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Abstract: Radial basis function-based quasi-interpolation performs efficiently in high-dimensional
approximation and its applications, which can attain the approximant and its derivatives directly without
solving any large-scale linear system. In this paper, the bivariate multi-quadrics (MQ) quasi-interpolation
is used to simulate two-dimensional (2-D) Burgers’ equation. Specifically, the spatial derivatives are
approximated by using the quasi-interpolation, and the time derivatives are approximated by forward
finite difference method. One advantage of the proposed scheme is its simplicity and easy implementation.
More importantly, the proposed scheme opens the gate to meshless adaptive moving knots methods
for the high-dimensional partial differential equations (PDEs) with shock or soliton waves. The scheme
is also applicable to other non-linear high-dimensional PDEs. Two numerical examples of Burgers’
equation (shock wave equation) and one example of the Sine–Gordon equation (soliton wave equation)
are presented to verify the high accuracy and efficiency of this method.
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1. Introduction

Studying the numerical solution of high-dimensional non-linear Burgers’ equation is of great
significance. One reason is that it is a fundamental shockwave PDE from fluid mechanics which often occurs
in applied and computational mathematics, such as modeling of dynamics, heat conduction, and acoustic
wave [1,2]. More importantly, it often plays the role of a testing equation to check the feasibility of the
scheme, i.e., once the scheme is efficient for Burgers’ equation, there is great possibility that it is applicable
to other equations with shock or soliton waves, such as non-linear Schrodinger equation [3], Sine–Gordon
equation [4], and Klein–Gordon equation [5].

In this paper, the proposed scheme is applicable to other non-linear high-dimensional PDEs. Burgers’
equation has been studied by many researchers not only because its shockwave behavior when the
coefficient R is large, but also because it is the simplest form of non-linear advection equation. Hence we
take the 2-D coupled Burgers’ equation as one example:
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ut + uux + vuy = 1
R (uxx + uyy),

vt + uvx + vvy = 1
R (vxx + vyy).

(1)

The initial conditions are:

u(x, y, 0) = f1(x, y), (x, y) ∈ D,
v(x, y, 0) = f2(x, y), (x, y) ∈ D,

(2)

and the boundary conditions are:

u(x, y, t) = g1(x, y, t), (x, y) ∈ ∂D,
v(x, y, t) = g2(x, y, t), (x, y) ∈ ∂D,

(3)

where t ∈ [0, T], D ⊂ R2 is a bounded domain and ∂D is the boundary. u(x, y, t) and v(x, y, t) are the
coupled solutions to be determined, f1(x, y), f2(x, y), g1(x, y, t) and g2(x, y, t) are given functions, and R
is the Reynolds number. Fletcher [6] obtained its exact solutions, so that one could evaluate the quality of
numerical solutions.

During the past decades, various numerical techniques have been developed for the solution of 2-D
Burgers’ equation. Bahadir [7] introduced one fully implicit finite difference scheme, then Zhu et al. [8]
proposed the discrete Adomian decomposition method (ADM), Yu et al. [9] applied the bivariate quintic
spline to solve numerically.

Compared with these mesh-based methods, which depend on a topology shape of the mesh,
the meshless method performs satisfactorily for problems with complicated and irregular geometries [10].
In recent years, the meshless collocation method has drawn considerable attention for solving PDEs [11–13].
Mittal and Tripathi [14] proposed a collocation method based on Modified bi-cubic B-Spline functions.
However, it requires to solve the inverse of a large-scale matrix on each time step, which costs
computational time and might be ill-conditioned.

Considering the problems mentioned above, we try to apply the MQ quasi-interpolation method for
the numerical solution of PDEs because of the following reasons:

• Quasi-interpolation could give the approximant and its derivatives directly needing no solution of
any large-scale system, hence it is easy to be implemented by the engineers in applications.

• Quasi-interpolation could filter the noise of the data which often occurs in applications because of
various reasons, e.g., measure error, data pollution, and so forth.

• Ma [15] proved the superiority of MQ quasi-interpolation over finite difference and other interpolation
methods in both stability and accuracy, especially when approximating scattered data.

MQ function was firstly introduced by Hardy [16], then it has been investigated extensively [17–19] and
successfully applied to solve one dimensional (1-D) PDEs [12,20–23]. Due to the extraordinary performance
in 1-D, Ling [24] extended the univariate MQ quasi-interpolation to 2-D. Feng and Zhou [25], Wu et al. [26]
and Wu et al. [27,28] constructed high-dimensional quasi-interpolations.

The ambition of this paper is to construct a numerical scheme for solving 2-D Burgers’ equation
applying the bivariate MQ quasi-interpolation. Firstly, we develop a bivariate MQ quasi-interpolation
and analyze its approximation order to a given function and its high order derivatives. Then the
numerical scheme for solving the 2-D coupled Burgers’ equation is proposed applying the bivariate
MQ quasi-interpolation. In the numerical scheme, the spatial derivatives are approximated by using
the derivatives of the quasi-interpolation, and the time derivatives of the dependent variables are
approximated by the forward finite difference method. The truncation error and the total error of our
scheme are estimated to show the accuracy of the proposed scheme. At last, two numerical examples of
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Burgers’ equation (shockwave equation) and one example of the Sine–Gordon equation (soliton wave
equation) are presented to verify the efficiency of the proposed method.

One advantage of the proposed scheme is its simplicity, easy implementation, but high accuracy and
stability. More importantly, since the proposed method requires no triangulation of the region, adaptive
refinement can be added in the scheme directly. In other words, it allows more flexible knots movement
and one need not to worry the problems of mesh over gathering or condition numbers. In addition,
the proposed scheme is applicable to other high-dimensional PDEs with shock or even soliton waves.

The rest of the paper is organized as follows. In Section 2, the bivariate MQ quasi-interpolant is
introduced. In Section 3, we present the numerical scheme to solve 2-D Burgers’ equation and give the
error estimations. In Section 4, three numerical examples are proposed to verify our method. Section 5
concludes the whole paper.

2. Bivariate MQ Quasi-Interpolations

In this section, we firstly introduce the univariate MQ quasi-interpolation. On the basis, we develop
the bivariate MQ quasi-interpolation and show its approximation order to the function and its derivatives.

Given the data {xj, f j}, f j = f (xj), the univariate MQ quasi-interpolation is

Q f (x) = ∑
j

f jψj(x), (4)

ψj(x) =
φj+1(x)− φj(x)

2(xj+1 − xj)
−

φj(x)− φj−1(x)
2(xj − xj−1)

, (5)

φj(x) =
√
(x− xj)2 + c2

1 is named MQ function, c1 is shape parameter, which is often a small
constant. As c1 goes to zero, φj(x) will converge to |x− xj|, consequently the univariate MQ interpolation
could be taken as piecewise linear interpolation but possesses smoothness property. Denoting by
h1 = maxj(xj+1 − xj), the approximation error of Q f (x) to the original function f (x) and the k-th
derivatives were given in [19]:

Theorem 1. If f (x) ∈ C(k+2)(R) and f (j)(x) is bounded by a polynomial of degree k + 2− j, then

|Q f (k)(x)− f (k)(x)| ≤ O(h
2

k+1
1 ) (6)

holds, provided that c1 = O(h
1

k+1
1 ).

Besides the high accuracy, the MQ quasi-interpolation has been proven to possess many other favorable
properties, such as monotonicity preservation, shape preservation, and variation diminishing [17,18].
Because of these positive properties, researchers began to extend the univariate quasi-interpolation to
multi-dimension [24–26].

In this paper, we propose one kind of bivariate MQ quasi-interpolation using the tensor product
technique. Specifically, given data (xi, yj, fij) and fij = f (xi, yj), the bivariate MQ quasi-interpolation is
defined as:

(Q f )(x, y) = ∑
i

∑
j

fijψi(x)ψj(y), (7)
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where ψi(x) are described in (5) and ψj(y) are represented as follows:

φj(y) =
√
(y− yj)2 + c2

2,

ψj(y) =
φj+1(y)− φj(y)

2(yj+1 − yj)
−

φj(y)− φj−1(y)
2(yj − yj−1)

,

c2 is a small constant. Denoting h2 = maxj(yj+1 − yj), the error estimation of the proposed bivariate MQ
quasi-interpolation (7) is given in Theorem 2.

Theorem 2. If f (x, y) ∈ C(k+2)(R2) and ∂(Q f )i+j(x,y)
∂xi∂yj is bounded by a polynomial p1(x)p2(y), p1(x) and p2(y)

are polynomials of degree α1 + 2− i and α2 + 2− j respectively (α1, α2, α1 + 2− i, and α2 + 2− j are all nonnegative
integers), then the error of bivariate MQ quasi-interpolation (7) satisfies∥∥∥∥∂(Q f )α1+α2(x, y)

∂xα1 ∂yα2
− ∂ f α1+α2(x, y)

∂xα1 ∂yα2
)

∥∥∥∥
∞
6 O(h

2
α1+1
1 + h

2
α2+1
2 ), (8)

provided that c1 = O(h
1

α1+1
1 ) and c2 = O(h

1
α2+1
2 ).

Proof. By adding one middle term, the following inequalities are obtained:

‖ (Q f )(x, y)− f (x, y) ‖∞

= ‖ ∑i ∑j fijψi(x)ψj(y)−∑i f (xi, y)ψi(x) + ∑i f (xi, y)ψi(x)− f (x, y) ‖∞

≤ ‖ ∑i ψi(x)(∑j fijψj(y)− f (xi, y)) ‖∞ + ‖ ∑i f (xi, y)ψi(x)− f (x, y) ‖∞ .

Since ∑j fijψj(y) and ∑i f (xi, y)ψi(x) are the approximation of f (xi, y) and f (x, y) separately,
when c1 = O(h1) and c2 = O(h2), they are estimated as:

‖ ∑j fijψj(y)− f (xi, y) ‖∞= O(h2
2),

‖ ∑i f (xi, y)ψi(x)− f (x, y) ‖∞= O(h2
1).

In addition, | ∑i ψi(x) |≤ 1, the result are as follows:

‖ Q f (x, y)− f (x, y) ‖∞≤| ∑i ψi(x) | O(h2
1) +O(h2

2) ≤ O(h2
1 + h2

2).

Similarly, the derivative errors of (Q f )(k) to f (k) could be estimated based on Theorem 1.
This ends the proof.

3. Numerical Scheme Applying Bivariate MQ Quasi-Interpolant

In this section, we develop a numerical scheme for solving 2-D Burgers’ Equations (1)–(3) based on
bivariate MQ quasi-interpolation in Section 3.1. Then we provide the error estimations of Algorithm 1 in
Section 3.2.

3.1. The Main Algorithm

We represent the approximations of u(x, y, t) and v(x, y, t) at the knots (xi, yj, tk) = (ih1, jh2, kτ) by
uk

ij and vk
ij respectively, where h1 and h2 are the mesh sizes in x and y direction separately, τ is the time

step sizes, i.e., uk
ij ≈ u(xi, yj, tk), vk

ij ≈ v(xi, yj, tk). We use the similar expressions for the derivative
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approximations, e.g., (ux)k
ij ≈ ux(xi, yj, tk), (uy)k

ij ≈ uy(xi, yj, tk) and so forth. The numerical solution
could be realized in the following Algorithm 1.

3.2. Error Estimations of Algorithm 1

In Section 3.2, the truncation error of Algorithm 1 is proposed in Lemma 1. Then based on Lemma 1,
the total error of Algorithm 1 is provided in Theorem 3.

Algorithm 1 Numerical scheme of 2-D Burgers’ equation applying the bivariate MQ quasi-interpolation.

Input: uk
ij, vk

ij

Output: uk+1
ij , vk+1

ij

1: Approximate the solutions’ (u and v) first and second space derivatives by using the bivariate MQ
quasi-interpolation. For example, the first derivatives of function u could be approximated as follows,

(ux)
k
ij = ∑

m
∑
n

uk
ijψ
′
m(xi)ψn(yj),

(uy)
k
ij = ∑

m
∑
n

uk
ijψm(xi)ψ

′
n(yj).

the other derivatives can be approximated similarly based on the bivariate MQ quasi-interpolation.

2: Discrete the Burgers’ equation in time and substitute the points (xi, yj) into the derivatives, compute
uk+1

ij and vk+1
ij :

uk+1
ij =uk

ij − τuk
ij(ux)

k
ij − τvk

ij(uy)
k
ij +

τ

R
((uxx)

k
ij + (uyy)

k
ij),

vk+1
ij =vk

ij − τuk
ij(vx)

k
ij − τvk

ij(vy)
k
ij +

τ

R
((vxx)

k
ij + (vyy)

k
ij).

3: Return to Step 1.

For the error estimation, we denote the following operators L1, L2, L1,d, L2,d as

L1(u, v) = ut + uux + vuy − 1
R (uxx + uyy),

L2(u, v) = vt + uvx + vvy − 1
R (vxx + vyy),

L1,d(uk
ij, vk

ij) =
uk+1

ij −uk
ij

τ + uk
ij(ux)k

ij + vk
ij(uy)k

ij −
1
R ((uxx)k

ij + (uyy)k
ij),

L2,d(uk
ij, vk

ij) =
vk+1

ij −vk
ij

τ + uk
ij(vx)k

ij + vk
ij(vy)k

ij −
1
R ((vxx)k

ij + (vyy)k
ij).

Lemma 1. For any t ∈ [0, T], if u(x, t) ∈ C4(R) and v(x, t) ∈ C4(R), the truncation error of Algorithm 1 is

(R1)
k
ij = L1,d(uk

ij, vk
ij)− L1(u, v)(xi, yj, tk) = O(τ + h2/3

1 + h2/3
2 ),

(R2)
k
ij = L2,d(uk

ij, vk
ij)− L2(u, v)(xi, yj, tk) = O(τ + h2/3

1 + h2/3
2 ).

Proof. Firstly, based on the Taylor expansion, we have:

u(xi ,yj ,tk+1)−u(xi ,yj ,tk)
τ = ut(xi, yj, tk) +O(τ),

v(xi ,yj ,tk+1)−v(xi ,yj ,tk)
τ = vt(xi, yj, tk) +O(τ).
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Then based on Theorem 2, we get the following error estimations:

u(xi, yj, tk)(ux)k
ij + v(xi, yj, tk)(uy)k

ij
= u(xi, yj, tk)(ux(xi, yj, tk) +O(h1)) + v(xi, yj, tk)(uy(xi, yj, tk) +O(h2)),
u(xi, yj, tk)(vx)k

ij + v(xi, yj, tk)(vy)k
ij

= u(xi, yj, tk)(vx(xi, yj, tk) +O(h1)) + v(xi, yj, tk)(vy(xi, yj, tk) +O(h2)),

and
(uxx)k

ij + (uyy)k
ij = uxx(xi, yj, tk) + uyy(xi, yj, tk) +O(h

2
3
1 + h

2
3
2 ),

(vxx)k
ij + (vyy)k

ij = vxx(xi, yj, tk) + vyy(xi, yj, tk) +O(h
2
3
1 + h

2
3
2 ).

Finally, we get the truncation errors:

(R1)
k
ij = L1,d(uk

ij, vk
ij)− L1(u, v)(xi, yj, tk)

= O(τ) +O(h1 + h2)− 1
RO(h

2/3
1 + h2/3

2 )

= O(τ + h2/3
1 + h2/3

2 ),
(R2)

k
ij = L2,d(uk

ij, vk
ij)− L2(u, v)(xi, yj, tk)

= O(τ) +O(h1 + h2)− 1
RO(h

2/3
1 + h2/3

2 )

= O(τ + h2/3
1 + h2/3

2 ).

This ends the proof.

Suppose uk(x, y) and vk(x, y) are the simulations of the exact solutions u(x, y, tk) and v(x, y, tk) using
Algorithm 1, the total error of Algorithm 1 is provided in Theorem 3:

Theorem 3. Defining the total errors of Algorithm 1 as ek
u(x, y) = uk(x, y)− u(x, y, tk), ek

v(x, y) = vk(x, y)−
v(x, y, tk), if u(x, y, t) ∈ C4(R), v(x, y, t) ∈ C4(R), the error estimation of Algorithm 1 satisfies:(

‖eK
u ‖2,∞

‖eK
v ‖2,∞

)
= O(τ + h2/3

1 + h2/3
2 ), K = T/τ, (9)

where the Soblev norm for the function g(x, y) is defined as:

‖g‖2,∞ = max
0≤α1+α2≤2

‖ ∂α1+α2 g
∂α1 x∂α2 y

‖∞.

Proof. Since u(x, y, t), v(x, y, t) are the exact solutions of (1), they satisfy:

u(x, y, tk+1)− u(x, y, tk)

τ
=− u(x, y, tk)u′x(x, y, tk)− v(x, y, tk)u′y(x, y, tk)

+
1
R
(u′′xx(x, y, tk) + u′′yy(x, y, tk)) +O(τ),

v(x, y, tk+1)− v(x, y, tk)

τ
=− u(x, y, tk)v′x(x, y, tk)− v(x, y, tk)v′y(x, y, tk)

+
1
R
(v′′xx(x, y, tk) + v′′yy(x, y, tk)) +O(τ).

(10)

According to Lemma 1, uk(x, y), vk(x, y) satisfy
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uk+1(x, y)− uk(x, y)
τ

=− uk(x, y)(uk)
′
x(x, y)− vk(x, y)(uk)

′
y(x, y)

+
1
R
((uk)

′′
xx(x, y) + (uk)

′′
yy(x, y)) +O(h2/3

1 + h2/3
2 ),

vk+1(x, y)− vk(x, y)
τ

=− uk(x, y)(vk)
′
x(x, y)− vk(x, y)(vk)

′
y(x, y)

+
1
R

m((vk)
′′
xx(x, y) + (vk)

′′
yy(x, y)) +O(h2/3

1 + h2/3
2 ).

(11)

Subtracting (10) from (11), one can get the following equation by adding some middle terms:

ek+1
u (x, y)− ek

u(x, y)
τ

=− ek
u(x, y)(uk)

′
x(x, y)− uk(x, y)(ek

u)
′
x(x, y)

− ek
v(x, y)(uk)

′
y(x, y)− vk(x, y)(ek

u)
′
y(x, y)

+
1
R
((ek

u)
′′
xx(x, y) + (ek

u)
′′
yy(x, y)) +O(τ + h2/3

1 + h2/3
2 ),

ek+1
v (x, y)− ek

v(x, y)
τ

=− ek
u(x, y)(vk)

′
x(x, y)− uk(x, y)(ek

v)
′
x(x, y)

− ek
v(x, y)(vk)

′
x(x, y)− vk(x, y)(ek

v)
′
x(x, y)

+
1
R
((ek

v)
′′
xx(x, y) + (ek

v)
′′
yy(x, y)) +O(τ + h2/3

1 + h2/3
2 ).

(12)

Therefore, the Soblev norm of the errors satisfy

‖ek+1
u ‖2,∞−‖ek

u‖2,∞
τ ≤ C(‖ek

u‖2,∞ + ‖ek
v‖2,∞) +O(τ + h2/3

1 + h2/3
2 ),

‖ek+1
v ‖2,∞−‖ek

v‖2,∞
τ ≤ C(‖ek

u‖2,∞ + ‖ek
v‖2,∞) +O(τ + h2/3

1 + h2/3
2 ),

where C = 2max{‖u‖1,∞, ‖v‖1,∞, 1
R}.

Hence we have(
‖ek+1

u ‖2,∞

‖ek+1
v ‖2,∞

)
=B

(
‖ek

u‖2,∞

‖ek
v‖2,∞

)
+O(τ2 + τh2/3

1 + τh2/3
2 )

· · ·

=Bk+1

(
‖e0

u‖2,∞

‖e0
v‖2,∞

)
+ (Bk + Bk−1 + · · ·+ B0)O(τ2 + τh2/3

1 + τh2/3
2 ),

where B =

(
1 + Cτ Cτ

Cτ 1 + Cτ

)
. B is a positive definite matrix, hence there exists a nonsingular matrix

X satisfying

B = X−1

(
1 0
0 1 + 2Cτ

)
X.
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Since ‖e0
u‖2,∞ = 0, ‖e0

v‖2,∞ = 0, we can get(
‖eK

u ‖2,∞

‖eK
v ‖2,∞

)
= X−1

(
K 0

0 1−(1+2Cτ)K

−2Cτ

)
XO(τ2 + τh2/3

1 + τh2/3
2 )

= O(τ + h2/3
1 + h2/3

2 ).

This completes the proof.

Remark 1. In this section, we apply the bivariate MQ quasi-interpolation for solving the 2-D coupled Burgers’
equation. As is shown in Ma [15], the MQ method is more accurate, more stable, and simpler for simulating the
high order derivatives than finite difference method, especially for scatted data or the data with noise. In addition,
the proposed method is simple and easy to implement, since one need not to solve any large-scale linear system and
could get the original function and derivatives’ approximation directly.

4. Numerical Examples

2-D Burgers’ Equation

In this section, we select two presentative test examples to illustrate the performance of the method
described in the previous section. There are several ways to process the boundary, here the popular
bivariate operator which appears in Ling [24] is employed. All these experiments are carried out on
a computer with an Intel (R) Core (TM) i7-7500 CPU, 3.20 GHZ processor and 8.00 GB RAM. To check the
validity of the scheme, the root mean square (RMS) and L∞ error norms are applied to make comparisons
with the previous methods [8]. The error norms are defined as

RMS =

√
∑i ∑j(uexact

ij −unum
ij )2

(N1+1)(N2+1) ,

L∞ = maxij |uexact
ij − unum

ij |,

where uexact
ij and unum

ij are the exact and numerical results of u at the knot (xi, yj).

Example 1. In this problem, we choose the computational domain as D = {(x, y) : 0 ≤ x ≤ 0.5, 0 ≤ y ≤ 0.5},
and the spatial knots distribute uniformly on the computational domain with a mesh width h1 = h2 = 0.025. For the
Burgers’ Equations (1) and (2), the initial conditions at t = 0 is

f1(x, y) = x + y, (x, y) ∈ D,
f2(x, y) = x− y, (x, y) ∈ D.

(13)

Under the above conditions, the exact solutions could be given [6]:

u(x, y, t) =
x + y− 2xt

1− 2t2 , (14)

v(x, y, t) =
x− y− 2yt

1− 2t2 . (15)

In this example, we observe the performance of our method with R = 100 for the convenience
of comparison, and the numerical solutions are simulated using uniform knots, with a space width
h1 = h2 = 0.025, the time step is τ = 10−4. The parameter is set as c = 2.65 × 10−6.
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The study compares the errors of the presented method and Zhu et al.’s method [8]. The numerical
errors at time t = 0.1 and t = 0.4 are listed in Tables 1 and 2 respectively. It is observed that at time
t = 0.1, our errors are similar(even a little larger) than Zhu et al.’s method [8]. However, at time t = 0.4,
our method is far smaller than Zhu et al.’s method [8]. That is to say, our method could maintain a longer
time simulation.

Table 1. Example 1: Comparisons of numerical errors by Zhu et al. [8] and the present method with
R = 100, τ = 10−4, at t = 0.1.

Mesh Grid Error of u Error of v

Zhu et al. [8] The Present Zhu et al. [8] The Present

(0.1, 0.1) 3.3075× 10−6 3.3081× 10−6 1.0538× 10−6 1.0524× 10−6

(0.3, 0.1) 5.5616× 10−6 7.6686× 10−6 3.3077× 10−5 7.5178× 10−6

(0.2, 0.2) 6.6152× 10−6 6.6161× 10−6 2.1077× 10−6 2.1049× 10−6

(0.4, 0.2) 8.8694× 10−6 1.0977× 10−5 2.2540× 10−6 8.5703× 10−6

(0.1, 0.3) 7.6693× 10−6 5.8456× 10−6 7.5234× 10−6 3.3081× 10−6

(0.3, 0.3) 9.9233× 10−6 9.9242× 10−6 3.1615× 10−6 3.1573× 10−6

(0.2, 0.4) 1.0977× 10−5 1.0977× 10−6 8.5770× 10−6 2.2556× 10−6

(0.3, 0.4) 1.2104× 10−5 1.1052× 10−5 6.3960× 10−6 9.7708× 10−7

(0.5, 0.5) 1.6539× 10−5 1.6540× 10−5 5.2692× 10−6 5.2622× 10−6

Table 2. Example 1: Comparison of the numerical errors by Zhu et al. [8] and the present method with
R = 100, τ = 10−4 at t = 0.4.

Mesh Grid Error of u Error of v

Zhu et al. [8] The Present Zhu et al. [8] The Present

(0.1, 0.1) 1.0195× 10−4 2.2716× 10−5 3.5483× 10−4 4.2353× 10−5

(0.3, 0.1) 5.5872× 10−4 8.7786× 10−5 1.0195× 10−4 1.9213× 10−4

(0.2, 0.2) 2.0389× 10−4 4.5433× 10−5 7.0967× 10−4 8.4705× 10−5

(0.4, 0.2) 6.6067× 10−4 1.0502× 10−5 4.5678× 10−4 2.3448× 10−4

(0.1, 0.3) 1.5094× 10−4 3.0802× 10−6 1.3174× 10−3 2.2716× 10−5

(0.3, 0.3) 3.0584× 10−4 6.8149× 10−6 1.0645× 10−3 1.2706× 10−4

(0.2, 0.4) 4.8996× 10−5 2.5797× 10−5 1.6722× 10−3 1.9636× 10−5

(0.3, 0.4) 1.7939× 10−4 1.0068× 10−4 1.5458× 10−3 9.4524× 10−5

(0.5, 0.5) 5.0973× 10−4 1.1358× 10−4 1.7742× 10−3 2.1176× 10−4

In Table 3, the L∞ errors and the CPU time of the present method at t = 0.1 and t = 0.4 are listed.
One can conclude that our method is efficient in sense that it could get a satisfying error with rather
little CPU time. Figure 1 describes the numerical solutions of u(x, y, t), v(x, y, t) by the present method,
as expected, the present method could simulate Example 1 quickly and rather precisely.

Table 3. Example 1: The L∞ errors and CPU time of the present method at t = 0.1 and t = 0.4 with τ = 10−4.

L∞(u) L∞(v) CPU Time (s)

t = 0.1s 1.6540 1.6163× 10−5 6.728
t = 0.4s 1.6267× 10−4 3.7444× 10−4 25.658
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Figure 1. Example 1: Numerical solutions of u(x, y, t), and v(x, y, t) by the present method with τ = 10−4,
h1 = h2 = 0.025, at t = 0.1.

Example 2. When applying the Hopf-Cole transformation in [6], one could get the exact solutions of Burgers’
Equations (1) and (2)

u(x, y, t) = 3
4 −

1
4(1+exp((−4x+4y−t)R/32) , (16)

v(x, y, t) = 3
4 + 1

4(1+exp((−4x+4y−t)R/32) . (17)

In this example, we choose the computational domain as D = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1},
and we take the initial and boundary conditions from the above exact solution. The knots are distributed
uniformly on the computational domain with a width h1 = h2 = 0.05, and R = 100. However the time
step sizes of our method (τ = 10−3) in this example is chosen to be ten times of the method in Zhu et al. [8],
and Bahadir [7] (τ = 10−4). The parameter c is chosen as c = 1.53 × 10−5. The numerical results will
show that we could get the similar accuracy while with little CPU time.

In Table 4, the L∞ numerical errors of the solutions at some typical mesh points at time t = 0.01, 0.05
and 0.2 with τ = 10−3. It is observed that our method could get satisfactory accuracy. In addition, the CPU
time is rather little. The numerical results using the proposed algorithm are in good agreement with the
exact solutions.

Table 4. Example 2: The L∞ numerical errors and CPU time by the present method with R = 100, τ = 10−3

at different time t.

Mesh Grid t = 0.01 t = 0.05 t = 0.2

(0, 1) 1.09714× 10−8 3.01044× 10−7 1.39170× 10−5

(0.1, 0.9) 5.21864× 10−8 2.88925× 10−7 1.12905× 10−5

(0.2, 0.8) 6.05494× 10−7 3.45039× 10−6 1.52312× 10−5

(0.3, 0.7) 6.52640× 10−6 3.53596× 10−5 1.70559× 10−4

(0.4, 0.6) 6.56867× 10−6 1.00372× 10−6 5.22325× 10−4

(0.5, 0.5) 5.55844× 10−5 1.67227× 10−4 6.56682× 10−4

(0.6, 0.4) 3.08342× 10−5 1.27268× 10−4 2.60973× 10−4

(0.7, 0.3) 2.12905× 10−7 1.01505× 10−6 7.31540× 10−6

(0.8, 0.2) 1.47614× 10−8 6.45096× 10−8 9.81073× 10−6

(0.9, 0.1) 2.52669× 10−9 4.25191× 10−8 1.28665× 10−5

(1, 0) 3.35256× 10−8 4.05295× 10−7 1.00646× 10−5

CPU time (s) 0.130 0.404 1.418
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In Table 5, we compare the numerical errors of the present method with time step τ = 10−3, and that
of Zhu et al. [8], and Bahadir [7] with time step size τ = 10−4. It is observed that even using the time step
that is ten times of the method in Zhu et al. [8], and Bahadir [7], our method could get similar accuracy.

Table 5. Example 2: The error of numerical results by Zhu et al. [8], Bahadir[7] with R = 100, τ = 10−4,
at t = 0.01, and the present method with τ = 10−3.

Mesh Grid Error of u Error of v

Zhu et al. [8] Bahadir [7] The Present Zhu et al. [8] Bahadir [7] The Present

(0.1, 0.1) 5.91368× 10−5 7.24132× 10−5 5.44503× 10−5 5.91368× 10−5 8.35601× 10−5 5.44503× 10−5

(0.5, 0.1) 4.84030× 10−6 2.42869× 10−5 6.49632× 10−6 4.84030× 10−6 5.13642× 10−5 6.49632× 10−6

(0.9, 0.1) 3.41000× 10−8 8.39751× 10−6 5.21864× 10−8 3.41000× 10−8 7.03298× 10−6 5.21864× 10−8

(0.3, 0.3) 5.91368× 10−5 8.25331× 10−5 5.55844× 10−5 5.91368× 10−5 6.15201× 10−5 5.55844× 10−5

(0.7, 0.3) 4.84030× 10−6 3.43163× 10−5 6.52640× 10−6 4.84030× 10−6 5.41000× 10−5 6.52640× 10−6

(0.1, 0.5) 1.64290× 10−6 5.62014× 10−5 2.71889× 10−7 1.64290× 10−6 7.35192× 10−5 2.71889× 10−7

(0.5, 0.5) 5.91368× 10−5 7.32522× 10−5 5.55844× 10−5 5.91368× 10−5 8.51040× 10−5 5.55844× 10−5

The numerical solutions of u(x, y, t), v(x, y, t) by the present method are shown in Figure 2.
In conclusion, Example 2 shows that the present method is easy to implement, accurate, and rather
time saving.
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Figure 2. Example 2: The numerical solutions of u(x, y, t), and v(x, y, t) by the present method with
τ = 10−3, h1 = h2 = 0.05 at t = 0.1

Example 3. In this example, we will show that the proposed scheme is also applicable to other high-dimensional
PDEs with shock waves or even soliton waves. We take the typical soliton equation Sine–Gordon equation as
the example:

ut = v,
vt = uxx + uyy − sinu,

(18)

The initial conditions are:

u(x, y, 0) = 4arctan(exp(x)) + 4arctan(exp(y)), − 6 ≤ x, y ≤ 6,
v(x, y, 0) = 0,

and the boundary conditions are:

ux = 0, f or x = −6, 6,−6 ≤ y ≤ 6,
uy = 0, f or y = −6, 6,−6 ≤ x ≤ 6.
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The example depicts the superposition of two orthogonal line solitons, which is also used by many
researchers to verify their schemes [4,29]. The numerical computations are simulated using equi-distributed
knots, with a space width h1 = h2 = 0.2 and time steps τ = 0.01. In this example, the parameter c is
chosen as c = 0.0075. Figure 3 shows that our methods could simulate the solitons rather exactly. That is
to say, our scheme can solve a wild range of high-dimensional PDEs efficiently.
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Figure 3. Example 3: The numerical solutions and contours by the present method with τ = 10−2,
h1 = h2 = 0.2 at t = 0, 2, 4.
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5. Conclusions

In this paper, we present a numerical scheme for 2-D Burgers’ equation by bivariate MQ
quasi-interpolation. The error estimations of the algorithm are also provided. Compared with the previous
method (such as Zhu et al. [8]), the proposed method owns similar accuracy, while using far less
computational effort. The present algorithm owns the following advantages: Firstly, it is very simple and
easy to be implemented by the engineers in the applications. Secondly, it is of satisfactory accuracy and
efficient for the time dependent PDEs with shock waves. Thirdly, it uses less computational effort, because
it need not to solve any large-scale linear system. The method is also applicable to other high-dimensional
time dependent PDEs [22,30], such as the Burgers-Fisher, the Klein–Gordon, and so forth.

Remark 2. Since the quasi-interpolation method have no requirement of the knots’ topology structure and allows
flexible knots moving, there are many works could be done to improve the efficiency and accuracy of the proposed
algorithm with similar computational effort. One method is to introduce the moving knots strategy into the algorithm
and let the nodes concentrated in the areas with shockwave, such as [31]. Hence better approximation accuracy
could be achieved with the same computational effort. Another method is using the symmetric quasi-interpolation
to construct the algorithm that preserve the energy or some important property of the original PDE, e.g., [12,22].
In this way, one could simulate the PDE for a longer time.
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