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Abstract: In this paper, two new refinements of the Erdös–Mordell inequality and three new
refinements of Barrow’s inequality are established. Some related interesting conjectures are
put forward.
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1. Introduction

In 1935, Erdös [1] proposed the following geometric inequality:
For any interior point P of the triangle ABC, let R1, R2, R3 be the distances from P to the vertices

A, B, C, respectively, and let r1, r2, r3 be the distances from P to the sides BC, CA, AB, respectively. Then

∑ R1 ≥ 2 ∑ r1, (1)

where ∑ denotes the cyclic sums (we shall use this symbol in the sequel). Equality in (1) holds if and
only if the triangle ABC is equilateral and P is its center.

Two years later, Mordell and Barrow [2] first proved the inequality (1), and the latter actually
obtained the following sharpness:

∑ R1 ≥ 2 ∑ w1, (2)

where w1, w2, w3 are the lengths of the bisectors of ∠BPC,∠CPA,∠APB, respectively.
The above two inequalities have long been famous results in the field of geometric inequalities.

The former is called the Erdös–Mordell inequality, which has attracted the interest of many authors
and motivated a large number of research papers (see [2–28] and the references cited therein).

In 1957, Ozeki [22] first obtained the following generalization of Barrow’s inequality (2) for convex
polygons: For any interior point P of the convex polygon A1 A2 · · · An, it holds that

n

∑
i=1

Ri ≥ sec
π

n

n

∑
i=1

wi, (3)

where Ri = PAi and wi denote the lengths of the bisectors of ∠AiPAi+1(i = 1, 2, · · · , n and An+1 = A1).
Some other discussions about Barrow’s inequality and (3) can be found in [4,14,19,21,23,27].
In 2012, when the author considered Oppenheim’s inequality (see [24])

∑ R2R3 ≥ 2 ∑(r3 + r1)(r1 + r2), (4)

the following sharpened version of the Erdös–Mordell inequality was found:

R2 + R3 ≥ 2r1 +
(r2 + r3)

2

R1
, (5)
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with equality if and only if4ABC is an isosceles right triangle and P is its circumcenter. Furthermore,
by using inequalities (4), (5), and other results, the author obtained a series of refinements for the
Erdös–Mordell inequality in [14,16].

In this paper, we shall give two new refinements of the Erdös–Mordell inequality and three new
refinements of Barrow’s inequality. In addition, we shall present several interesting related conjectures
in the last section.

2. Refinements of the Erdös–Mordell Inequality

In [11], the author proved the following refinement of the Erdös–Mordell inequality:

∑ R1 ≥ 2
√

∑ har1 ≥ 2 ∑ r1 (6)

where ha, hb, hc are the corresponding altitudes of the sides BC, CA, AB of the triangle ABC.
Here, we further give the following result:

Theorem 1. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥ 2
√

∑ haw1 ≥ 2
√

∑ har1 ≥ 2 ∑ r1. (7)

Equalities in (7) all hold if and only if4ABC is equilateral and P is its center.

To prove Theorem 1, we first give several lemmas.

Lemma 1. For any triangle ABC with sides a, b, c and real numbers x, y, z, it holds that(
∑ xa

)2 ≥
(

2 ∑ bc−∑ a2
)

∑ yz, (8)

with equality if and only if x : y : z = (b + c− a) : (c + a− b) : (a + b− c).

For any triangle ABC with sides a, b, c, we have
√

b +
√

c >
√

b + c >
√

a. Thus,
√

a,
√

b,
√

c can
be viewed sides of a triangle, and we see that inequality (8) can be obtained by using the following
weighted Oppenheim inequality (see [19], p. 681):(

∑ xa2
)2
≥ 16S2 ∑ yz (9)

(where S is the area of4ABC) and the following equivalent form of the Heron formula:

16S2 = 2 ∑ b2c2 −∑ a4. (10)

Remark 1. In the sixth chapter of the monograph [17], the author proved that inequality (8) is equivalent
with (9) and the Wolstenholme inequality (52) below.

In the Appendix A of my monograph [17], Theorem A3 gives an equivalent theorem for the
geometric transformations, which includes the following conclusion: An inequality involving any
interior point P of the triangle ABC,

f (a, b, c, R1, R2, R3, r1, r2, r3) ≥ 0, (11)

is equivalent to

f
(

aR1

2R
,

bR2

2R
,

cR3

2R
, r1, r2, r3,

r2r3

R1
,

r3r1

R2
,

r1r2

R3

)
≥ 0. (12)
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In fact, this conclusion can be extended to the following:

Lemma 2. With above notations, the inequality

f (a, b, c, R1, R2, R3, r1, r2, r3, w1, w2, w3) ≥ 0 (13)

is equivalent to

f
(

aR1

2R
,

bR2

2R
,

cR3

2R
, r1, r2, r3,

r2r3

R1
,

r3r1

R2
,

r1r2

R3
,

2r2r3

r2 + r3
sin

A
2

,
2r3r1

r3 + r1
sin

B
2

,
2r1r2

r1 + r2
sin

C
2

)
≥ 0. (14)

Proof. Let DEF be the pedal triangle of P with respect to the triangle ABC (see Figure 1), and let
EF = ap, FD = bp, DE = cp, then it is easy to get

ap =
aR1

2R
, bp =

bR2

2R
, cp =

cR3

2R
. (15)

Let h1, h2, h3 be the distances from P to the side lines EF, FD, DE, respectively, we also easily obtain

h1 =
r2r3

R1
, h2 =

r3r1

R2
, h3 =

r1r2

R3
. (16)

In addition, by means of the known formula in the triangle ABC

wa =
2bc

b + c
cos

A
2

(17)

(where wa is the bisector of ∠BAC) and the fact that ∠EPF = π − A, we get

w′1 =
2r2r3

r2 + r3
sin

A
2

, (18)

where w′1 is the bisector of ∠EPF. Two similar relations hold for the bisectors w′2, w′3 of
∠FPD,∠DPE, respectively.

If we apply inequality (13) to triangle DEF and point P, then

f (ap, bp, cp, r1, r2, r3, h1, h2, h3, w′1, w′2, w′3) ≥ 0.

Substituting (15), (16), and (18) into this inequality, (14) follows immediately. Conversely, we can
obtain (13) from (14) by using the method of proving Theorem A3 in Appendix A of the monograph [17].
Thus, inequality (13) is equivalent with (14). The proof of Lemma 2 is completed.

a

c

b

Fig.1  An inequality involving any  point
P inside triangle ABC  is equivalent to the
one involving the point P and its pedal
triangle DEF with respect to ABC. cp

bp

apF E

DB C

A

P

Figure 1. An inequality involving any point P inside triangle ABC is equivalent to the one involving
the point P and its pedal triangle DEF with respect to ABC.
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Lemma 3. For any interior point P of the triangle ABC, it holds that

r2 + r3 ≤ 2R1 sin
A
2

, (19)

with equality if and only if r2 = r3.

Inequality (19) is well-known and is easily proved (see [29], p. 111).
Next, we prove Theorem 1.

Proof. Since w1 ≥ r1 etc., the second inequality in (7) is evidently valid. In addition, the third
inequality of (7) is easily obtained (see [11]).

We now prove the first inequality in (7), i.e.,(
∑ R1

)2 ≥ 4 ∑ haw1. (20)

By the area formula ha = 2S/a and the identity

∑ ar1 = 2S, (21)

we see that (20) is equivalent to (
∑ R1

)2 ≥ 4 ∑ ar1 ∑
w1

a
. (22)

According to Lemma 2 and the relations (15) and (16), we further know that inequality (22) is
equivalent to (

∑ r1
)2 ≥ 4 ∑

aR1

2R
· r2r3

R1
∑

2R
aR1
· 2r2r3

r2 + r3
sin

A
2

,

i.e., (
∑ r1

)2 ≥ 8 ∑ ar2r3 ∑
r2r3

a(r2 + r3)R1
sin

A
2

. (23)

But using r2r3 ≤ (r2 + r3)
2/4, Lemma 3, and the known formula

sin
A
2

=

√
(s− b)(s− c)

bc
(24)

(where s = (a + b + c)/2), we have

∑
r2r3

a(r2 + r3)R1
sin

A
2

≤ 1
4 ∑

r2 + r3

aR1
sin

A
2

≤ 1
2 ∑

1
a

sin2 A
2

=
1

2abc ∑(s− b)(s− c).

Thus, in order to prove inequality (23), we only need to prove that(
∑ r1

)2 ≥ 4 ∑
r2r3

bc ∑(s− b)(s− c). (25)

Putting x = r1/a, y = r2/b, z = r3/c in inequality (8) of Lemma 1 and noting the fact that

2 ∑ bc−∑ a2 = 4 ∑(s− b)(s− c), (26)
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we get inequality (25) immediately. Thus, inequality (20) is proved. It is easily known that the equality
in (20) holds if and only if 4ABC is equilateral and P is its center. This completes the proof of
Theorem 1.

Now we state and prove the second refinement of the Erdös–Mordell inequality.

Theorem 2. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥
√

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ r2

1

≥
√

1
2 ∑ a2 +

3
2 ∑(r2 + r3)2 ≥ 2 ∑ r1. (27)

The first equality in (27) holds if and only if P is the circumcenter of the triangle ABC. The second and
third equalities in (27) hold if and only if the triangle ABC is equilateral and P is its center.

Proof. In triangle ABC, we have the following known angle bisector formula:

wa =
2

b + c

√
sbc(s− a). (28)

Noting that
√

bc ≤ (b + c)/2 and s = (a + b + c)/2, we have

wa ≤
1
2

√
[(b + c)2 − a2], (29)

with equality if and only if b = c. Applying this inequality to4BPC, we get√
(R2 + R3)2 − a2 ≥ 2w1. (30)

Hence, we have

∑(R2 + R3)
2 ≥∑ a2 + 4 ∑ w2

1, (31)

that is,

∑ R2
1 + ∑ R2R3 ≥

1
2 ∑ a2 + 2 ∑ w2

1.

Adding ∑ R2R3 to both sides of the above inequality and then squaring root, we obtain

∑ R1 ≥
√

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1. (32)

Sine w1 ≥ r1 etc., the first inequality in (27) obviously holds. Note that the equality in (30) holds
if and only if R2 = R3, thus the equality in (31) holds if and only if R1 = R2 = R3, which means that P
is the circumcenter of the triangle ABC. Furthermore, we can conclude that the first equality in (27)
holds if and only if P is the circumcenter of the triangle ABC.

Clearly, the second inequality in (27) is equivalent to

∑ R2R3 + 2 ∑ r2
1 ≥

3
2 ∑(r2 + r3)

2.

Removing 2 ∑ r2
1 to the right and arranging gives the previous Oppenheim inequality (4),

which has been proved by the author in different ways (see [12,14]).
For the third inequality in (27), by squaring both sides and arranging, we know that it is

equivalent to
2 ∑ r2

1 + 10 ∑ r2r3 ≤∑ a2, (33)
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which was first established by Chu in [30] and proved by the author in another way in [15]. In addition,
we have known that both equalities in (4) and (33) hold if and only if4ABC is equilateral and P is its
center. This completes the proof of Theorem 2.

From Theorem 2, we have

Corollary 1. For any interior point P of the triangle ABC, it holds that

2
(
∑ R1

)2 − 3 ∑(r2 + r3)
2 ≥∑ a2. (34)

Furthermore, we can easily obtain the following inequality:

Corollary 2. For any interior point P of the triangle ABC, it holds that

(
∑ R1

)2 − 2
(
∑ r1

)2 ≥ 1
2 ∑ a2. (35)

3. Refinements of Barrow’s Inequality

In [14], Theorem 4.3 gives the following refinement of the Erdös–Mordell inequality:

∑ R1 ≥
√

∑
[
R2

1 + 2r1R1 + (r2 + r3)2
]
≥ 2 ∑ r1, (36)

which is actually equivalent to

∑ R1 ≥
√

∑(R1 + r1)2 +
(
∑ r1

)2 ≥ 2 ∑ r1. (37)

Now, we point out that for Barrow’s inequality (2), the following similar result holds:

Theorem 3. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥
√

∑(R1 + w1)2 +
(
∑ w1

)2 ≥ 2 ∑ w1. (38)

Equalities in (38) hold if and only if4ABC is equilateral and P is its center.

Clearly, the first inequality in (38) is also equivalent to the following interesting form:(
∑ R1

)2 −
(
∑ w1

)2 ≥∑(R1 + w1)
2. (39)

To prove this inequality, we first prove a strengthening of the previous inequality (5), which is
posed by the author in [12] as a conjecture.

Lemma 4. For any interior point P of the triangle ABC, it holds that

R2 + R3 ≥ 2w1 +
(w2 + w3)

2

R1
, (40)

with equality if and only if CA = AB and P is the circumcenter of the triangle ABC.

Proof. We let ∠BPC = 2δ1,∠CPA = 2δ2,∠APB = 2δ3. By the previous formula (17), we know that
inequality (40) is equivalent to

R2 + R3 ≥
4R2R3

R2 + R3
cos δ1 +

1
R1

(
2R3R1

R3 + R1
cos δ2 +

2R1R2

R1 + R2
cos δ3

)2
.
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Since R3 + R1 ≥ 2
√

R3R1 and R1 + R2 ≥ 2
√

R1R2, to prove the above inequality we only need to
prove that

R2 + R3 ≥
4R2R3

R2 + R3
cos δ1 +

(√
R3 cos δ2 +

√
R2 cos δ3

)2
. (41)

Letting
√

R2 = y and
√

R3 = z, (41) then becomes

y2 + z2 ≥ 4y2z2

y2 + z2 cos δ1 + (z cos δ2 + y cos δ3)
2 . (42)

Note that δ1, δ2, δ3 can be viewed angles of a non-obtuse triangle. To prove inequality (42), we only
need to prove that the following inequality holds for non-obtuse triangles ABC and real numbers y, z:

y2 + z2 ≥ 4y2z2

y2 + z2 cos A + (z cos B + y cos C)2 , (43)

that is,
(y2 + z2)2 − 4y2z2 cos A− (y2 + z2) (z cos B + y cos C)2 ≥ 0. (44)

Multiplying both sides by 4(abc)2 and using the law of cosines, we can transform the proof to the
following weighted inequality:

4(abc)2(y2 + z2)2 − 8bca2y2z2(b2 + c2 − a2)

−(y2 + z2)
[
zb(c2 + a2 − b2) + yc(a2 + b2 − c2)

]2
≥ 0. (45)

If we denote by Q0 the value of the left-hand side of (45), then it is easy to check the
following identity:

Q0 = (y2 + z2)(yc− zb)2(c2 + a2 − b2)(a2 + b2 − c2)

+2a2(b2 + c2 − a2)[(y2c− z2b)2 + y2z2(b− c)2], (46)

which shows that inequality Q0 ≥ 0 holds clearly. Moreover, from (46) we can obtain the following
conclusions: (i) if A = π/2, then the equality in (43) holds if and only if yc = zb; (ii) if A < π/2,
then the equality in (43) holds if and only if y = z and b = c. According to this conclusion, we can
further determine the equality condition of (40), just as mentioned in Lemma 4. This completes the
proof of Lemma 4.

Remark 2. Adding R1 to both sides of (40) and noting that

R1 +
(w2 + w3)

2

R1
≥ 2(w2 + w3),

we obtain Barrow’s inequality (2). Therefore, inequality (43) is actually stronger than Barrow’s inequality (2).

We now prove Theorem 3.

Proof. As the proof of the first inequality (36) given in [14], we can easily prove the first inequality
of (38) by using Lemma 4 (we omit the details here). By the power means inequality and Barrow’s
inequality (2), we have

∑(R1 + w1)
2 ≥ 1

3
[
∑(R1 + w1)

]2
=

1
3
(
∑ R1 + ∑ w1

)2

≥ 3
(
∑ w1

)2 .
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Hence, the second inequality of (38) follows immediately. Moreover, it is easily known that both
equalities in (38) hold if and only if4ABC is equilateral and P is its center. The proof of Theorem 3
is completed.

Next, we state and prove the second new refinement of Barrow’s inequality (2).

Theorem 4. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥∑
√
(R2 + R3)2 − a2 ≥ 2 ∑ w1. (47)

The second equality in (47) holds if and only if P is the circumcenter of the triangle ABC.

Proof. Firstly, we prove the first of (47):

∑ R1 ≥∑
√
(R2 + R3)2 − a2. (48)

According to Lemma 2, we only need to prove that

∑ r1 ≥∑
√
(r2 + r3)2 − a2

p. (49)

Using the law of cosines in triangle EPF and the fact that ∠EPF = π − A (see Figure 1), we have

a2
p = r2

2 + r2
3 − 2r2r3 cos∠EPF = r2

2 + r2
3 + 2r2r3 cos A,

and then
(r2 + r3)

2 − a2
p = 4r2r3 sin2 A

2
. (50)

Thus, we see that inequality (49) is equivalent to

∑ r1 ≥ 2 ∑
√

r2r3 sin
A
2

. (51)

But, for any real numbers x, y, z and 4ABC, we have the following Wolstenholme inequality
(see [19]):

∑ x2 ≥ 2 ∑ yz cos A, (52)

with equality if and only if x : y : z = sin A : sin B : sin C. Putting x =
√

r1, y =
√

r2, z =
√

r3 in (52)
and substituting A→ (π − A)/2 etc., we get inequality (51) at once. Thus, inequality (48) is proved.

The second inequality in (47) follows immediately by adding the previous inequality (30) and its
two analogues. Note that the equality in (30) holds if and only if R2 = R3. We conclude that the second
equality in (47) holds if and only if R1 = R2 = R3, which means that the point P is the circumcenter of
4ABC. The proof of Theorem 4 is completed.

Remark 3. The author knows that the triangle ABC need not be equilateral when the first equality in (47) holds
but does not know what are the barycentric coordinates of P with respect to the triangle ABC.

Now we give an application of Theorem 4.
Squaring both sides of the first inequality of (47), we have(

∑ R1
)2

≥∑
[
(R2 + R3)

2 − a2
]
+ 2 ∑

√
(R3 + R1)2 − b2 ·

√
(R1 + R2)2 − c2.
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Then, applying inequality (30), we further get(
∑ R1

)2 ≥∑(R2 + R3)
2 −∑ a2 + 8 ∑ w2w3.

Expanding gives the following:

Corollary 3. For any interior point P of the triangle ABC, it holds that

∑ R2
1 + 8 ∑ w2w3 ≤∑ a2. (53)

In fact, by using the previous inequality (30), we have the following extension:

∑ R2
1 + 8 ∑ w2w3 ≤∑ a2 ≤∑(R2 + R3)

2 − 4 ∑ w2
1, (54)

which implies Barrow’s inequality (2).
Finally, we give the third new refinement of Barrow’s inequality:

Theorem 5. For any interior point P of the triangle ABC, it holds that

∑ R1 ≥
√

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1 ≥ 2 ∑ w1 (55)

The first equality in (55) holds if and only if P is the circumcenter of4ABC. The second equality in (55)
holds if and only if4ABC is equilateral and P is its center.

Proof. In the proof of Theorem 2, we have proved the first inequality in (55). The second inequality
in (55) is easily obtained as follows: By (53), we have

1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1

≥ 1
2 ∑ R2

1 + 4 ∑ w2w3 + ∑ R2R3 + 2 ∑ w2
1

=
1
2
(
∑ R1

)2
+ 2

(
∑ w1

)2

≥
(
∑ w1

)2 ,

where the last step used Barrow’s inequality (2). It is not difficult to know the equality conditions of
inequality chain (55). The proof of Theorem 5 is completed.

4. Some Open Problems

In this section, we present some interesting conjectures as open problems.
For the second inequality in (27), the author guesses that the following refinement is valid.

Conjecture 1. For any interior point P of the triangle ABC, it holds that√
1
2 ∑ a2 + ∑ R2R3 + 2 ∑ r2

1 ≥
1
2 ∑

√
a2 + 4r2

1

≥
√

1
2 ∑ a2 +

3
2 ∑(r2 + r3)2. (56)

A similar conjecture is as follows.
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Conjecture 2. For any interior point P of the triangle ABC, it holds that√
1
2 ∑ a2 + ∑ R2R3 + 2 ∑ w2

1 ≥
1
2 ∑

√
a2 + 4w2

1

≥
√

1
2 ∑ a2 +

3
2 ∑(w2 + w3)2 ≥ 2 ∑ w1. (57)

Remark 4. The last inequality of (57) is actually equivalent to

2 ∑ w2
1 + 10 ∑ w2w3 ≤∑ a2, (58)

which is Conjecture 2 posed by the author in [15].

Next, we give a reversed inequality similar to the previous inequality (34).

Conjecture 3. For any interior point P of the triangle ABC, it holds that(
∑ R1

)2
+ 12 ∑ r2r3 ≤ 2 ∑ a2. (59)

Considering generalizations of the first inequality of (47), the author presents the following conjecture:

Conjecture 4. Let P be an interior point of a convex polygon A1 A2 · · · An(n > 3) and PAi = Ri(i =

1, 2, · · · , n), Rn+1 = R1, Ai Ai+1 = ai(i = 1, 2, · · · , n, and An+1 = A1). Then

2 cos
π

n

n

∑
i=1

Ri ≥
n

∑
i=1

√
(Ri + Ri+1)2 − a2

i . (60)

Remark 5. By the previous inequality, (30) we know that the above inequality is stronger than inequality (3).

We have the following refinement of the Erdös–Mordell inequality (see [10]):

∑ R1 ≥
1
2 ∑

√
a2 + 4r2

1 ≥ 2 ∑ r1, (61)

in which the first inequality can easily be generalized to polygons by applying inequality (30) and
w1 ≥ r1. The author believes that the second inequality can also be generalized to polygons as follows:

Conjecture 5. Let P be an interior point of convex polygon A1 A2 · · · An(n > 3), and let ri denote the distances
from P to the side lines Ai Ai+1(i = 1, 2, · · · , n and An+1 = A1). Then

n

∑
i=1

√
a2

i + 4r2
i ≥ 2 sec

π

n

n

∑
i=1

ri. (62)

Similarly, we put forward the following conjecture:

Conjecture 6. Let P be an interior point of convex polygon A1 A2 · · · An(n > 3), and let wi denote the angle
bisectors of ∠AiPAi+1(i = 1, 2, · · · , n and An+1 = A1). Then

n

∑
i=1

√
a2

i + 4w2
i ≥ 2 sec

π

n

n

∑
i=1

wi. (63)
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If the above inequality holds, then we can obtain the following refinement of inequality (3):

n

∑
i=1

Ri ≥
1
2

n

∑
i=1

√
a2

i + 4w2
i ≥ sec

π

n

n

∑
i=1

wi, (64)

where Ri = PAi(i = 1, 2, · · · , n).
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