Article

Differential Equations Arising from the Generating Function of the (r, β)-Bell Polynomials and Distribution of Zeros of Equations

Kyung-Won Hwang ${ }^{1}$, Cheon Seoung Ryoo ${ }^{2, *}$, and Nam Soon Jung ${ }^{3}$
1 Department of Mathematics, Dong-A University, Busan 604-714, Korea
2 Department of Mathematics, Hannam University, Daejeon 34430, Korea
3 College of Talmage Liberal Arts, Hannam University, Daejeon 34430, Korea
* Correspondence: ryoocs@hnu.kr

Received: 2 July 2019; Accepted: 9 August 2019; Published: 12 August 2019

Abstract

In this paper, we study differential equations arising from the generating function of the (r, β)-Bell polynomials. We give explicit identities for the (r, β)-Bell polynomials. Finally, we find the zeros of the (r, β)-Bell equations with numerical experiments.

Keywords: differential equations; Bell polynomials; r-Bell polynomials; (r, β)-Bell polynomials; zeros
MSC: 05A19; 11B83; 34A30; 65L99

1. Introduction

The moments of the Poisson distribution are a well-known connecting tool between Bell numbers and Stirling numbers. As we know, the Bell numbers B_{n} are those using generating function

$$
e^{\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} B_{n} \frac{t^{n}}{n!}
$$

The Bell polynomials $B_{n}(\lambda)$ are this formula using the generating function

$$
\begin{equation*}
e^{\lambda\left(e^{t}-1\right)}=\sum_{n=0}^{\infty} B_{n}(\lambda) \frac{t^{n}}{n!}, \tag{1}
\end{equation*}
$$

(see [1,2]).
Observe that

$$
B_{n}(\lambda)=\sum_{i=0}^{n} \lambda^{i} S_{2}(n, i)
$$

where $S_{2}(n, i)=\frac{1}{i!} \sum_{l=0}^{i}(-1)^{i-l}\binom{i}{l} l^{n}$ denotes the second kind Stirling number.
The generalized Bell polynomials $B_{n}(x, \lambda)$ are these formula using the generating function:

$$
\sum_{n=0}^{\infty} B_{n}(x, \lambda) \frac{t^{n}}{n!}=e^{x t-\lambda\left(e^{t}-t-1\right)}, \text { (see [2]). }
$$

In particular, the generalized Bell polynomials $B_{n}(x,-\lambda)=E_{\lambda}\left[(Z+x-\lambda)^{n}\right], \lambda, x \in \mathbb{R}, n \in \mathbb{N}$, where Z is a Poission random variable with parameter $\lambda>0$ (see [1-3]). The (r, β)-Bell polynomials $G_{n}(x, r, \beta)$ are this formula using the generating function:

$$
\begin{equation*}
F(t, x, r, \beta)=\sum_{n=0}^{\infty} G_{n}(x, r, \beta) \frac{t^{n}}{n!}=e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}} \tag{2}
\end{equation*}
$$

(see [3]), where, β and r are real or complex numbers and $(r, \beta) \neq(0,0)$. Note that $B_{n}(x+r,-x)=$ $G_{n}(x, r, 1)$ and $B_{n}(x)=G_{n}(x, 0,1)$. The first few examples of (r, β)-Bell polynomials $G_{n}(x, r, \beta)$ are

$$
\begin{aligned}
G_{0}(x, r, \beta)= & 1 \\
G_{1}(x, r, \beta)= & r+x \\
G_{2}(x, r, \beta)= & r^{2}+\beta x+2 r x+x^{2} \\
G_{3}(x, r, \beta)= & r^{3}+\beta^{2} x+3 \beta r x+3 r^{2} x+3 \beta x^{2}+3 r x^{2}+x^{3} \\
G_{4}(x, r, \beta)= & r^{4}+\beta^{3} x+4 \beta^{2} r x+6 \beta r^{2} x+4 r^{3} x+7 \beta^{2} x^{2}+12 \beta r x^{2} \\
& +6 r^{2} x^{2}+6 \beta x^{3}+4 r x^{3}+x^{4} \\
G_{5}(x, r, \beta)= & r^{5}+\beta^{4} x+5 \beta^{3} r x+10 \beta^{2} r^{2} x+10 \beta r^{3} x+5 r^{4} x+15 \beta^{3} x^{2}+35 \beta^{2} r x^{2} \\
& +30 \beta r^{2} x^{2}+10 r^{3} x^{2}+25 \beta^{2} x^{3}+30 \beta r x^{3}+10 r^{2} x^{3}+10 \beta x^{4}+5 r x^{4}+x^{5} .
\end{aligned}
$$

From (1) and (2), we see that

$$
\begin{align*}
\sum_{n=0}^{\infty} G_{n}(x, r, \beta) \frac{t^{n}}{n!} & =e^{\left(e^{\beta t}-1\right) \frac{x}{\beta}} e^{r t} \\
& =\left(\sum_{k=0}^{\infty} B_{k}(x / \beta) \beta^{k} \frac{t^{k}}{k!}\right)\left(\sum_{m=0}^{\infty} r^{m} \frac{t^{m}}{m!}\right) \tag{3}\\
& =\sum_{n=0}^{\infty}\left(\sum_{k=0}^{n}\binom{n}{k} B_{k}(x / \beta) \beta^{k} r^{n-k}\right) \frac{t^{n}}{n!}
\end{align*}
$$

Compare the coefficients in Formula (3). We can get

$$
G_{n}(x, r, \beta)=\sum_{k=0}^{n}\binom{n}{k} \beta^{k} B_{k}(x / \beta) r^{n-k}, \quad(n \geq 0)
$$

Similarly we also have

$$
G_{n}(x+y, r, \beta)=\sum_{k=0}^{n}\binom{n}{k} G_{k}(x, r, \beta) B_{n-k}(y / \beta) \beta^{n-l}
$$

Recently, many mathematicians have studied the differential equations arising from the generating functions of special polynomials (see [4-8]). Inspired by their work, we give a differential equations by generation of (r, β)-Bell polynomials $G_{n}(x, r, \beta)$ as follows. Let D denote differentiation with respect to t, D^{2} denote differentiation twice with respect to t, and so on; that is, for positive integer N,

$$
D^{N} F=\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, r, \beta)
$$

We find differential equations with coefficients $a_{i}(N, x, r, \beta)$, which are satisfied by

$$
\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, r, \beta)-a_{0}(N, x, r, \beta) F(t, x, r, \beta)-\cdots-a_{N}(N, x, r, \beta) e^{\beta t N} F(t, x, r, \beta)=0 .
$$

Using the coefficients of this differential equation, we give explicit identities for the (r, β)-Bell polynomials. In addition, we investigate the zeros of the (r, β)-Bell equations with numerical methods. Finally, we observe an interesting phenomena of 'scattering' of the zeros of (r, β)-Bell equations. Conjectures are also presented through numerical experiments.

2. Differential Equations Related to (R, β)-Bell Polynomials

Differential equations arising from the generating functions of special polynomials are studied by many authors to give explicit identities for special polynomials (see [4-8]). In this section, we study differential equations arising from the generating functions of (r, β)-Bell polynomials.

Let

$$
\begin{equation*}
F=F(t, x, r, \beta)=\sum_{n=0}^{\infty} G_{n}(x, r, \beta) \frac{t^{n}}{n!}=e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}, \quad x, r, \beta \in \mathbb{C} . \tag{4}
\end{equation*}
$$

Then, by (4), we have

$$
\begin{align*}
D F=\frac{\partial}{\partial t} F(t, x, r, \beta) & =\frac{\partial}{\partial t}\left(e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}\right) \\
& =e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}\left(r+x e^{\beta t}\right) \tag{5}\\
& =r e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}+x e^{(r+\beta) t+\left(e^{\beta t}-1\right) \frac{x}{\beta}} \\
& =r F(t, x, r, \beta)+x F(t, x, r+\beta, \beta),
\end{align*}
$$

$$
\begin{align*}
D^{2} F & =r D F(t, x, r, \beta)+x D F(t, x, r+\beta, \beta) \\
& =r^{2} F(t, x, r, \beta)+x(2 r+\beta) F(t, x, r+\beta, \beta)+x^{2} F(t, x, r+2 \beta, \beta) \tag{6}
\end{align*}
$$

and

$$
\begin{aligned}
D^{3} F= & r^{2} D F(t, x, r, \beta)+x(2 r+\beta) D F(t, x, r+\beta, \beta)+x^{2} D F(t, x, r+2 \beta, \beta) \\
= & r^{3} F(t, x, r, \beta)+x\left(r^{2}+(2 r+\beta)(r+\beta)\right) F(t, x, r+\beta, \beta) \\
& +x^{2}(3 r+3 \beta) F(t, x, r+2 \beta, \beta)+x^{3} F(t, x, r+3 \beta, \beta)
\end{aligned}
$$

We prove this process by induction. Suppose that

$$
\begin{equation*}
D^{N} F=\sum_{i=0}^{N} a_{i}(N, x, r, \beta) F(t, x, r+i \beta, \beta),(N=0,1,2, \ldots) . \tag{7}
\end{equation*}
$$

is true for N. From (7), we get

$$
\begin{align*}
D^{N+1} F= & \sum_{i=0}^{N} a_{i}(N, x, r, \beta) D F(t, x, r+i \beta, \beta) \\
= & \sum_{i=0}^{N} a_{i}(N, x, r, \beta)\{(r+i \beta) F(t, x, r+i \beta, \beta)+x F(t, x, r+(i+1) \beta, \beta)\} \\
= & \sum_{i=0}^{N} a_{i}(N, x, r, \beta)(r+i \beta) F(t, x, r+i \beta, \beta) \\
& \quad+x \sum_{i=0}^{N} a_{i}(N, x, r, \beta) F(t, x, r+(i+1) \beta, \beta) \tag{8}\\
= & \sum_{i=0}^{N}(r+i \beta) a_{i}(N, x, r, \beta) F(t, x, r+i \beta, \beta) \\
& \quad+x \sum_{i=1}^{N+1} a_{i-1}(N, x, r, \beta) F(t, x, r+i \beta, \beta) .
\end{align*}
$$

From (8), we get

$$
\begin{equation*}
D^{N+1} F=\sum_{i=0}^{N+1} a_{i}(N+1, x, r, \beta) F(t, x, r+i \beta, \beta) \tag{9}
\end{equation*}
$$

We prove that

$$
D^{k+1} F=\sum_{i=0}^{k+1} a_{i}(k+1, x, r, \beta) F(t, x, r+i \beta, \beta)
$$

If we compare the coefficients on both sides of (8) and (9), then we get

$$
\begin{equation*}
a_{0}(N+1, x, r, \beta)=r a_{0}(N, x, r, \beta), \quad a_{N+1}(N+1, x, r, \beta)=x a_{N}(N, x, r, \beta) \tag{10}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{i}(N+1, x, r, \beta)=(r+i \beta) a_{i-1}(N, x, r, \beta)+x a_{i-1}(N, x, r, \beta),(1 \leq i \leq N) \tag{11}
\end{equation*}
$$

In addition, we get

$$
\begin{equation*}
F(t, x, r, \beta)=a_{0}(0, x, r, \beta) F(t, x, r, \beta) . \tag{12}
\end{equation*}
$$

Now, by (10), (11) and (12), we can obtain the coefficients $a_{i}(j, x, r, \beta)_{0 \leq i, j \leq N+1}$ as follows. By (12), we get

$$
\begin{equation*}
a_{0}(0, x, r, \beta)=1 \tag{13}
\end{equation*}
$$

It is not difficult to show that

$$
\begin{align*}
& r F(t, x, r, \beta)+x F(t, x, r+\beta, \beta) \\
& =D F(t, x, r, \beta) \\
& =\sum_{i=0}^{1} a_{i}(1, x, r, \beta) F(t, x, r+\beta, \beta) \tag{14}\\
& =a_{0}(1, x, r, \beta) F(t, x, r, \beta)+a_{1}(1, x, r, \beta) F(t, x, r+\beta, \beta)
\end{align*}
$$

Thus, by (14), we also get

$$
\begin{equation*}
a_{0}(1, x, r, \beta)=r, \quad a_{1}(1, x, r, \beta)=x \tag{15}
\end{equation*}
$$

From (10), we have that

$$
\begin{equation*}
a_{0}(N+1, x, r, \beta)=r a_{0}(N, x, r, \beta)=\cdots=r^{N} a_{0}(1, x, r, \beta)=r^{N+1} \tag{16}
\end{equation*}
$$

and

$$
\begin{equation*}
a_{N+1}(N+1, x, r, \beta)=x a_{N}(N, x, r, \beta)=\cdots=x^{N} a_{1}(1, x, r, \beta)=x^{N+1} . \tag{17}
\end{equation*}
$$

For $i=1,2,3$ in (11), we have

$$
\begin{align*}
& a_{1}(N+1, x, r, \beta)=x \sum_{k=0}^{N}(r+\beta)^{k} a_{0}(N-k, x, r, \beta) \tag{18}\\
& a_{2}(N+1, x, r, \beta)=x \sum_{k=0}^{N-1}(r+2 \beta)^{k} a_{1}(N-k, x, r, \beta) \tag{19}
\end{align*}
$$

and

$$
\begin{equation*}
a_{3}(N+1, x, r, \beta)=x \sum_{k=0}^{N-2}(r+3 \beta)^{k} a_{2}(N-k, x, r, \beta) \tag{20}
\end{equation*}
$$

By induction on i, we can easily prove that, for $1 \leq i \leq N$,

$$
\begin{equation*}
a_{i}(N+1, x, r, \beta)=x \sum_{k=0}^{N-i+1}(r+i \beta)^{k} a_{i-1}(N-k, x, r, \beta) \tag{21}
\end{equation*}
$$

Here, we note that the matrix $a_{i}(j, x, r, \beta)_{0 \leq i, j \leq N+1}$ is given by

$$
\left(\begin{array}{cccccc}
1 & r & r^{2} & r^{3} & \cdots & r^{N+1} \\
0 & x & x(2 r+\beta) & x\left(3 r^{2}+3 r \beta+\beta^{2}\right) & \cdots & \cdot \\
0 & 0 & x^{2} & x^{2}(3 r+3 \beta) & \cdots & \cdot \\
0 & 0 & 0 & x^{3} & \cdots & \cdot \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & 0 & \cdots & x^{N+1}
\end{array}\right)
$$

Now, we give explicit expressions for $a_{i}(N+1, x, r, \beta)$. By (18), (19), and (20), we get

$$
\begin{gathered}
a_{1}(N+1, x, r, \beta)=x \sum_{k_{1}=0}^{N}(r+\beta)^{k_{1}} a_{0}\left(N-k_{1}, x, r, \beta\right) \\
=\sum_{k_{1}=0}^{N}(r+\beta)^{k_{1}} r^{N-k_{1}}, \\
a_{2}(N+1, x, r, \beta)=x \sum_{k_{2}=0}^{N-1}(r+2 \beta)^{k_{2}} a_{1}\left(N-k_{2}, x, r, \beta\right) \\
=x^{2} \sum_{k_{2}=0}^{N-1} \sum_{k_{1}=0}^{N-1-k_{2}}(r+\beta)^{k_{1}}(r+2 \beta)^{k_{2}} r^{N-k_{2}-k_{1}-1},
\end{gathered}
$$

and

$$
\begin{aligned}
& a_{3}(N+1, x, r, \beta) \\
& =x \sum_{k_{3}=0}^{N-2}(r+3 \beta)^{k_{3}} a_{2}\left(N-k_{3}, x, r, \beta\right) \\
& =x^{3} \sum_{k_{3}=0}^{N-2} \sum_{k_{2}=0}^{N-2-k_{3}} \sum_{k_{1}=0}^{N-2-k_{3}-k_{2}}(r+3 \beta)^{k_{3}}(r+2 \beta)^{k_{2}}(r+\beta)^{k_{1}} r^{N-k_{3}-k_{2}-k_{1}-2} .
\end{aligned}
$$

By induction on i, we have

$$
\begin{align*}
& a_{i}(N+1, x, r, \beta) \\
& =x^{i} \sum_{k_{i}=0}^{N-i+1} \sum_{k_{i-1}=0}^{N-i+1-k_{i}} \cdots \sum_{k_{1}=0}^{N-i+1-k_{i}-\cdots-k_{2}}\left(\prod_{l=1}^{i}(r+l \beta)^{k_{l}}\right) r^{N-i+1-\sum_{l=1}^{i} k_{l}} . \tag{22}
\end{align*}
$$

Finally, by (22), we can derive a differential equations with coefficients $a_{i}(N, x, r, \beta)$, which is satisfied by

$$
\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, r, \beta)-a_{0}(N, x, r, \beta) F(t, x, r, \beta)-\cdots-a_{N}(N, x, r, \beta) e^{\beta t N} F(t, x, r, \beta)=0
$$

Theorem 1. For same as below $N=0,1,2, \ldots$, the differential equation

$$
D^{N} F=\sum_{i=0}^{N} a_{i}(N, x, r, \beta) e^{i \beta t} F(t, x, r, \beta)
$$

has a solution

$$
F=F(t, x, r, \beta)=e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}
$$

where

$$
\begin{aligned}
& a_{0}(N, x, r, \beta)=r^{N} \\
& a_{N}(N, x, r, \beta)=x^{N} \\
& a_{i}(N, x, r, \beta)=x^{i} \sum_{k_{i}=0}^{N-i} \sum_{k_{i-1}=0}^{N-i-k_{i}} \cdots \sum_{k_{1}=0}^{N-i-k_{i}-\cdots-k_{2}}\left(\prod_{l=1}^{i}(r+l \beta)^{k_{l}}\right) r^{N-i-\sum_{l=1}^{i} k_{l}} \\
& \quad(1 \leq i \leq N)
\end{aligned}
$$

From (4), we have this

$$
\begin{equation*}
D^{N} F=\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, r, \beta)=\sum_{k=0}^{\infty} G_{k+N}(x, r, \beta) \frac{t^{k}}{k!} \tag{23}
\end{equation*}
$$

By using Theorem 1 and (23), we can get this equation:

$$
\begin{align*}
\sum_{k=0}^{\infty} G_{k+N}(x, r, \beta) \frac{t^{k}}{k!} & =D^{N} F \\
& =\left(\sum_{i=0}^{N} a_{i}(N, x, r, \beta) e^{i \beta t}\right) F(t, x, r, \beta) \\
& =\sum_{i=0}^{N} a_{i}(N, x, r, \beta)\left(\sum_{l=0}^{\infty}(i \beta)^{l} \frac{t^{l}}{l!}\right)\left(\sum_{m=0}^{\infty} G_{m}(x, r, \beta) \frac{t^{m}}{m!}\right) \tag{24}\\
& =\sum_{i=0}^{N} a_{i}(N, x, r, \beta)\left(\sum_{k=0}^{\infty} \sum_{m=0}^{k}\binom{k}{m}(i \beta)^{k-m} G_{m}(x, r, \beta) \frac{t^{k}}{k!}\right) \\
& =\sum_{k=0}^{\infty}\left(\sum_{i=0}^{N} \sum_{m=0}^{k}\binom{k}{m}(i \beta)^{k-m} a_{i}(N, x, r, \beta) G_{m}(x, r, \beta)\right) \frac{t^{k}}{k!}
\end{align*}
$$

Compare coefficients in (24). We get the below theorem.
Theorem 2. For $k, N=0,1,2, \ldots$, we have

$$
\begin{equation*}
G_{k+N}(x, r, \beta)=\sum_{i=0}^{N} \sum_{m=0}^{k}\binom{k}{m} i^{k-m} \beta^{k-m} a_{i}(N, x, r, \beta) G_{m}(x, r, \beta) \tag{25}
\end{equation*}
$$

where

$$
\begin{aligned}
& a_{0}(N, x, r, \beta)=r^{N} \\
& a_{N}(N, x, r, \beta)=x^{N} \\
& a_{i}(N, x, r, \beta)=x^{i} \sum_{k_{i}=0}^{N-i} \sum_{k_{i-1}=0}^{N-i-k_{i}} \cdots \sum_{k_{1}=0}^{N-i-k_{i}-\cdots-k_{2}}\left(\prod_{l=1}^{i}(r+l \beta)^{k_{l}}\right) r^{N-i-\sum_{l=1}^{i} k_{l}} \\
& \quad(1 \leq i \leq N)
\end{aligned}
$$

By using the coefficients of this differential equation, we give explicit identities for the (r, β)-Bell polynomials. That is, in (25) if $k=0$, we have corollary.

Corollary 1. For $N=0,1,2, \ldots$, we have

$$
G_{N}(x, r, \beta)=\sum_{i=0}^{N} a_{i}(N, x, r, \beta)
$$

For $N=0,1,2, \ldots$, it follows that equation

$$
D^{N} F-\sum_{i=0}^{N} a_{i}(N, x, r, \beta) e^{i \beta t} F(t, x, r, \beta)=0
$$

has a solution

$$
F=F(t, x, r, \beta)=e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}
$$

In Figure 1, we have a sketch of the surface about the solution F of this differential equation. On the left of Figure 1, we give $-3 \leq x \leq 3,-1 \leq t \leq 1$, and $r=2, \beta=5$. On the right of Figure 1, we give $-3 \leq x \leq 3,-1 \leq t \leq 1$, and $r=-3, \beta=2$.

Figure 1. The surface for the solution $F(t, x, r, \beta)$.
Making N-times derivative for (4) with respect to t, we obtain

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, r, \beta)=\left(\frac{\partial}{\partial t}\right)^{N} e^{r t+\left(e^{\beta t}-1\right) \frac{x}{\beta}}=\sum_{m=0}^{\infty} G_{m+N}(x, r, \beta) \frac{t^{m}}{m!} . \tag{26}
\end{equation*}
$$

By multiplying the exponential series $e^{x t}=\sum_{m=0}^{\infty} x^{m} \frac{t^{m}}{m!}$ in both sides of (26) and Cauchy product, we derive

$$
\begin{align*}
e^{-n t}\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, r, \beta) & =\left(\sum_{m=0}^{\infty}(-n)^{m} \frac{t^{m}}{m!}\right)\left(\sum_{m=0}^{\infty} G_{m+N}(x, r, \beta) \frac{t^{m}}{m!}\right) \\
& =\sum_{m=0}^{\infty}\left(\sum_{k=0}^{m}\binom{m}{k}(-n)^{m-k} G_{N+k}(x, r, \beta)\right) \frac{t^{m}}{m!} \tag{27}
\end{align*}
$$

By using the Leibniz rule and inverse relation, we obtain

$$
\begin{align*}
e^{-n t}\left(\frac{\partial}{\partial t}\right)^{N} F(t, x, y) & =\sum_{k=0}^{N}\binom{N}{k} n^{N-k}\left(\frac{\partial}{\partial t}\right)^{k}\left(e^{-n t} F(t, x, r, \beta)\right) \\
& =\sum_{m=0}^{\infty}\left(\sum_{k=0}^{N}\binom{N}{k} n^{N-k} G_{m+k}(x-n, r, \beta)\right) \frac{t^{m}}{m!} . \tag{28}
\end{align*}
$$

So using (27) and (28), and using the coefficients of $\frac{t^{m}}{m!}$ gives the below theorem.
Theorem 3. Let m, n, N be nonnegative integers. Then

$$
\begin{equation*}
\sum_{k=0}^{m}\binom{m}{k}(-n)^{m-k} G_{N+k}(x, r, \beta)=\sum_{k=0}^{N}\binom{N}{k} n^{N-k} G_{m+k}(x-n, r, \beta) \tag{29}
\end{equation*}
$$

When we give $m=0$ in (29), then we get corollary.
Corollary 2. For $N=0,1,2, \ldots$, we have

$$
G_{N}(x, r, \beta)=\sum_{k=0}^{N}\binom{N}{k} n^{N-k} G_{k}(x-n, r, \beta)
$$

3. Distribution of Zeros of the (R, β)-Bell Equations

This section aims to demonstrate the benefit of using numerical investigation to support theoretical prediction and to discover new interesting patterns of the zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$. We investigate the zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ with numerical experiments. We plot the zeros of the $B_{n}(x, \lambda)=0$ for $n=16, r=-5,-3,3,5, \beta=2,3$ and $x \in \mathbb{C}$ (Figure 2).

In top-left of Figure 2, we choose $n=16$ and $r=-5, \beta=2$. In top-right of Figure 2, we choose $n=16$ and $r=-3, \beta=3$. In bottom-left of Figure 2, we choose $n=16$ and $r=3, \beta=2$. In bottom-right of Figure 2, we choose $n=16$ and $r=5, \beta=3$.

Prove that $G_{n}(x, r, \beta), x \in \mathbb{C}$, has $\operatorname{Im}(x)=0$ reflection symmetry analytic complex functions (see Figure 3). Stacks of zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ for $1 \leq n \leq 20$ from a 3-D structure are presented (Figure 3).

On the left of Figure 3, we choose $r=-5$ and $\beta=2$. On the right of Figure 3, we choose $r=5$ and $\beta=2$. In Figure 3, the same color has the same degree n of (r, β)-Bell polynomials $G_{n}(x, r, \beta)$. For example, if $n=20$, zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ is red.

Figure 2. Zeros of $G_{n}(x, r, \beta)=0$.

Figure 3. Stacks of zeros of $G_{n}(x, r, \beta)=0,1 \leq n \leq 20$.
Our numerical results for approximate solutions of real zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ are displayed (Tables 1 and 2).

Table 1. Numbers of real and complex zeros of $G_{n}(x, r, \beta)=0$

Degree n	$r=-5, \beta=2$		$r=5, \beta=2$	
	Real Zeros	Complex Zeros	Real Zeros	Xomplex Zeros
1	1	0	1	0
2	0	2	2	0
3	1	2	3	0
4	0	4	4	0
5	1	4	5	0
6	0	6	6	0
7	1	6	7	0
8	0	8	8	0
9	1	8	9	0
10	2	8	10	0

Table 2. Approximate solutions of $G_{n}(x, r, \beta)=0, x \in \mathbb{R}$.

Degree n	x
1	-5.000
2	-9.317, -2.683
3	$-13.72,-5.68,-1.605$
4	-18.21, -9.01, -3.77, -1.010
5	$-22.8, \quad-12.6, \quad-6.4, \quad-2.61,-0.655$
6	$-27.4, \quad-16.3,-9.3,-4.7,-1.85,-0.434$
7	-32.0, -20.0, -12.0, -7.1, -3.5, -1.34, -0.291

Plot of real zeros of $G_{n}(x, r, \beta)=0$ for $1 \leq n \leq 20$ structure are presented (Figure 4).
In Figure 4 (left), we choose $r=5$ and $\beta=-2$. In Figure 4 (right), we choose $r=5$ and $\beta=2$. In Figure 4, the same color has the same degree n of (r, β)-Bell polynomials $G_{n}(x, r, \beta)$. For example, if $n=20$, real zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ is blue.

Next, we calculated an approximate solution satisfying $G_{n}(x, r, \beta)=0, r=5, \beta=2, x \in \mathbb{R}$. The results are given in Table 2.

Figure 4. Stacks of zeros of $G_{n}(x, r, \beta)=0,1 \leq n \leq 20$.

4. Conclusions

We constructed differential equations arising from the generating function of the (r, β)-Bell polynomials. This study obtained the some explicit identities for (r, β)-Bell polynomials $G_{n}(x, r, \beta)$ using the coefficients of this differential equation. The distribution and symmetry of the roots of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ were investigated. We investigated the symmetry of the zeros of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ for various variables r and β, but, unfortunately, we could not find a regular pattern. We make the following series of conjectures with numerical experiments:

Let us use the following notations. $R_{G_{n}(x, r, \beta)}$ denotes the number of real zeros of $G_{n}(x, r, \beta)=0$ lying on the real plane $\operatorname{Im}(x)=0$ and $C_{G_{n}(x, r, \beta)}$ denotes the number of complex zeros of $G_{n}(x, r, \beta)=0$. Since n is the degree of the polynomial $G_{n}(x, r, \beta)$, we have $R_{G_{n}(x, r, \beta)}=n-C_{G_{n}(x, r, \beta)}$ (see Table 1).

We can see a good regular pattern of the complex roots of the (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ for $r>0$ and $\beta>0$. Therefore, the following conjecture is possible.

Conjecture 1. For $r>0$ and $\beta>0$, prove or disprove that

$$
C_{H_{n}(x, y)}=0
$$

As a result of investigating more $r>0$ and $\beta>0$ variables, it is still unknown whether the conjecture 1 is true or false for all variables $r>0$ and $\beta>0$ (see Figure 1 and Table 1).

We observe that solutions of (r, β)-Bell equations $G_{n}(x, r, \beta)=0$ has $\operatorname{Im}(x)=0$, reflecting symmetry analytic complex functions. It is expected that solutions of (r, β)-Bell equations $G_{n}(x, r, \beta)=0$, has not $\operatorname{Re}(x)=a$ reflection symmetry for $a \in \mathbb{R}$ (see Figures 2-4).

Conjecture 2. Prove or disprove that solutions of (r, β)-Bell equations $G_{n}(x, r, \beta)=0$, has not $\operatorname{Re}(x)=a$ reflection symmetry for $a \in \mathbb{R}$.

Finally, how many zeros do $G_{n}(x, r, \beta)=0$ have? We are not able to decide if $G_{n}(x, r, \beta)=0$ has n distinct solutions (see Tables 1 and 2). We would like to know the number of complex zeros $C_{G_{n}(x, r, \beta)}$ of $G_{n}(x, r, \beta)=0, \operatorname{Im}(x) \neq 0$.

Conjecture 3. Prove or disprove that $G_{n}(x, r, \beta)=0$ has n distinct solutions.
As a result of investigating more n variables, it is still unknown whether the conjecture is true or false for all variables n (see Tables 1 and 2). We expect that research in these directions will make a new approach using the numerical method related to the research of the (r, β)-Bell numbers and polynomials which appear in mathematics, applied mathematics, statistics, and mathematical physics. The reader may refer to [5-10] for the details.

Author Contributions: These authors contributed equally to this work.
Funding: This work was supported by the Dong-A university research fund.
Acknowledgments: The authors would like to thank the referees for their valuable comments, which improved the original manuscript in its present form.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Mező, I. The r-Bell Numbers. J. Integer. Seq. 2010, 13. Available online: https:/ /www.google.com.hk/url?sa $=t \& r c t=j \& q=\& e s r c=s \& s o u r c e=w e b \& c d=1 \& v e d=2 a h U K E w i q 6 d i g l P f j A h W 9 y o s B H X 41 A o 8 Q F j A A e g Q I B B$ AC\&url=https\%3A\%2F\%2Fcs.uwaterloo.ca\%2Fjournals\%2FJIS\%2FVOL13\%2FMezo\%2Fmezo8.pdf\&usg =AOvVaw0N25qEl3ROosJgHzsnxrlv (accessed on 10 July 2019).
2. Privault, N. Genrealized Bell polynomials and the combinatorics of Poisson central moments. Electr. J. Comb. 2011, 18, 54.
3. Corcino, R.B.; Corcino, C.B. On generalized Bell polynomials. Discret. Dyn. Nat. Soc. 2011, 2011. [CrossRef]
4. Kim, T.; Kim, D.S. Identities involving degenerate Euler numbers and polynomials arising from non-linear differential equations. J. Nonlinear Sci. Appl. 2016, 9, 2086-2098. [CrossRef]
5. Kim, T.; Kim, D.S.; Ryoo, C.S.; Kwon, H.I. Differential equations associated with Mahler and Sheffer-Mahler polynomials. Nonlinear Funct. Anal. Appl. 2019, 24, 453-462.
6. Ryoo, C.S.; Agarwal, R.P. ; Kang, J.Y. Differential equations arising from Bell-Carlitz polynomials and computation of their zeros. Neural Parallel Sci. Comput. 2016, 24, 93-107.
7. Ryoo, C.S. Differential equations associated with tangent numbers. J. Appl. Math. Inf. 2016, 34, 487-494. [CrossRef]
8. Ryoo, C.S. Differential equations associated with generalized Bell polynomials and their zeros. Open Math. 2016, 14, 807-815. [CrossRef]
9. Ryoo, C.S. A numerical investigation on the structure of the zeros of the degenerate Euler-tangent mixed-type polynomials. J. Nonlinear Sci. Appl. 2017, 10, 4474-4484. [CrossRef]
10. Ryoo, C.S.; Hwang, K.W.; Kim, D.J.; Jung, N.S. Dynamics of the zeros of analytic continued polynomials and differential equations associated with q-tangent polynomials. J. Nonlinear Sci. Appl. 2018, 11, 785-797. [CrossRef]
