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Abstract: We first shortly review, in part throwing a new light on, basics of ball numbers for balls
having a positively homogeneous Minkowski functional and turn over then to a new particular
class of ball numbers of balls having a Minkowski functional being homogeneous with respect
to multiplication with a specific diagonal matrix. Applications to crystal breeding, temperature
expansion and normalizing density generating functions in big data analysis are indicated and a
challenging problem from the inhomogeneity program is stated.
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1. Introduction

The circle number π is one of the most famous numbers because of the unique role it plays in
mathematics and because of its fascinating properties, which have been explored to a broad readership
by many authors (see, for example, [1–5]). Studying two of the most basic properties, the so-called
area content and circumference properties, and checking them for circles of more general shape and in
higher dimensions is the aim of the present note.

Various approaches to generalizing π by proving different statements on circles under more general
assumptions can be found in the literature. The authors of [6] called the circumference-to-diameter
ratio of (norm-)circles in a normed space X = (R2, ||.||) the curly pi, ω̄(X), and indicate that the range
of ω̄(X) is the interval [3, 4]. It was proved already in [7] that πp = ω̄(X) satisfies π ≤ ω̄(X) ≤ 4 if
X is in particular an lp−space, and that ω̄(X∗) = ω̄(X) where X∗ is the dual space of X, that is the
space of all linear functionals on X endowed with the dual norm ||.||∗ of ||.||.The latter equation was
proved for the general norm case already in [8] while some statements in [9] reprove and generalize
early results on ω̄(X) from [10]. For the lp-case, a series approximation of πp is studied in [11]. It was
used in [12] that the norm length µB(∂B) of a norm circle ∂B satisfies, in the notation given there,
2 ≤ µB(∂B)

µB(B) ≤ π where B and ∂B are the unit disc and its boundary, the unit circle, respectively, in a
two-dimensional Minkowski space, and µB is the corresponding Minkowski measure. Additionally
motivating and justifying each of these considerations, in [13], the authors referred to Hilbert’s fourth
problem where he suggested an examination of geometries that “stand next to Euclidean geometry” in
some sense, and then surveyed basic results on the geometry of unit discs in normed spaces. A specific
type of such results is dealt with in [14] where the following question is answered: Of all closed curves
of fixed length, which encloses the largest one? Recalling that our planet sweeps out equal areas in
equal times, the question of how to construct curves having this Kepler property is also answered.
Three postulates for constructing generalized circle numbers are discussed in [15] where the author
aimed such numbers to satisfy as many of these postulates as possible, namely those with respect to
the circumference-to-diameter ratio, the area content of the unit circle and the arc length of the upper
(lower) half circle.
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There are other branches of mathematics where certain modifications or generalizations of π play
a role. People dealing with generalized trigonometric functions consider sometimes functions having a
period slightly different from π. Solving certain differential equations may also lead to such functions,
and eigenvalues of certain differential operators are closely connected with generalized circle numbers.
Moreover, there are many papers dealing with the prerequisites of multivariate generalizations of the
circle number π where the notion of non-Euclidean circumference of a circle is replaced with that of
suitably defined surface content of non-Euclidean spheres or where the notion of Euclidean volume is
replaced with another one. For remaining basic in this Introduction, we omit any related details here.

Generalized circle numbers and their multivariate counterparts, the ball numbers, can be defined in
various ways. For the original approach to generalizing the circle number π in the sense of the present
study, we refer to [16,17]. It was shown there that Archimedes’ or Ludolph’s number π is not alone as a
circle number reflecting the two mentioned circle properties. There exists a continuous and monotonously
increasing function p → π(p), p > 0 with lim

p→0
π(p) = 0, π(1) = 2, π(2) = π, lim

p→∞
π(p) = 4 and

such that, for each p > 0, π(p) reflects both the area content and the l2,p-generalized circumference
properties of the l2,p-circle. This means that, if Up(r) and Ap(r) denote the l2,p-generalized circumference
and the common (Euclidean) area content of an l2,p-circle Cp(r) = {(x, y)T ∈ R2 : |x|p + |y|p = rp}
of p-generalized radius r and its circumscribed disc Kp(r), respectively, then the ratios Up(r)/(2r) and
Ap(r)/r2 are the same and do not depend on r > 0 and their common value is π(p), p > 0.

If p ≥ 1, then the notion of the l2,p-generalized perimeter coincides with that of the l2,p∗ -arc-length
ALp,p∗ of Cp(r) for the conjugate p∗ satisfying 1

p + 1
p∗ = 1. Hence, the non-Euclidean, unless for p = 2,

metric generated by the unit ball of the space l2,p∗ turns out to be of special interest for measuring the
length of an l2,p-circle.

Looking forward to the case p ∈ (0, 1), recognize that the l2,q-arc-length of Cp(r) may be
represented for arbitrary q ≥ 1 as

ALp,q(r) =
2π∫
0

dKq(1)(x′(ϕ), y′(ϕ))dϕ

where dK denotes the Minkowski functional of a star-shaped set K and the function ϕ→ (x(ϕ), y(ϕ))

is a differentiable parameter representation of the considered l2,p-circle Cp(r).
If p ∈ (0, 1) and p∗∗ satisfies the equation 1

p −
1

p∗∗ = 1, then the notion of the l2,p-generalized
circumference is based upon the Minkowski functional of K(p∗∗) where

K(q) = {(x, y) ∈ R2 :
1
|x|q +

1
|y|q ≥ 1}, q > 0

is a non-convex star-shaped set and the K(q)-based arc-length is actually defined as

ALp,q(r) =
2π∫
0

dK(q)(x′(ϕ), y′(ϕ))dϕ

for arbitrary q > 0.
A possible interpretation of the l2,p-generalized circumference of an l2,p-circle is in the case p ≥ 1

that among all l2,q-arc-lengths ALp,q(r) of Cp(r) with q ≥ 1 just the l2,p∗ -arc-length ALp,p∗(r) coincides
with the derivative of the area function, i.e.,

ALp,q(r) =
d
dr

Ap(r), r > 0

if and only if q = p∗.
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If p ∈ (0, 1), then among all K(q)-based arc-lengths ALp,q(r) of Cp(r) with q > 0 just the
K(q∗∗)-based arc-length ALp,p∗∗(r) satisfies the latter equation, which therefore holds if and only
if q = p∗∗.

Hence, this geometric-analytical way of defining an arc-length of an l2,p-circle is equivalent to
considering the derivative of the area content function of the circumscribed disc. This view onto
what is a circle’s arc-length has been established in [18] within a more general and well motivated
multi-dimensional context. It turned out in [16,17] that, as in the case p = 2, it holds π(p) = Ap(1) in
all cases p > 0.

A first related definition of ball numbers can be found in [19] and the particular ball numbers
of ellipsoids and platonic bodies are dealt with in [20,21], respectively. In [19], the notion of a circle
number was extended to that of a ball number of an arbitrary ln,p-ball

Kn,p(r) = {(x1, ..., xn) ∈ Rn :
n

∑
i=1
|xi|p ≤ rp} , p > 0, n ∈ {2, 3, ...}

of p-generalized radius r > 0. Let us denote the (usual) volume of Kn,p(r) and the suitably defined
ln,p-generalized surface content of its boundary Sn,p(r) by Vn,p(r) and On,p(r), respectively. The ratio
Vn,p(r)/rn = Vn,p(1) does not depend on r > 0. It was shown that this ratio equals in fact the ratio
On,p(r)/(nrn−1). It is said that the common value which these ratios actually attain reflects the volume
and the p-generalized surface content properties of the ln,p-ball.

The definition of the ln,p-generalized surface content of Sn,p(r) was given in two steps. Firstly,
the notion of the surface content from Euclidean geometry was extended to the notion of the ln,q-surface

content O(n)
p,q (r) of the ln,p-sphere Sn,p(r) for p ≥ 1, q ≥ 1. Secondly, it was shown that just the ratio

O(n)
p,p∗(r)/(nrn−1) with the conjugate p∗ ≥ 1 satisfying 1

p + 1
p∗ = 1 coincides with the ratio Vn,p(r)/rn

and does not depend on r > 0. This was motivation to put On,p(r) = O(n)
p,p∗(r) and to consider

Vn,p(1) = πn(p) as the ln,p-ball number if p ≥ 1. This generalized the two-dimensional approach
in [16].

If p ∈ (0, 1), then the notion of the ln,q-surface content O(n)
p,q (r) of the sphere Sn,p(r) was introduced

based upon the (Minkowski functional of the) non-convex star-shaped set

K(q) = {x(n) ∈ Rn :
n

∑
i=1

1
|xi|q

≥ 1}, q > 0.

In a similar way as in the case p ≥ 1, it turns out that it is reasonable to put Vn,p(1) = πn(p) in
the case p ∈ (0, 1), too.

For two first applications of all mentioned ball numbers, we refer to the normalizing problem of
probabilistic distribution theory discussed, e.g., in [20,22,23] and the thin layer property considered
in [19,20].

In the present paper, we introduce ball numbers also being originally designed for certain
purposes of probability theory. To be more concrete, they turn out to be normalizing multiplicative
constants making certain nonnegative integrable functions being probability densities. The structure
of probability density level sets gives rise to introduce radius variables of much more general type
than in the case of ln,p-balls and to each time newly adopt the notion of surface content in the suitable
non-Euclidean sense. In Section 2, we shortly review what is known for ball numbers of balls having
a positive homogeneous Minkowski functional, and in Section 3 we start considering balls with a
diagonal matrix homogeneous Minkowski functional, extending the two-dimensional consideration
in [24] to arbitrary finite dimension.
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2. Positively Homogeneous Star Balls

While the lp-world dealt with so far already serves great flexibility in applied situations, sometimes
it may be desirable to go further. Here, we allow balls to be generated by arbitrary norms or antinorms
or even more general functionals. Throughout this section, let B ⊂ Rn be a star body having the origin
0n in its interior and let its topological boundary S be called a star sphere. A countable collection
F = {C1, C2, ...} of pairwise disjoint cones Cj with vertex being the origin 0n and Rn =

⋃
j Cj builds a

fan. Let A be a Borel subset of S and Sj = S ∩ Cj, j = 1, 2, ... . According to Assumption 1 in [22], we
assume that for every j, the set

G(A ∩ Sj) = {ϑ ∈ Rn−1 : ∃!η > 0 with θ = (ϑT , η)T ∈ A ∩ Sj}

is well defined where ∃!η > 0 means that there is an η > 0 which is uniquely determined. The latter
quantity is denoted ηj, j = 1, 2, ... . The Minkowski functional of B is defined by hB(x) = inf{λ > 0 :
x ∈ λB}, x ∈ Rn where λM = {λx, x ∈ M} for M ⊂ Rn and λx = (λx1, ..., λxn)T for x = (x1, ..., xn)T .
In the present section, we assume that the functional hB is positive homogeneous of degree one, that
is hB(λx) = λhB(x), x ∈ Rn, λ > 0 and call then B positively homogeneous. Among the typical
examples of such B are norm and antinorm unit balls {x ∈ Rn : ||x|| ≤ 1}, respectively. In these cases,
one can choose F = {Rn,+,Rn,−} where Rn,+(−) = {x ∈ Rn : xn > (<)0} is the upper (lower) half
space. For the notion of antinorm, we refer to [25]. The variable r may be considered in the general
case as the star radius of the ball B(r) = rB and in the particular cases of norm or antinorm balls as
norm or antinorm radius, respectively. For every j = 1, 2, ..., the following star-spherical coordinate
transformation StSphj : [0, ∞)× G(Sj)→ Cj has been introduced in the mentioned paper putting

xi = rϑi, i = 1, ..., n− 1 and xn = yj(ϑ) where ϑ = (ϑ1, ..., ϑn−1)
T and yj = rηj(ϑ).

It follows from Lemma 1 in [22] and the proof of Theorem 2 in [23] that, if hB = ||.|| is a norm,
and N(ϑ) is the outer normal vector to S at (ϑT , η)T ∈ S then

dx = rn−1||N(ϑ)||∗dϑdr (1)

where ||.||∗ is the dual of the norm ||.||. Similarly, if hB = ||.|| is an antinorm, then the star body B is
radially concave with respect to a fan F = {C1, C2, ...}. Let

hFB (u) = ∑
i

ICi (u) inf{uTy : y ∈ S ∩ Ci}

be the antisupport function of B with respect to F and

Bo = {λ(u)u : 0 ≤ λ(u)hFB (u) ≤ 1, u ∈ Sn−1
E }

the antipolar set of B where 0 ≤ λ(u) ≤ ∞ if 0 ≤ hFB (u) ≤ ∞ and Sn−1
E is the Euclidean unit sphere in

Rn. Let further N(ϑ) denote the inner normal vector to S at (ϑT , η)T ∈ S. Again, changing variables
according to the transformations StSphj proves that

dx = rn−1hB0(N(ϑ))dϑdr = rn−1hFB (N(ϑ))dϑdr. (2)

Let S− and S+ denote the lower and upper half of the star sphere S, respectively. We consider a
surface measure defined for any Borel subset A of S by

O(A) =
∫

G(A∩S+)

||N(ϑ)||∗dϑ +
∫

G(A∩S−)

||N(ϑ)||∗dϑ
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or
O(A) =

∫
G(A∩S+)

hFB (N(ϑ))dϑ +
∫

A∩G(S−)

hFB (N(ϑ))dϑ

if B is a norm or antinorm ball, respectively. If we define

π(B) =
O(S)

n
(3)

then π(B) satisfies the equations

µ(B(r))
rn = π(B) =

O(S(r))
nrn−1 for all r > 0 (4)

where µ denotes the Lebesgue measure or volume in Rn. The following definition is now well
motivated.

Definition 1. The surface measure A→ O(A) is called dual surface content measure on the Borel σ-field on S
and, because of Equation (4), the number π(B) is called the ball number of the star body B. The left and right
hand side equations in Equation (4) are called the volume and the surface content property of π(B), respectively.

In the two-dimensional case, n = 2, the volume and surface content properties in Equation
(4) are called the area content and circumference properties, respectively. The dual surface content
measure is just the same as the well known notion of Euclidean surface content if ||.|| is the Euclidean
norm. Several properties of ball numbers are discussed and specific examples can be found in [19,20].
Clearly, π(B) = µ(B) may be evaluated and can be interpreted in different ways. One of the simplest,
nevertheless even in the case of Euclidean balls often overlooked in the literature, properties of the
dual surface content is

O(A(r)) = f ′(r) where f (r) = µ(sector(A, r))

and where
sector(A, r) = {x ∈ Rn :

x
hB(x)

∈ A, hB(x) ≤ r}.

3. A Class of Diagonal Matrix Homogeneous Star Balls

In this section, we consider a particular case of generalized balls which are not positively
homogeneous but are homogeneous with respect to multiplication with certain diagonal matrices.
Let p = (p1, ..., pn)T where pi, i = 1, ..., n are pairwise different positive real numbers, and call

Bp(r) = {x ∈ Rn :
|x1|p1

p1
+ ... +

|xn|pn

pn
≤ r}

the p-ball with p-spherical radius parameter r > 0. Moreover, we call Bp = Bp(1) and its topological
boundary ∂Bp = Sp the p-unit ball and p-unit sphere, respectively, and emphasize again that differently
from Section 2 p is a vector here. The p-sphere having p-spherical radius parameter r > 0,

Sp(r) = {x ∈ Rn :
|x1|p1

p1
+ ... +

|xn|pn

pn
= r}

can be generated from the p-unit sphere by the matrix multiplication

Sp(r) = Dp(r)Sp, r > 0

where
Dp(r) = diag(r

1
p1 , ..., r

1
pn )



Mathematics 2019, 7, 738 6 of 10

is a specific diagonal matrix. The sphere Sp(r) and the ball Bp(r) are called diagonal matrix homogeneous
star sphere and ball, respectively. We consider now the coordinate transformation

xi = r
1
pi θi, i = 1, ..., n− 1 and xn = r

1
pn η(θ1, ..., θn−1)

where η describes the upper or lower half sphere, and put ηi =
∂

∂θi
η, i = 1, ..., n− 1. The absolute

value of the Jacobian of this transformation is

D = |det
D(x1, ..., xn)

D(r, θ1, ..., θn−1)
| = |

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
p1

r
1

p1
−1

θ1 r
1

p1 0 . . . . . . 0

1
p2

r
1

p2
−1

θ2 0 r
1

p2
. . .

...
...

...
...

. . .
...

1
pn−2

r
1

pn−2
−1

θn−2 0 0 0
1

pn−1
r

1
pn−1

−1
θn−1 0 0 r

1
pn−1

1
pn

r
1

pn −1
η r

1
pn η1 r

1
pn η2 . . . r

1
pn ηn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|.

Successively multiplying the column with number 1 + i by θi
pir

and subtracting the result from the
first column, i = 1, ..., n− 1, leads to

D =
n−1

∏
i=1

pir
θi
|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1
p1

r
1

p1
−1

θ1 0 . . . . . . 0

0 0 1
p2

r
1

p2
−1

θ2
. . .

...
...

...
...

. . . . . .
...

...
...

. . . 0

0 0 0 . . . . . . 1
pn−1

r
1

pn−1
−1

θn−1

ξ 1
p1

r
1

pn −1
θ1η1

1
p2

r
1

pn −1
θ1η2 . . . . . . 1

pn−1
r

1
pn −1

θn−1ηn−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

|

where ξ = r
1

pn −1
( 1

pn
η−

n−1
∑

i=1

θiηi
pi
). It follows that D = r

1
p1
+...+ 1

pn−1 |ξ|. If N(θ) = (∇η(θ)T ,−1)T denotes

the normal vector to S at (θT , η(θ))T , then

D = r
1

p1
+...+ 1

pn −1 fp(θ) where fp(θ) = |
(

diag(
1
p1

, ...,
1
pn

)(θT , η)T , N(θ)

)
| (5)

and (., .) means Euclidean scalar product. The quantity π(Bp) =
1
n Op(Sp) satisfies the equations

µ(Bp(r))

r
1

p1
+...+ 1

p1

= π(Bp) =
Op(Sp(r))

nr
1

p1
+...+ 1

p1
−1

(6)

where, for Borel measurable subset A of Sp,

Op(A) =
∫

{ϑ∈Bp(1):(ϑT ,η(ϑ))∈A∩{η(ϑ)>0}}

fp(θ)dθ +
∫

{ϑ∈Bp(1):(ϑT ,η(ϑ))∈A∩{η(ϑ)<0}}

fp(θ)dθ

defines the surface content measure on the Borel σ-field on Sp.

Remark 1. Due to the structure of function fp, it remains an open question here in which differential-geometric
sense the notion of dual surface content measure is generalized this way. This problem was stated first for
dimension 2 in [24].
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The following definition is now well defined.

Definition 2. The number π(Bp) is called the ball number of the diagonal matrix homogeneous ball Bp.

Ball numbers of homogeneous star-balls are proved in [22] to be one of two factorially normalizing
constants of density generating functions. A similar result was derived in [24] for (p, q)-circle numbers
where p 6= q. The following example deals with a corresponding multivariate generalization.

Example 1 (Normalizing density generating functions). Let a function g : [0, ∞) → [0, ∞) satisfy
the assumption

0 < I(g; p) =
∞∫

0

r
1

p1
+...+ 1

pn −1g(r)dr < ∞.

If

ϕg;p(x) = C(g; p)g(
n

∑
i=1

|xi|pi

pi
), x = (x1, ..., xn)

T ∈ Rn

is aimed to be a probability density, then it follows from [26] that the normalizing constant allows the representation

C(g; p) =
1

nI(g; p)π(Bp)
.

To be more specific, let a density generating function be defined by

g(r) =

{
(1− r)ν if 0 ≤ r ≤ 1

0 otherwise

where ν > 0 is a parameter. Then,

I(g; p) = B(
1
p1

+ ... +
1
pn

, ν + 1).

Here, B(., .) denotes the well known Beta function. It follows from Equation (6) that π(Bp) =
Op(Sp)

n .
Making use of the multi Beta function B(., ..., .), it has been shown in [26] that

Op(Sp) = 2nB(
1
p1

, ...,
1
pn

)
n

∏
i=1

p
1
pi
−1

i .

Thus,

C(g; p) =
Γ( 1

p1
+ ... + 1

pn
+ ν + 1)

Γ(ν + 1)

n

∏
i=1

p
1− 1

pi
i

2Γ( 1
pi
)

and the resulting probability density is

φg;p(x) =

C(g; p)(1−
n
∑

i=1

|xi |pi

pi
)ν if

n
∑

i=1

|xi |pi

pi
≤ 1

0 otherwise
.

This particular density is called the p-spherical Pearson Type II density with parameter ν > 0. For two
more particular cases, the p-spherical Pearson Type VII and Kotz type densities, we refer to [26]. Let us recall
that there and in the present example p is a vector having different positive components. For the ln,p-symmetric
Pearson Type II density where p > 0 is just a real number, see [27].
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Proposition 1 (From uniqueness to unlimited universality). Let Λ be a nonempty subset of the real line
and B(Λ) = {Bλ, λ ∈ Λ} a family of star bodies having the origin in its interior and satisfying the condition

Bλ1 ⊂ Bλ2 for all λ1 ≤ λ2 from Λ

as well as the basic assumption from the beginning of Section 2. It follows then from the properties of the volume
measure that the ball number function

λ→ π(Bλ), λ ∈ Λ

is nondecreasing. Under suitable further assumptions with regard to the family B(Λ), the ball number function
becomes a continuous function. As a consequence, keeping in mind the properties of the volume measure,
any positive real number can be represented in infinitely many ways as a ball number regardless the unique role
π = 3, 14159... plays.

Proposition 2 (Thin layer property). Let us call

Lp(r, ε) = {x ∈ Rn : r ≤
n

∑
i=1

|xi|pi

pi
≤ r + ε}

a thin layer around the boundary of Bp(r). Its volume

µ(Lp(r, ε)) =
∫

Lp(r,ε)

dx

can be evaluated by changing Cartesian with (p,℘)-spherical coordinates in the sense of Definition 1 in [26]
where the formal parameter is chosen as ℘ = 1. According to Equation (6) in [26], where π∗p = πp, we have
similarly to Theorem 3 in [19] that

µ(Lp(r, ε)) = nπp(Bp)
1

1
p1

+ ... + 1
pn

r
1

p1
+...+ 1

pn [(1 + ∆)κ − 1]

where ∆ = ε
r and κ = 1

p1
+ ... + 1

pn
. Note that, as ∆→ +0,

(1 + ∆)κ − 1 = exp{κ ln(1 + ∆)} − 1 = exp{κ[∆− ∆2

2
+

∆3

3
−
+ . . .]} − 1

= exp{κ∆− κ∆2

2
+
− . . .]} − 1 = 1 + [κ∆− κ∆2

2
+ 0(∆3)] +

1
2
[κ2∆2 + 0(∆3)]− 1 = κ∆(1 + 0(∆))

where 0 means Landau’s big O symbol from asymptotic analysis. Thus,

µ(Lp(r, ε)) ∼ εnπp(Bp)r
1

p1
+...+ 1

pn −1, ε→ +0

where f1(ε) ∼ f2(ε), ε→ +0 means asymptotic equivalence, that is f1(ε)/ f2(ε)→ 1 as ε→ +0.

The thermal expansion of a body of length l0 into a certain direction is commonly described by
∆l = l0α∆T where ∆T is the temperature difference and α an expansion coefficient. If l0 depends on
the direction then a small ∆T causes a thin layer whose volume may be of interest for various reasons.

Similarly, the volume growth of the (thin) layer of a crystal is of interest in crystal breeding.

4. Concluding Remarks

Because of its fascinating properties, the Archimedes or Ludolph number π has been studied for
millennia. Strong mathematical tools and deep mathematical results were produced in this process.
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The interested reader can study this process starting with the literature mentioned at the very beginning
of this paper and the numerous references given there. The second and third paragraphs of Section 1
introduce the history and presence of the process of generalizing π and give a short review on related
parts of the literature. In the subsequent paragraphs, we summarize basic facts from the author’s
work on generalized circle numbers and on ball numbers in the two- and multidimensional lp-world.
Closely related results can be derived in the world of positively homogeneous star balls. Partly known
facts from this field are presented here in a new light and with new conclusions in Section 2 where
an emphasis is on Equations (1) and (2) serving as the main mathematical tool of a new geometric
disintegration method of the Lebesgue measure. It follows from the results in Section 3 that geometric
disintegration is based there upon the formula

dx = r
1

p1
+...+ 1

pn −1 fp(θ1, ..., θn−1)dθ1...dθn−1dr (7)

where fp(θ) = fp(θ1, ..., θn−1) is given in Equation (5). As to finally summarize the results of Section 3,
we derive ball numbers in cases where a ball’s Minkowski functional is not positively homogeneous
as in cases considered earlier but is homogeneous with respect to multiplication with the diagonal
matrices Dp(r), r > 0. One might speak about such ball numbers as dynamic ball numbers because the
shape of the balls changes when their radius variable does. In big data analysis, these ball numbers play
a role as normalizing constants of density generating functions of multivariate probability distributions
having different marginal distributions, and in crystal breeding and material’s temperature expansion
they are needed to exactly describe volume change, called the thin layer property here.

Getting a look ahead, let us call the case where a ball’s Minkowski functional is not positively
homogeneous the inhomogeneity case. Clearly, other cases of inhomogeneity than the one considered
here will play a role in future data analysis, and possibly other applications to (material) science and
technique. To start filling this gap means to start the challenging inhomogeneity project. The reader
may feel it more or less challenging and is invited to solve the problem stated in Remark 1 and all
similar problems appearing in other cases of inhomogeneity.
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