Ω1
xe

ρ−1
ρ (t−a)

(t− a)α−1,

and

y2(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + a Iα,ρx(t)y1(t)

= y(a)Ω0
xe

ρ−1
ρ (t−a)

(t− a)α−1 + Ω1
x

[
y(a)Ω0

xe
ρ−1

ρ (t−a)
(t− a)α−1 + y(a)Ω1

xe
ρ−1

ρ (t−a)
(t− a)α−1

]
= y(a)Ω0

xe
ρ−1

ρ (t−a)
(t− a)α−1 + y(a)Ω1

xe
ρ−1

ρ (t−a)
(t− a)α−1 + y(a)Ω2

xe
ρ−1

ρ (t−a)
(t− a)α−1.

It follows inductively that

yn(t) = y(a)
n

∑
k=0

Ωk
xe

ρ−1
ρ (t−a)

(t− a)α−1, n ≥ 0. (23)
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Formally, taking the limit as n→ ∞ to obtain

y(t) = y(a)
∞

∑
k=0

Ωk
xe

ρ−1
ρ (t−a)

(t− a)α−1. (24)

We use Lemmas 6–8, the comparison test and the d’Alembert ratio test to show the absolute
convergence of the series in Equation (24). Indeed, the infinite series

∞

∑
n=0

λn(t− a)(n+1)α−1Γ(α)
ρnαΓ((n + 1)α)

e
ρ−1

ρ (t−a),

is convergent for all t ∈ [a, b] and for all 0 < λ, ρ ≤ 1. Let an be defined as

an =
λn(t− a)(n+1)α−1Γ(α)

ρnαΓ((n + 1)α)
e

ρ−1
ρ (t−a). (25)

Then, we have

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ = λ(t− a)α

ρα
lim

n→∞

∣∣∣∣Γ((n + 1)α)
Γ((n + 2)α)

∣∣∣∣ .

Next, we use Stirling approximation formula for the Gamma function xΓ(x) ∼
√

2πx
( x

e
)x, where

x is large enough. It is a straightforward computation using this formula to show that

lim
x→∞

xΓ(x)√
2πx

( x
e
)x = 1 and lim

x→∞

(
x

x + 1

)x
=

1
e

,

which are all we need. Hence, we have

lim
n→∞

(n + 1)αΓ((n + 1)α)√
2π(n + 1)α

(
(n+1)α

e

)(n+1)α
= 1 and lim

n→∞

(n + 2)αΓ((n + 2)α)√
2π(n + 2)α

(
(n+2)α

e

)(n+2)α
= 1.

Thus,

lim
n→∞

∣∣∣∣ an+1

an

∣∣∣∣ =
λ(t− a)α

ρα
lim

n→∞

∣∣∣∣Γ((n + 1)α)
Γ((n + 2)α)

∣∣∣∣
=

λ(t− a)α

ρα
lim

n→∞

[√
n + 2
n + 1

(
n + 1
n + 2

)α ( e
α

)α
(

n + 1
n + 2

)nα ( 1
n + 2

)α
]

=
λ(t− a)α

ρα

[( e
α

)α
(

1
e

)α

0
]

= 0 < 1.

Hence, convergence is guaranteed. Besides, one can easily show that Equation (22) solves
Equation (21).

Remark 3. Note that Equation (22) solves the inequality

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t− a)α−1ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b], (26)

where ζ and y are nonnegative real valued functions such that 0 ≤ y(t) < λ < 1.

Now, we are in a position to state the main theorem, which is a new version of the Gronwall–Bellman
inequality within the generalized proportional fractional Riemann–Liouville settings.
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Corollary 2. Let ζ and y be nonnegative real valued functions such that 0 ≤ y(t) < λ < 1 and

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t− a)α−1ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b]. (27)

Then,

ζ(t) ≤ ζ(a)
∞

∑
k=0

Ωk
ye

ρ−1
ρ (t−a)

(t− a)α−1. (28)

The proof of the corollary is a straightforward implementation of Theorems 1 and 2. Indeed, it is

immediately obtained by setting η(t) = ζ(a)
∞

∑
k=0

Ωk
ye

ρ−1
ρ (t−a)

(t− a)α−1.

3.2. Gronwall–Bellman Inequality via the GPF Derivative of Caputo Type

Consider the following generalized proportional Caputo fractional initial value problem
(C

a D
α,ρ

y
)
(t) = f (t, y(t)), 0 < α ≤ 1, t ∈ [a, b],

y(a) = ya.
(29)

Applying the operator a Iα,ρ to both sides of Equation (29), we obtain

y(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρ f (t, y(t)), (30)

The results of this subsection resemble the ones proved in Section 3.1. To avoid redundancy,
therefore, we skip some steps of the proofs. We start by the following comparison result for the
generalized proportional Caputo fractional integral operator.

Theorem 3. Let η and ζ be nonnegative continuous functions defined on [a, b] and satisfy

η(t) ≥ e
ρ−1

ρ (t−a)
η(a) + a Iα,ρ f (t, η(t)), (31)

and
ζ(t) ≤ e

ρ−1
ρ (t−a)

ζ(a) + a Iα,ρ f (t, ζ(t)), (32)

respectively. Suppose further that f satisfies one-sided Lipschitz condition of the form

f (t, x)− f (t, y) ≤ L

e
ρ−1

ρ (a−t)
[

e
ρ−1

ρ (t−a)
+ (t−a)α

α

] (x− y), for x ≥ y, L > 0, (33)

and f (t, y) is nondecreasing in y. Then, η(a) ≥ ζ(a) and L < Γ(α)ραe−
ρ−1

ρ (t−a) imply that η(t) ≥ ζ(t) for
all t ∈ [a, b].

The proof of the above theorem can be completed by setting ηε(t) = η(t) + ε

[
e

ρ−1
ρ (t−a)

+ (t−a)α

α

]
,

for small ε > 0, and following similar steps as the proof of Theorem 1.
In the sequel, we replace f (t, y(t)) in Equation (30) by x(t)y(t), where |x(t)| < 1, t ∈ [a, b]. Define

the following operator
Φxφ = a Iα,ρx(t)φ(t). (34)

In similar manner, the following lemmas are formulated for Caputo type operator.
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Lemma 9. For any constant λ, one has

∣∣Φλe
ρ−1

ρ (t−a)∣∣ ≤ Φ|λ|e
ρ−1

ρ (t−a). (35)

Lemma 10. For any constant λ, one has

∣∣Φn
λe

ρ−1
ρ (t−a)∣∣ = |λ|n(t− a)nα

ρnαΓ(nα + 1)
e

ρ−1
ρ (t−a), n = 0, 1, 2, · · · . (36)

Lemma 11. Let λ > 0 be such that |y(t)| ≤ λ for t ∈ [a, b]. Then,

∣∣Φn
y e

ρ−1
ρ (t−a)∣∣ = Φn

λe
ρ−1

ρ (t−a), n = 0, 1, 2, · · · . (37)

Theorem 4. Let y be a nonnegative function on [a, b]. Then, the generalized proportional fractional
integral equation

y(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρx(t)y(t), t ∈ [a, b], (38)

has a solution

y(t) = y(a)
∞

∑
k=0

Φk
xe

ρ−1
ρ (t−a). (39)

Proof. We employ the successive approximation method to complete the proof. Set

y0(t) = e
ρ−1

ρ (t−a)y(a)

yn(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρx(t)yn−1(t), n ≥ 1.

We observe that

y1(t) = y(a)Φ0
xe

ρ−1
ρ (t−a)

+ y(a)Φ1
xe

ρ−1
ρ (t−a)

and

y2(t) = e
ρ−1

ρ (t−a)y(a) + a Iα,ρx(t)y1(t)

= y(a)Φ0
xe

ρ−1
ρ (t−a)

+ y(a)Φ1
xe

ρ−1
ρ (t−a)

+ y(a)Φ2
xe

ρ−1
ρ (t−a).

It follows inductively that yn(t) = y(a)
n

∑
k=0

Φk
xe

ρ−1
ρ (t−a). Taking the limit as n→ ∞ to obtain

y(t) = y(a)
∞

∑
k=0

Φk
xe

ρ−1
ρ (t−a). (40)

Following the same arguments as in the proof of Theorem 2, we use Lemmas 9–11, the comparison
test and the d’Alembert ratio test to show the absolute convergence of the series in Equation (40).
Moreover, it is clear to verify that Equation (39) solves Equation (38). The proof is finished.

Remark 4. Note that Equation (39) solves the inequality

ζ(t) ≤ e
ρ−1

ρ (t−a)
ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b], (41)

where ζ and y are nonnegative functions on [a, b] such that 0 ≤ y(t) < λ < 1.

The Gronwall–Bellman inequality in generalized proportional Caputo fractional is stated as follows.
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Corollary 3. Let ζ and y be nonnegative real valued functions such that 0 ≤ y(t) < λ < 1 and

ζ(t) ≤ e
ρ−1

ρ (t−a)
ζ(a) + a Iα,ρζ(t)y(t), t ∈ [a, b]. (42)

Then,

ζ(t) ≤ ζ(a)
∞

∑
k=0

Φk
ye

ρ−1
ρ (t−a). (43)

To prove Equation (43), we set η(t) = ζ(a)
∞

∑
k=0

Φk
ye

ρ−1
ρ (t−a) and the rest follows as a direct application

of Theorems 3 and 4.

4. Gronwall–Bellman Inequality via Weighted Function

In this section, we extend the results obtained in Section 3 to the case of weighted function.
The analysis can be carried out for the Riemann–Liouville and Caputo operators. However, we only
present the results for the case of Riemann–Liouville proportional fractional operator. Unlike previous
relevant results in the literature [32], the weighted function w in the following first two theorems
requires no monotonic restriction.

Theorem 5. Let η, ζ, w be nonnegative continuous functions on [a, b] where η and ζ satisfy

η(t) ≥ e
ρ−1

ρ (t−a)
(t− a)α−1η(a) + w(t)a Iα,ρ f (t, η(t)), (44)

and
ζ(t) ≤ e

ρ−1
ρ (t−a)

(t− a)α−1ζ(a) + w(t)a Iα,ρ f (t, ζ(t)), (45)

respectively. Suppose further that f satisfies one-sided Lipschitz condition of the form

f (t, x)− f (t, y) ≤ L

e
ρ−1

ρ (a−t)[e ρ−1
ρ (t−a)

(t− a)α−1 + w(t) (t−a)α

α + 1
] (x− y), for x ≥ y, L > 0, (46)

and f (t, y) is nondecreasing in y. Then, η(a) ≥ ζ(a) and L <
(
1 + α

w(t)(t−a)α

)
Γ(α)ραe−

ρ−1
ρ (t−a) imply that

η(t) ≥ ζ(t) for all t ∈ [a, b].

To prove the above theorem, we set ηε(t) = η(t) + ε
[
e

ρ−1
ρ (t−a)

+ w(t) (t−a)α

α + 1
]
, for small ε > 0, and

follow similar steps as the proof of Theorem 1.

Remark 5. The Lipschitz condition in Equation (46) can be relaxed by relaxing the upper bound for the
constant L.

Theorem 6. Let x, y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that |x(t)| < 1 for t ∈ [a, b] and max

t∈[a,b]
w(t) = M. Then, the generalized proportional

fractional integral equation

y(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + w(t)a Iα,ρx(t)y(t), t ∈ [a, b], (47)

has a solution

y(t) = y(a)Ω0
xe

ρ−1
ρ (t−a)

(t− a)α−1 + y(a)w(t)
∞

∑
k=1

Mk−1Ωk
xe

ρ−1
ρ (t−a)

(t− a)α−1. (48)
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Remark 6. Note that Equation (48) solves the inequality

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t− a)α−1ζ(a) + w(t)a Iα,ρζ(t)y(t), t ∈ [a, b], (49)

where ζ, y are nonnegative functions on [a, b] and w is a nonnegative continuous function defined on [a, b] and
0 ≤ y(t) < λ < 1 and max

t∈[a,b]
w(t) = M.

The Gronwall–Bellman inequality in case of weighted function w is stated as follows.

Theorem 7. Let ζ, y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that 0 ≤ y(t) < λ < 1 for t ∈ [a, b] and max

t∈[a,b]
w(t) = M and

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t− a)α−1ζ(a) + w(t)a Iα,ρζ(t)y(t), t ∈ [a, b]. (50)

Then,

ζ(t) ≤ ζ(a)Ω0
ye

ρ−1
ρ (t−a)

(t− a)α−1 + ζ(a)w(t)
∞

∑
k=1

Mk−1Ωk
ye

ρ−1
ρ (t−a)

(t− a)α−1. (51)

If the weighted function w possesses a monotonic behavior, then Theorem 6 and Theorem 7 can
be reformulated, respectively, in the following forms.

Theorem 8. Let y, x be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Further, assume that |x(t)| < 1 for t ∈ [a, b] and w is a nondecreasing function. Then, the generalized
proportional fractional integral equation

y(t) = e
ρ−1

ρ (t−a)
(t− a)α−1y(a) + w(t)a Iα,ρx(t)y(t), t ∈ [a, b], (52)

has a solution

y(t) = y(a)
∞

∑
k=0

wk(t)Ωk
xe

ρ−1
ρ (t−a)

(t− a)α−1. (53)

Theorem 9. Let ζ, y be nonnegative functions on [a, b] and w be a nonnegative continuous function defined on
[a, b]. Assume that 0 ≤ y(t) < λ < 1 for t ∈ [a, b] and w is a nondecreasing function and

ζ(t) ≤ e
ρ−1

ρ (t−a)
(t− a)α−1ζ(a) + w(t)a Iα,ρζ(t)y(t), t ∈ [a, b]. (54)

Then,

ζ(t) ≤ ζ(a)
∞

∑
k=0

wk(t)Ωk
ye

ρ−1
ρ (t−a)

(t− a)α−1. (55)

5. Applications

In this section, two examples of Riemann–Liouville and Caputo generalized proportional
fractional initial value problems are presented. By the help of the new proposed Gronwall–Bellman
inequalities in Theorems 2 and 3, we show that the solution of the initial value problems depend on
the initial data and on the right-hand side.

Consider the proportional Riemann–Liouville fractional initial value problem in Equation (10). In
the remaining part of this section, we assume that the nonlinearity function f (t, y) satisfies a Lipschitz
condition with a constant L ∈ [0, 1) for all (t, y).
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Example 1. Consider the following Riemann–Liouville proportional fractional initial value problems of the form

(aDα,ρβ)(t) = f (t, β(t)), lim
t→a+

(
a I1−α,ρβ

)
(t) = β(a) = β0, 0 < α ≤ 1, t ∈ [a, b], (56)

and
(aDα,ργ)(t) = f (t, γ(t)), lim

t→a+

(
a I1−α,ργ

)
(t) = γ(a) = γ0, 0 < α ≤ 1, t ∈ [a, b]. (57)

We claim that a small change in the initial condition implies a small change in the solution.

Proof. Applying the generalized proportional fractional integral operator in Equations (56) and (57),
we have

β(t) = e
ρ−1

ρ (t−a)
(t− a)α−1β0 + a Iα,ρ f (t, β(t)),

and

γ(t) = e
ρ−1

ρ (t−a)
(t− a)α−1γ0 + a Iα,ρ f (t, γ(t)).

It follows that

β(t)− γ(t) = e
ρ−1

ρ (t−a)
(t− a)α−1(β0 − γ0

)
+ a Iα,ρ[ f (t, β(t))− f (t, γ(t))].

Taking the absolute value, we obtain

|β(t)− γ(t)| ≤ e
ρ−1

ρ (t−a)
(t− a)α−1|β0 − γ0|+ a Iα,ρ| f (t, β(t))− f (t, γ(t))|

≤ e
ρ−1

ρ (t−a)
(t− a)α−1|β0 − γ0|+ La Iα,ρ|β(t)− γ(t)|.

By employing Theorem 2, we get

|β(t)− γ(t)| ≤ |β0 − γ0|
∞

∑
k=0

Ωk
Le

ρ−1
ρ (t−a)

(t− a)α−1

= |β0 − γ0|
∞

∑
k=0

Lk(t− a)(k+1)α−1Γ(α)
ρkαΓ((k + 1)α)

e
ρ−1

ρ (t−a).

Consider the initial value problem
(aDα,ρν)(t) = f (t, ν(t)), 0 < α ≤ 1, t ∈ [a, b]

lim
t→a+

(
a I1−α,ρν

)
(t) = ν(a) = βn,

(58)

where βn → β0. If the solution of Equation (58) is denoted by νn, then, for all t ∈ [a, b], we have

|β(t)− νn(t)| ≤ |β0 − βn|
∞

∑
k=0

Lk(t− a)(k+1)α−1Γ(α)
ρkαΓ((k + 1)α)

e
ρ−1

ρ (t−a).

Hence, |β(t)− νn(t)| → 0 when βn → β0 as n→ ∞. We conclude that a small change in the initial
condition implies a small change in the solution.

Example 2. Consider the following Caputo generalized proportional fractional initial value problems of the form

(C
a Dα,ρ

β)(t) = f (t, β(t)), β(a) = β0, α ∈ (0, 1], t ∈ [a, b]. (59)
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and
(C

a Dα,ρ
σ)(t) = f (t, σ(t)) + g(t, σ(t)), σ(a) = σ0, α ∈ (0, 1], t ∈ [a, b]. (60)

We claim that the solution of Equation (60) depends continuously on the right-hand side of Equation (60) if

|g(t, σ)| ≤ Ke
ρ−1

ρ (t−a) for all t ∈ [a, b] and for a positive number K.

Proof. If the solution of Equation (60) is denoted by σ, then, for all t ∈ [a, b], we have

|β(t)− σ(t)| ≤ e
ρ−1

ρ (t−a)|β0 − σ0|+ a Iα,ρ| f (t, β(t))− f (t, σ(t))|+ a Iα,ρ|g(t, σ(t))|

≤ e
ρ−1

ρ (t−a)|β0 − σ0|+ L a Iα,ρ|β(t)− σ(t)|+ a Iα,ρ|g(t, σ(t))|.

By the assumption, we have

|β(t)− σ(t)| ≤ e
ρ−1

ρ (t−a)|β0 − σ0|+ L a Iα,ρ|β(t)− σ(t)|+ a Iα,ρKe
ρ−1

ρ (t−a)

or

|β(t)− σ(t)|+ K
L

e
ρ−1

ρ (t−a) ≤ e
ρ−1

ρ (t−a)
(
|β0 − σ0|+

K
L

)
+ L a Iα,ρ

(
|β(t)− σ(t)|+ K

L
e

ρ−1
ρ (t−a)

)
.

Let r(t) = |β(t)− σ(t)|+ K
L

e
ρ−1

ρ (t−a). Then, if we apply Theorem 3, we obtain

r(t) ≤
(
|β0 − σ0|+

K
L

) ∞

∑
k=0

Φk
Le

ρ−1
ρ (t−a),

or

|β(t)− σ(t)| ≤
(
|β0 − σ0|+

K
L

) ∞

∑
k=0

Lk(t− a)(k+1)α−1

ρkαΓ((k + 1)α)
e

ρ−1
ρ (t−a) − K

L
e

ρ−1
ρ (t−a).

For a ≤ t ≤ b, letting Ke
ρ−1

ρ (t−a)
< δ implies that

|β(t)− σ(t)| ≤ |β0 − σ0|
∞

∑
k=0

Lk(t− a)(k+1)α−1

KρkαΓ((k + 1)α)
δ +

δ

L

[
∞

∑
k=0

Lk(t− a)(k+1)α−1

ρkαΓ((k + 1)α)
− 1

]

≤ δ

{
|β0 − σ0|

∞

∑
k=0

Lkb(k+1)α−1

KρkαΓ((k + 1)α)
+

1
L

[
∞

∑
k=0

Lkb(k+1)α−1

ρkαΓ((k + 1)α)
− 1

]}
= ε,

which implies that a small change on the right-hand side of Equation (59) implies a small change in
its solution.

6. Conclusions

One of the most crucial issues in the theory of differential equations is to study qualitative
properties for solutions of these equations. Integral inequalities are significant instruments
that facilitate exploring such properties. In this paper, we accommodate a newly defined
generalized proportional fractional (GPF) derivative to establish new versions for the well–known
Gronwall–Bellman inequality. We prove our results in the frame of GPF operators within the
Riemann–Liouville and Caputo settings. The main results are also extended to the weighted function
case. One can easily figure out that the current results generalize the ones previously obtained in
the literature. Indeed, the case ρ = 1 covers the results of classical Riemann–Liouville and Caputo
fractional derivatives. As an application, we provide two efficient examples that demonstrate the
solution dependence on the initial data and on the right-hand side of the initial value problems.
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The results of this paper have strong potential to be used for establishing new substantial investigations
in the future for equations involving the GPF operators.
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