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Abstract: In this paper, we propose a generalized multiperiod mean-variance portfolio optimization
based on consideration of benchmark orientation and intertemporal restrictions, in which the
investors not only focus on their own performance but also tend to compare the performance
gap between themselves and the benchmark. We aim to find the time-consistent strategy under the
generalized mean-variance criterion, such that their relative performance is maximized. We derive
the time-consistent strategy for the proposed model with and without a risk-free asset by using the
backward induction approach. The results show that, in the case that there exists a risk-free asset,
the time-consistent strategy is a feedback strategy about the benchmark process. However, in the
other case, the time-consistent strategy is a double feedback strategy on both the benchmark process
and the wealth process. Finally, we carry out some numerical simulations to show the evolution
process of the time-consistent strategy. These simulations indicate that the proposed strategy can not
only reduce the risk of investment existed in the intermediate time period but also imitate the return
of the benchmark process.

Keywords: generalized mean-variance criterion; multiperiod portfolio optimization; intertemporal
restriction; benchmark process; time consistent strategy

1. Introduction

Nowadays, portfolio optimization has been one of the most important topics in asset management,
which mainly focuses on how to allocate investors’ wealth among different assets. The classical mean-variance
portfolio selection theory was first introduced by Markowitz [1] and was limited to the single-period
investment situation. As far as we know, the multiperiod portfolio optimization problem is deemed to
be one of the most significant extensions of the pioneering work of Markowitz [1], and it has received
considerable attention in recent years (e.g., Li and Ng [2], Leippold et al. [3], Wei and Ye [4], Yao et al. [5],
Chen et al. [6], Cui et al. [7], Liu and Chen [8], Zhou et al. [9] and so on). Most of the existing studies
mainly assume that the investors only focus on their own performance and formulate the corresponding
investment strategy accordingly. Obviously, this assumption is more consistent with the investment behavior
of individual investors. However, in the real financial market, the institutional investors (e.g., fund managers
and insurance companies) not only focus on their own performance but also tend to compare the performance
gap between themselves and competitors/benchmarks. Some researchers also point out that the above
investment approach is sensible in that fund investors expect their portfolios to maintain a performance
level that is close to a desirable benchmark(e.g., Roll [10] and Zhao [11]). To describe the above investment
behavior, we propose a multiperiod portfolio optimization problem, in which the investors consider the
relative performance for the given benchmark.
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However, Zhao [11] considered the maximization of the relative performance of the gap between
the investors’ own wealth and the benchmark and neglected the maximization of the performance of
the investors’ own wealth. Espinosa and Touzi [12] proposed a more general approach to measure the
relative performance, which can not only consider the utility of the gap between the investors’ own
wealth and the benchmark but also consider that of their own wealth. In addition to this, the work of
Zhao [11] merely considered the terminal performance while ignoring the intermediate performance.
What is more, Zhu et al. [13] noted that the investment bankruptcies that occur in the earlier periods
are larger than those that occur in the later periods. That is, the intermediate performance of the
portfolio can not be ignored. To address this problem, Costa and Nabholz [14] considered a generalized
mean-variance model with consideration of the intertemporal restrictions (i.e., the investors have
restrictions on the intermediate expectations and intermediate variances of the portfolio). Under this
generalized mean-variance criterion, the investors not only consider the terminal performance but
also consider the intermediate performance of their portfolio. For other kinds of the generalized
mean-variance portfolio optimization problems, readers may refer to Costa and Araujo [15], Costa and
de Oliveira [16], Cui et al. [17] and Zhou et al. [18]. Motivated by the works of Costa and Nabholz [14]
and Espinosa and Touzi [12], we construct a generalized mean-variance portfolio optimization model
with intertemporal restrictions and the investors who are also concerned about the relative performance
compared to the given benchmark.

Similar to the classical multiperiod mean-variance portfolio optimization problems, our proposed
generalized model is also a time-inconsistent optimization problem, in that the variance measure does
not satisfy the expected iterated property. That is, the proposed model can not be solved directly by
using the traditional dynamic programming approach. As far as we know, the precommitment
and time-consistent strategies are the two most representative strategies for these multiperiod
mean-variance portfolio optimization problems. Li and Ng [2] first derived the precommitment
strategy by using the embedding scheme. Since then, this approach has been widely applied to the
different portfolio optimizations (e.g., Leippold et al. [3], Celikyurt and Özekici [19], Yao et al. [20]
and Zhou et al. [9]). However, some researchers have noted that this strategy does not satisfy the
time-consistency. This cause is that, the precommitment strategy is made at the initial time, and it
not only depends on the current wealth but also relies on the initial capital. In this situation, the
optimal strategy at time t1 does not agree with that at time t2, where t2 > t1, that is, the global
and local objectives are not consistent. To address this problem, Björk and Murgoci [21] derived the
time-consistent strategy by using a game approach. The proposed solution methodology treats these
time-inconsistent problems as a noncooperative game, in which the strategies at different time points
are made by the different players who seek to maximize their own utilities. Then, Nash equilibrium of
these strategies is applied to define the time-consistent strategy for the original optimization problem.
Compared with the precommitment strategy, the time-consistent strategy might be adopted by the
investors who are more rational and sophisticated, since the decision-makers take possible future
revisions into account (e.g., Basak and Chabakauri [22], Wu and Chen [23]), Cui et al. [24] and so
on). For this research topic, readers may refer to Basak and Chabakauri [22], Bensoussan et al. [25],
Björk and Murgoci [26], Wu and Chen [23], Zhou et al. [27] and Wang and Chen [28] and so on.
Actually, most of the existing researches on the time-consistent strategies for the multi-period portfolio
optimization problems are only concerned with the capital pool with both risky assets and one risk-free
asset. In the real applications, it is not difficult to identify a case in which some investors only invest in
risky assets. Although Zhou et al. [27] derived the time-consistent strategy for the classical multiperiod
mean-variance portfolio optimization with and without the risk-free asset, these authors are still limited
to the framework of the classical mean-variance model without considering the benchmark orientation
and intertemporal restrictions. In this paper, we mainly aim to investigate the time-consistent strategy
for a generalized multiperiod mean-variance portfolio optimization with and without a risk-free asset.

Along the aforementioned lines of research, we propose a generalized mean-variance portfolio
optimization with consideration of both the intertemporal restrictions and the benchmark orientation.
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We use a generalized approach provided by Espinosa and Touzi [12] to measure the relative
performance of the portfolio in which the investors’ own performance and the relative performance
compared to the benchmark are both considered. We derive the time-consistent strategy for the
proposed model with and without the risk-free asset, by using the backward induction approach,
which can be regarded as a suitable investment strategy for the rational and sophisticated investors.
We find that the time-consistent strategies for the above investment situations are both feedback
strategies. Finally, we also provide some numerical simulations to show the evolution process of
the proposed time-consistent strategy. These simulations indicate that the proposed time-consistent
strategy can not only change the risk of investment existed in the intermediate time period but also
imitate the return of benchmark process.

Different from the existing literature, this paper has three contributions. (a) We extend the work of
Zhao [11] to a generalized mean-variance criterion, where the intertemporal restrictions are considered
in the proposed model. The proposed model not only can cover many classical models, but also
can depict the behavior of investors imitating the benchmark process. (b) Compared with Zhao [11],
we focus on both the investors’ own performance and the performance relative to the given benchmark.
The investors can weigh their own wealth value and the gap between their wealth value and the
benchmark. (c) We derive the corresponding time-consistent strategy for the proposed model when
there exists a risk-free asset or not, while the most of existing studies always ignore the latter condition.
The results show that the time-consistent strategies are both feedback strategies. The difference is
that, when there exists a risk-free asset, the time-consistent strategy is a feedback strategy about the
benchmark process; when there does not exist a risk-free asset, the time-consistent strategy is a double
feedback strategy on both the benchmark process and the wealth process.

The remainder of this paper is organized as follows. In Section 2, we introduce the assumption of
investment market, and then construct a generalized multiperiod mean-variance portfolio optimization
model. In Section 3, we first give the definition of time-consistent strategy and the solution
methodology. Further, we derive the time-consistent strategy for the proposed model with and
without the risk-free asset. In Section 4, we carry out some numerical simulations to show the results
derived from Section 3. Finally, some concluding remarks are summarized.

2. Generalized Multiperiod Mean-Variance Portfolio Optimization Considering Benchmark

In this section, we assume that the investors will join the capital market taking along with the
initial wealth R0. The investors can invest their wealth into one risk-free asset and n risky assets within
time horizon T. We suppose that the risk-free asset with a deterministic return st and the i-th risky
asset with a random return ei

t at the time period t, where i = 1, 2, .., n and t = 0, 1, .., T − 1. Let Rt be
the wealth at the time period t and ui

t be the amount invested in the i-th risky asset at the beginning
of the time period t, then the amount invested in the risk-free asset can be expressed as Rt −∑n

i=1 ui
t,

t = 0, 1..., T − 1. Based on the above assumption, the wealth dynamic process can be expressed as

Rt+1 =
n

∑
i=1

ei
tu

i
t + st(Rt −

n

∑
i=1

ui
t), (1)

= stRt + P′t ut, t = 0, 1, ..., T − 1,

where Pt = [e1
t − st, e2

t − st, ..., en
t − st]′ denotes the vector of excess rates of returns, and

ut = [u1
t , u2

t , ..., un
t ]
′, t = 0, 1, ..., T − 1.

In addition, we assume that the investors’ decision-making will refer to the return process of a
given benchmark (i.e., stock index and investment fund, etc.), since the investors always hope that the
performance of their portfolio can outperform that of this benchmark, or the investors want to replicate
the return process of the benchmark according to their own portfolio. Let the return of the benchmark
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be rt, and let Bt denote the wealth of this benchmark at the time period t, where t = 0, 1, ..., T− 1. Then,
the wealth process of this benchmark can be expressed as

Bt+1 = rtBt, t = 0, 1, ..., T − 1. (2)

In this paper, we assume that the investors not only consider their own wealth but also consider
the relative wealth compared to this benchmark. Additionally, we use a generalized mean-variance
utility to measure the relative performance of the portfolio, that is, the intertemporal restrictions
are considered in this optimization problem. Therefore, we can construct the following multiperiod
portfolio optimization model:

max
u

T

∑
t=1

wt{ξtE[(1− θt)Rt + θt(Rt − Bt)]− ηtVar[(1− θt)Rt + θt(Rt − Bt)]} (3)

s.t.

{
Rt+1 = stRt + P′t ut, t = 0, 1, ...T − 1,

Bt+1 = rtBt, t = 0, 1, ..., T − 1.

Note that u := {u0, u1, ..., uT−1}, ξt and ηt denote the two weights for the expectation E(Rt)

and variance Var(Rt) at each time period t (t = 1, 2, ..., T), which can be regarded as the trade-off
parameters between maximizing the investment return and minimizing the investment risk. For the
real investors, how to determine the above two weights mainly depends on their preferences for the
return and risk. Typically, the investors will first fix one of the above two weights, and then adjust
another one according to their preferences, e.g., for the given weight ξt, when the investors are more
risk-averse, they will choose a larger weight ηt at the time period t, t = 1, 2, ..., T. In addition, as shown
in Zhu et al. [13], the number of investment bankruptcies that occur in the earlier periods is larger
than those that occur in the later periods, this also lead to the investors will give a larger weight ηt for
the earlier risk restrictions in the corresponding optimization objective, that is, for these risk-averse
investors, the weight ηt might be a decrease function on the time period t ( in fact, the form of ηt

depends on the investor’s preference, which can be described by some linear and nonlinear functions;
note that, in Section 4, we assume that the weight ηt decreases exponentially with the time period t),
t = 1, 2, ..., T. Further, wt denotes the weight for the mean-variance objective ξtE(Rt)− ηtVar(Rt) at
the time period t, t = 1, 2, ..., T. In this paper, we assume that wt is a 0-1 variable, where wt = 1 denotes
that the investors will consider the intertemporal restriction at the time period t and wt = 0 indicates
that the intertemporal restriction is not considered at the time period t, t = 1, 2, ..., T. As shown in
Model (3), the investors not only consider their own investment performance but also consider the
relative performance compared to this benchmark, where θt denotes the sensitivity of the investors
to the performance of this benchmark at time period t, t = 1, 2, ..., T. Furthermore, Model (3) can
be rewritten as

max
u

T

∑
t=1

wt{ξtE[Rt − θtBt]− ηtVar[Rt − θtBt]} (4)

s.t.

{
Rt+1 = stRt + P′t ut, t = 0, 1, ...T − 1,

Bt+1 = rtBt, t = 0, 1, ..., T − 1.

Let ět = (e1
t , e2

t , ..., en
t , rt)′ and et = (e1

t , e2
t , ..., en

t ), t = 0, 1, ..., T − 1. Suppose that ět are
statistically independent random vectors (i.e., ěk and ěl are independent for k, l = 0, 1, ..., T − 1 if
k 6= l). However, the benchmark return rt is dependent with random vector et, t = 0, 1, ..., T − 1.
Let µt = E(Pt), λt = E(et), Ωt = Cov(et), νt = E(rt), σt = Var(rt), φt = E(rtet), Ξt = E(ete′t) and
Qt = [Cov(e1

t , rt), ..., Cov(en
t , rt)]′, t = 0, 1, ..., T − 1. Here, we assume that Ωt and Ξt are both positive

definite matrices, t = 0, 1, ..., T − 1. In addition, for convenience, we define that ∑l
t=k(·) = 0 and

∏l
t=k(·) = 1 for k > l. Since the variance measure does not have the expected iterated property,
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then Model (4) is a time-inconsistent optimization problem. In the following, we will derive the
time-consistent solution of Model (4) by using the backward induction approach.

3. Time-Consistent Strategy for the Generalized Portfolio Optimization Problem

As far as we know, Li and Ng [2] first applied the embedding scheme to solve the classical
multi-period mean-variance portfolio optimization problem. However, the optimal investment strategy
shown in Li and Ng [2] has been criticized for not satisfying time consistency. Similarly, Model (4)
is a time-inconsistent problem, which cannot be directly solved by using the dynamic programming
approach. Inspired by Björk and Murgoci [21], in the following, we will investigate the time-consistent
strategy for Model (4) under the two investment situations: (i) there exists a risk-free asset and n risky
assets in the capital pool; and (ii) there only exist n risky assets in the capital pool.

To this end, we should provide the definition of the time-consistent strategy first. Similar to Björk
and Murgoci [21], we regarded this investment decision-making process as a noncooperative game
and assume that there exists a decision-maker, called as “decision-maker k”, for each point of the time
period k. Then, we can define the corresponding sub-objective as follows.

Jk(Rk, Bk, u) =
T

∑
t=k+1

wt[ξtEk(Rt − θtBt)− ηtVark(Rt − θtBt)]. (5)

According to the Definition 2.2 presented in Björk and Murgoci [21], the time-consistent strategy
for Model (4) can be defined as follows.

Definition 1. Consider a fixed control law û = (û0, û1, ..., ûT−1). For k = 0, 1, ..., T − 1, we let

u(k) = (uk, ûk+1, ..., ûT−1),

û(k) = (ûk, ûk+1, ..., ûT−1),

where uk is an arbitrarily control value. Then, û is called as a time-consistent strategy if for all k = 0, 1, ..., T− 1,
it satisfies the following conditions

max
uk

Jk(Rk, Bk, u(k)) = Jk(Rk, Bk, û(k)).

In addition, if time-consistent strategy û exists, the corresponding value function is defined as

Vk(Rk, Bk) = Jk(Rk, Bk, û(k)).

Definition 1 shows that the solution methodology of the time-consistent strategy is essentially a
backward induction approach. According to the above definition of time consistent strategy presented
in Definition 1, the recursive formula of the above value function can be derived.

Proposition 1. The value function satisfies the following recursive formula.

Vk(Rk, Bk) = maxuk Jk(Rk, Bk, u(k))

= maxuk

 Ek[Vk+1(Rk+1, Bk+1)]−
T
∑

t=k+2
RtηtVark[ fk+1,t(Rk+1, Bk+1)]

+wk+1[ξk+1Ek(Rk+1 − θk+1Bk+1)− ηk+1Vark(Rk+1 − θk+1Bk+1)]

 ,

k = 0, 1, ..., T − 2,

(6)

VT−1(RT−1, BT−1) = max
uT−1
{wT [ξTET−1(RT − θT BT)− ηTVarT−1(RT − θT BT)]} , (7)
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where

fk,τ(wk, Bk) =

{
Ek[ fk+1,τ(Rk+1, Bk+1)], τ > k, τ, k = 0, 1, ..., T − 1,

Rk − θkBk, τ = k, k = 0, 1, ..., T − 1.
(8)

Proof. See Appendix A.

Based on Proposition 1, in the following, we will investigate the time-consistent solution of the
optimization problem (4) with and without a risk-free asset.

3.1. Time-Consistent Strategy for the Generalized Portfolio Optimization with Multiple Risky Assets and a
Risk-Free Asset

In this section, we will discuss the time-consistent strategy for this generalized model with both
n risky assets and a risk-free asset. According to Definition 1 and Proposition 1, we can derive the
corresponding time-consistent strategy and value function by using the backward induction approach,
and the main conclusions are as follows.

Theorem 1. When there exists a risk-free asset and n risky assets, for the multiperiod mean-variance portfolio
optimization problem (4), the time-consistent strategy can be described as

ût = âtBt + b̂t, t = 0, 1, ..., T − 1, (9)

and the corresponding value function Vt(Rt, Bt) and ft,τ(Rt, Bt) are given by

Vt(Rt, Bt) =

(
T

∑
m=t+1

wmξm

m−1

∏
k=t

sk

)
Rt + m̂tB2

t + n̂tBt + γ̂t, t = 0, 1, ..., T − 1, (10)

ft,τ(Rt, Bt) =

(
τ−1

∏
m=t

sm

)
Rt + ρ̂t,τ Bt + κ̂t,τ , τ ≥ t, τ, t = 0, 1, ..., T − 1. (11)

Here, we define that ρ̂t,τ = −θτ and κ̂t,τ = 0 for t = τ. In addition, the above parameters (i.e., ât,
b̂t, m̂t, n̂t, γ̂t, ρ̂t,τ and κ̂t,τ , where t = 0, 1, .., T − 2 and τ = t + 1, t + 2, ..., T − 1) satisfy the following
iteration formulas:

ât = −

T
∑

m=t+1
(wmηm ρ̂t+1,m

m−1
∏

k=t+1
sk)Ω

−1
t Qt

T
∑

m=t+1
(wmηm

m−1
∏

k=t+1
s2

k)
, b̂t =

T
∑

m=t+1
(wmξm

m−1
∏

k=t+1
sk)Ω

−1
t µt

2
T
∑

m=t+1
(wmηm

m−1
∏

k=t+1
s2

k)
,

m̂t =

[
mt+1(σt + ν2

t )− 2
T
∑

m=t+1
(wmηmρ̂t+1,m

m−1
∏

k=t+1
sk)Q′t ât

−
T
∑

m=t+1
(wmηm

m−1
∏

k=t+1
s2

k)â′tΩt ât −
T
∑

m=t+1
(wmηmρ̂2

t+1,m)σt

]
,

n̂t =

[
n̂t+1νt − wt+1ξt+1θt+1νt + (

T
∑

m=t+1
wmξm

m−1
∏

k=t+1
sk)µ

′
t ât

−2
T
∑

m=t+1
(wmηmρ̂t+1,m

m−1
∏

k=t+1
sk)Q′t b̂t − 2

T
∑

m=t+1
(wmηm

m−1
∏

k=t+1
s2

k)â′tΩt b̂t

]
,

γ̂t = γ̂t+1 + (
T
∑

m=t+1
wmξm

m−1
∏

k=t+1
sk)µ

′
t b̂t − (

T
∑

m=t+1
wmηm

m−1
∏

k=t+1
s2

k)b̂
′
tΩt b̂t,

ρ̂t,τ =

(
τ−1
∏

m=t+1
sm

)
µ′t ât + ρ̂t+1,τνt, κ̂t,τ =

(
τ−1
∏

m=t+1
sm

)
µ′t b̂t + κ̂t+1,τ ,

(12)
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as well as the boundary conditions

âT−1 = θTΩ−1
T−1QT−1, b̂T−1 =

ξTΩ−1
T−1µT−1
2ηT

,

m̂T−1 = wTηT(2θTQ′T−1 âT−1 − â′T−1ΩT−1 âT−1 − θ2
TσT−1),

n̂T−1 = wTξT(µ
′
T−1 âT−1 − θTνT−1)− 2wTηT(â′T−1ΩT−1b̂T−1 − θTQ′T−1b̂T−1),

γ̂T−1 = wTξTµ′T−1b̂T−1 − wTηT b̂′T−1ΩT−1b̂T−1,

ρ̂T−1,T = µ′T−1 âT−1 − θTνT−1, κ̂T−1,T = µ′T−1b̂T−1.

(13)

Proof. See Appendix B.

From Theorem 1, we can find that, when the performance of the benchmark is considered into the
investment decision-making, the corresponding time-consistent strategy depends on the current wealth
of the benchmark compared to the results shown in Zhou et al. [18]. That is, the proposed time-consistent
strategy (9) is a feedback strategy, while the time-consistent strategy provided by Zhou et al. [18] is a
nonfeedback one. Additionally, Model (4) is a generalized one that can recover some classical models
presented in the existing studies. In the following, we will discuss the time-consistent strategies under
some special settings, the details are as follows.

Remark 1. When the investors only consider the performance of terminal wealth (i.e., wt = 0 if t = 1, 2, ..., T− 1
and wT = 1, and ξt = 1 for t = 1, 2, ..., T), then the time-consistent strategy (9) can be reduced as

ût = âtBt + b̂t, t = 0, 1, ..., T − 1, (14)

where ât and b̂t are shown as follows.

ât =

θT
T−1
∑

k=t
(µ′kΩ−1

k Qk − νk)Ω
−1
t Qt

T−1
∏

k=t+1
sk

, b̂t =
Ω−1

t µt

2ηT
T−1
∏

k=t+1
sk

. (15)

Remark 1 shows that the investors only consider the performance of terminal wealth, and the
intertemporal expectations and variances are ignored in here. Compared with (9) and (14), we can find
that the latter only considers the terminal risk aversion coefficient ηT , while the former considers both
the intertemporal and terminal risk aversion coefficients.

Remark 2. When the investors do not consider the performance of the benchmark process (i.e., θt = 0 for
t = 1, 2, ..., T), then the time-consistent strategy (9) can be reduced as

ût =

T
∑

m=t+1
(wmξm

m−1
∏

k=t+1
sk)Ω

−1
t µt

2
T
∑

m=t+1
(wmηm

m−1
∏

k=t+1
s2

k)

, t = 0, 1, ..., T − 1. (16)

Remark 2 shows that, the investors’ decision only considers the performance of the assets they
want to invest in, while the performance of the benchmark is ignored here. However, the intertemporal
restrictions are embedded into this time-consistent strategy. In this case, the time-consistent strategy (16)
is a nonfeedback strategy, which is consistent with the result shown in Zhou et al. [18].
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Remark 3. When the investors do not consider the performance of the benchmark and also ignore the impact of
the intertemporal restrictions(i.e., wt = 0 if t = 1, 2, ..., T− 1 and wT = 1, ξt = 1 and θt = 0, for t = 1, 2, ..., T),
the time-consistent strategy (9) is

ût =
Ω−1

t µt

2ηT
T−1
∏

k=t+1
sk

, t = 0, 1, ..., T − 1. (17)

Under this special setting presented in Remark 3, Model (4) is degenerated into the classical
multiperiod mean-variance model, and then the time-consistent strategy (17) is consistent with the
result shown in Björk and Murgoci [21].

3.2. Time-Consistent Strategy for the Generalized Portfolio Optimization with Only Risky Assets

Section 3.1 investigates the time-consistent strategy for the generalized portfolio optimization
with both n risky assets and a risk-free asset. This condition is also the common investment assumption
found in previous studies. However, in some situations, the investors might only treat the risky assets
as the investment targets. Therefore, it is necessary to investigate the time-consistent solution of
Model (4) when the capital pool only contains n risky assets. Mathematically, we merely require to
add an additional condition Rt − ∑n

i=1 ui
t = 0 to Model (4). In this assumption, Model (4) can be

written as follows.

max
u

T

∑
t=1

wt{ξtE[Rt − θtBt]− ηtVar[Rt − θtBt]} (18)

s.t.


Rt+1 = e′tut, t = 0, 1, ...T − 1,

Rt = I′ut, t = 0, 1, ...T − 1,

Bt+1 = rtBt, t = 0, 1, ..., T − 1,

where I = [1, 1..., 1]′ ∈ Rn.
According to Definition 1 and Proposition 1, we can derive the time-consistent strategy for

Model (18), the details see Theorem 2.

Theorem 2. When there exists only risky assets, the time-consistent strategy and the corresponding value
function for Model (18) can be expressed as follows:

ût = ãtBt + b̃tRt + c̃t, t = 0, 1, ..., T − 1, (19)

Vt(Rt, Bt) = m̃tB2
t + α̃tR2

t + ϕ̃tBtRt + ñtBt + β̃tRt + γ̃t, t = 0, 1, ..., T − 1, (20)

where

ft,τ(Rt, Bt) = ϑ̃t,τ Rt + ρ̃t,τ Bt + κ̃t,τ , τ ≥ t, τ, t = 0, 1, ..., T − 1. (21)

Here, we define that ϑ̃t,τ = 1, ρ̃t,τ = −θτ and κ̃t,τ = 0 for t = τ. In addition, the above parameters (ãt,
b̃t, c̃t, m̃t, α̃t, ñt, β̃t, ϑ̃t,τ , ρ̃t,τ and κ̃t,τ , t = 0, 1, .., T − 2 and τ = t + 1, t + 2, ..., T − 1), which satisfy the
following iteration equations:
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

ãt =

 Ω̃−1
t [ϕ̃t+1φt−2(

T
∑

m=t+1
wmηm ϑ̃t+1,m ρ̃t+1,m)Qt ]

2

+
2(

T
∑

m=t+1
wmηm ϑ̃t+1,m ρ̃t+1,m)I′Ω̃−1

t Qt−ϕ̃t+1 I′Ω̃−1
t φt

2I′Ω̃−1
t I

Ω̃−1
t I

 ,

b̃t =
Ω̃−1

t I
I′Ω̃−1

t I
, c̃t =

(wt+1ξt+1+β̃t+1)Ω̃
−1
t λt

2 − (wt+1ξt+1+β̃t+1)I′Ω̃−1
t λt

2I′Ω̃−1
t I

Ω̃−1
t I,

m̃t = m̃t+1(σt + ν2
t )− (

T
∑

m=t+1
wmηmρ̃2

t+1,m)σt − ã′tΩ̃t ãt

−2(
T
∑

m=t+1
wmηmϑ̃t+1,mρ̃t+1,m)Q′t ãt + ϕ̃t+1φ′t ãt,

α̃t = −b̃′tΩ̃t b̃t, ϕ̃t = −2(
T
∑

m=t+1
wmηmϑ̃t+1,mρ̃t+1,m)Q′t b̃t + ϕ̃t+1φ′t b̃t,

ñt = ñt+1νt − wt+1ξt+1θt+1νt − 2ã′tΩ̃t c̃t − 2(
T
∑

m=t+1
wmηmϑ̃t+1,mρ̃t+1,m)Q′t c̃t

+wt+1ξt+1λ′t ãt + β̃t+1λ′t ãt + ϕ̃t+1φ′t c̃t,

β̃t = wt+1ξt+1λ′t b̃t + β̃t+1λ′t b̃t, γ̃t = γ̃t+1 − c̃′tΩ̃t c̃t + wt+1ξt+1λ′t c̃t + β̃t+1λ′t c̃t,

ϑ̃t,τ = ϑ̃t+1,τλ′t b̃t, ρ̃t,τ = ϑ̃t+1,τλ′t ãt + ρ̃t+1,τνt, κ̃t,τ = ϑ̃t+1,τλ′t c̃t + κ̃t+1,τ ,

Ω̃t = (
T
∑

m=t+1
wmηmϑ̃2

t+1,m)Ωt − α̃t+1Ξt,

(22)

where Ω̃t(t = 0, 1, ..., T − 2) is a positive definite matrix. Additionally, the above iteration equations satisfy the
following boundary conditions

ãT−1 = θTΩ−1
T−1QT−1 −

θT I′Ω−1
T−1QT−1Ω−1

T−1 I
I′Ω−1

T−1 I
,

b̃T−1 =
Ω−1

T−1 I
I′Ω−1

T−1 I
, c̃T−1 =

ξTΩ−1
T−1λT−1
2ηT

− ξT I′Ω−1
T−1λT−1Ω−1

T−1 I
2ηT I′Ω−1

T−1 I
,

m̃T−1 = −wTηTθ2
TσT−1 − wTηT ã′T−1ΩT−1 ãT−1 + 2wTηTθTQ′T−1 ãT−1,

α̃T−1 = −wTηT b̃′T−1ΩT−1b̃T−1, ϕ̃T−1 = 2wTηTθTQ′T−1b̃T−1,

ñT−1 = −wTξTθTνT−1 + wTξTλ′T−1 ãT−1 − 2wTηTθTQ′T−1 c̃T−1,

β̃T−1 = wTξTλ′T−1b̃T−1, γ̃T−1 = wTξTλ′T−1 c̃T−1 − wTηT c̃′T−1ΩT−1 c̃T−1,

ϑ̃T−1,T = λ′T−1b̃T−1, ρ̃T−1,T = λ′T−1 ãT−1 − θTνT−1, κ̃T−1,T = λ′T−1 c̃T−1.

(23)

Proof. See Appendix C.

As shown in Theorem 2, when there are only risky assets in the capital pool, the time-consistent
strategy (19) is dependent on both the benchmark process Bt and wealth process Rt compared to the
time-consistent strategy (9). That is, the time-consistent strategy (19) is a double feedback strategy
on both benchmark process Bt and wealth process Rt, while the time-consistent strategy (9) is only a
feedback strategy on the benchmark process Bt.

Remark 4. When the investors only consider the performance of terminal wealth (i.e., wt = 0 if t = 1, 2, ..., T− 1
and wT = 1, and ξt = 1 for t = 1, 2, ..., T), the time-consistent strategy (19) can be reduced as

ût = ãtBt + b̃tRt + c̃t, t = 0, 1, ..., T − 1. (24)
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Therefore, the above parameters (i.e., ãt, b̃t and c̃t, t = 0, 1, . . . , T − 2), which satisfy the following
iteration equations.

ãt =

[
Ω̃−1

t [ϕ̃t+1φt−2ηT ϑ̃t+1,T ρ̃t+1,T Qt ]
2 +

2ηT ϑ̃t+1,T ρ̃t+1,T I′Ω̃−1
t Qt−ϕ̃t+1 I′Ω̃−1

t φt

2I′Ω̃−1
t I

Ω̃−1
t I
]

,

b̃t =
Ω̃−1

t I
I′Ω̃−1

t
, c̃t =

(wt+1ξt+1+β̃t+1)Ω̃
−1
t λt

2 − (wt+1ξt+1+β̃t+1)I′Ω̃−1
t λt

2I′Ω̃−1
t I

Ω̃−1
t I,

α̃t = −b̃′tΩ̃t b̃t, ϕ̃t = −2ηT ϑ̃t+1,T ρ̃t+1,TQ′t b̃t + ϕ̃t+1φ′t b̃t, β̃t = β̃t+1λ′t b̃t,

ϑ̃t,T = ϑ̃t+1,Tλ′t b̃t, ρ̃t,T = ϑ̃t+1,Tλ′t ãt + ρ̃t+1,Tνt,

Ω̃t = ηT ϑ̃2
t+1,TΩt − α̃t+1Ξt,

(25)

as well as the boundary conditions

ãT−1 = θTΩ−1
T−1QT−1 −

θT I′Ω−1
T−1QT−1Ω−1

T−1 I
I′Ω−1

T−1 I
, b̃T−1 =

Ω−1
T−1 I

I′Ω−1
T−1 I

,

c̃T−1 =
ξTΩ−1

T−1λT−1
2ηT

− ξT I′Ω−1
T−1λT−1Ω−1

T−1 I
2ηT I′Ω−1

T−1 I
, α̃T−1 = −wTηT b̃′T−1ΩT−1b̃T−1,

ϕ̃T−1 = 2wTηTθTQ′T−1b̃T−1, β̃T−1 = wTξTλ′T−1b̃T−1,

ϑ̃T−1,T = λ′T−1b̃T−1, ρ̃T−1,T = λ′T−1 ãT−1 − θTνT−1.

(26)

Similarly, the time-consistent strategy (24) only concerns the terminal risk aversion coefficient
ηT , while the time-consistent strategy (19) both consider the intertemporal and terminal risk aversion
coefficients. In addition, compared with Remark 1, when there exist n risky assets in the capital
pool, the time-consistent strategy (24) is a double feedback one on current benchmark process Bt and
wealth process Rt.

Remark 5. When the investors do not consider the performance of the benchmark process (i.e., θt = 0 for
t = 1, 2, ..., T), the time-consistent strategy (19) can be reduced as

ût = b̃tRt + c̃t, t = 0, 1, ..., T − 1. (27)

Here, we also define that ϑ̃t,τ = 1, ρ̃t,τ = −θτ and κ̃t,τ = 0 for t = τ. Therefore, the above parameters
(i.e., b̃t and c̃t, t = 0, 1, . . . , T − 2), which satisfy the following iteration equations

b̃t =
Ω̃−1

t I
I′Ω̃−1

t I
, c̃t =

(wt+1ξt+1+β̃t+1)I′Ω̃−1
t λt)

2 − (wt+1ξt+1+β̃t+1)I′Ω̃−1
t λt

2I′Ω̃−1
t I

Ω̃−1
t I,

α̃t = −b̃′tΩ̃t b̃t, β̃t = −2b̃′tΩ̃t c̃t + wt+1ξt+1λ′t b̃t + β̃t+1λ′t b̃t,

Ω̃t =
T
∑

m=t+1
wmηmϑ̃2

t+1,mΩt − α̃t+1Ξt, ϑ̃t,τ = ϑ̃t+1,τλ′t b̃t,

(28)

where τ = t + 1, t + 2, ..., T − 1, and the boundary conditions of the above parameters can be expressed as
b̃T−1 =

Ω−1
T−1 I

I′Ω−1
T−1 I

, c̃T−1 =
ξTΩ−1

T−1λT−1
2ηT

− ξT I′Ω−1
T−1λT−1Ω−1

T−1 I
2ηT I′Ω−1

T−1 I
,

α̃T−1 = −wTηT b̃′T−1ΩT−1b̃T−1,

β̃T−1 = wTξTλ′T−1b̃T−1, ϑ̃T−1,T = λ′T−1b̃T−1.

(29)

As shown in Remark 5, we can find that the time-consistent strategy (27) is a feedback strategy on
current wealth Rt compared to the time-consistent strategy (16). This is the largest difference between
the time-consistent strategies with and without the risk-free asset.
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Remark 6. When the investors do not consider the performance of the benchmark and ignore the impact of the
intertemporal restrictions(i.e., wt = 0 if t = 1, 2, . . . , T− 1 and wT = 1, ξt = 1 and θt = 0 for t = 1, 2, . . . , T),
the time-consistent strategy (19) can be reduced as

ût = b̃tRt + c̃t, (30)

The above parameters (i.e., b̃t and c̃t, t = 0, 1, . . . , T − 2), which satisfy the following iteration equations.
b̃t =

Ω̃−1
t I

I′Ω̃−1
t I

, c̃t =
β̃t+1Ω̃−1

t λt
2 − β̃t+1 I′Ω̃−1

t λt

2I′Ω̃−1
t I

Ω̃−1
t I,

α̃t = − 1
I′Ω̃−1

t I
, β̃t = β̃t+1

I′Ω̃−1
t λt

I′Ω̃−1
t I

, ϑ̃t,T = ϑ̃t+1,T
I′Ω̃−1

t λt

I′Ω̃−1
t I

,

Ω̃t = ηT ϑ̃2
t+1,TΩt − α̃t+1Ξt,

(31)

as well as the boundary conditions
b̃T−1 =

Ω−1
T−1 I

I′Ω−1
T−1 I

, c̃T−1 =
ξTΩ−1

T−1λT−1
2ηT

− ξT I′Ω−1
T−1λT−1Ω−1

T−1 I
2ηT I′Ω−1

T−1 I
,

α̃T−1 = − wTηT
I′ΩT−1 I , β̃T−1 =

wTξT I′Ω−1
T−1λT−1

I′Ω−1
T−1 I

, ϑ̃T−1,T = λ′T−1b̃T−1.
(32)

Remark 6 shows that, the investors only concern the performance of the terminal wealth, and also
do not consider the relative performance compared to the benchmark. In this case, this conclusion is
coincident with the results in Zhou et al. [27].

4. Numerical Analysis

In this section, we will provide some numerical simulations to show the results presented in
Section 3. Suppose that R0 = 1 and B0 = 1. We randomly select four stocks from American financial
market, where the stock codes are AIG, GE, INTC and PEP. Further, we regard the S&P 500 index as the
benchmark process. The monthly returns from January 2000 to December 2018 are applied to estimate the
parameters of the risky assets, which is downloaded from Yahoo Finance (https://finance.yahoo.com/).
The detailed estimations are given as follows.

λt =
[

1.0044 0.9967 1.0047 1.0063
]′

, t = 0, 1, ..., T − 1, (33)

φt =
[

1.0119 1.0027 1.0111 1.0109
]′

, t = 0, 1, ..., T − 1, (34)

Qt =
[

0.0037 0.0022 0.0025 0.0008
]′

, t = 0, 1, ..., T − 1, (35)

νt = 1.0038, σt = 0.0018, t = 0, 1, ..., T − 1, (36)

Ωt =


0.0505 0.0061 0.0041 0.0017
0.0061 0.0064 0.0025 0.0010
0.0041 0.0025 0.0094 0.0007
0.0017 0.0010 0.0007 0.0020

 , t = 0, 1, ..., T − 1. (37)

In this section, we treat 3-month Treasury bill as the risk-free asset, the annual returns can be
downloaded from Federal Reserve Economic Data (https://fred.stlouisfed.org/series/TB3MS). We use
the mean of the historical returns from January 2000 to December 2018 as the return of the risk-free
asset, that is, st = 1 + 0.0161/12 = 1.00134. In the following, we will investigate the evolution process
of the time-consistent strategy and discuss the impact of the intertemporal restrictions and benchmark
orientation on the time-consistent strategy. In order to better show the evolution of investment strategy,
we choose a relatively large investment horizon T in the following simulations, that is, T = 200. In fact,
we can explore the evolution of the investment strategy for any given investment horizon T, the

https://finance.yahoo.com/
https://fred.stlouisfed.org/series/TB3MS
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corresponding results have been omitted for space reasons. To this end, we will show the evolution
processes of the time-consistent strategies under different settings. The details are given as follows.

• Case I. The proposed time-consistent strategy considers all the intertemporal restrictions, and it
also relies on the benchmark origination. Since the weight wt is a 0–1 variable, the above situation
means that wt = 1, t = 1, 2, ..., T. In addition, we assume that the investors consider their own
wealth value (i.e., Rt) and the gap between their own wealth value and the benchmark (i.e.,
Rt − Bt) equally important, that is, θt = 0.5 for t = 1, 2, ..., T;

• Case II. The proposed time-consistent strategy does not intertemporal restrictions, and it only
depends on the benchmark origination. In this case, the investors only consider the performance
of the terminal wealth and the intermediate performance of the portfolio is ignored here, that is,
wt = 0 if t = 1, 2, ..., T − 1 and wT = 1. Similar to Case I, we assume that θt = 0.5 for t = 1, 2, .., T;

• Case III. The proposed time-consistent strategy considers all the intertemporal restrictions,
however it has nothing to do with the benchmark process. Similar to Case I, we can find that
wt = 1 for t = 1, 2, ..., T. Additionally, in this case, the investors only consider the performance of
their own wealth, that is, θt = 0 for t = 1, 2, ..., T.

Zhu et al. [13] showed that the number of investment bankruptcies that occur in the earlier periods
is larger than those that occur in the later periods. In this situation, we should give a larger penalty
for the earlier intertemporal restrictions in the mathematical formulation. That is, the investors have
a higher risk aversion coefficient at the beginning of the investment period. In order to discuss the
impacts of the intertemporal restrictions on the time-consistent strategies, a reasonable weight function
ηt should be given first. As shown in Zhou et al. [27], we can find that, the time-consistent strategy for
the traditional multiperiod mean-variance model, i.e., the time consistent strategy (17), can be derived
by optimizing the following single-period problem with the time-varying risk aversion coefficient
η̂t = ηT ∏T−1

k=t+1 sk, t = 1, 2, ..., T.

max
ut

E(Rt+1)− η̂t+1Var(Rt+1) (38)

s.t.
{

Rt+1 = stRt + P′t ut, t = 0, 1, ...T − 1.

Further, if the risk-free rate is a number that doesn’t change over time, that is, st = r f , the
time-vary risk aversion coefficient η̂t can be written as η̂t = ηT × rT−t

f , t = 1, 2, ..., T. Motivated by the
above time-vary risk aversion coefficient η̂t, in this paper, we arbitrarily assume that the investors’
risk aversion coefficient changes exponentially, i.e., ηt = ηT × qT−t for t = 1, 2, ..., T, where q is a fixed
parameter. Compared with the traditional time-consistent strategy (17), the proposed time-consistent
strategies have considered the role of the intertemporal restrictions, that is, the investors who adopt
the proposed strategies might be more risk-averse than that in Model (38). To this end, we let q and
r f satisfy the relationship that q > r f . In the following, we will discuss the evolution process of the
time-consistent strategy under the following two investment situations: (i) there exists a risk-free asset
and 4 risky assets in the capital pool; (ii) there only exist 4 risky assets in the capital pool.

4.1. The Time-Consistent Strategy with Both Risky Assets and a Risk-Free Asset

In this section, we will discuss the evolution of the time-consistent strategy with both risky assets
and a risk-free asset. Using the monthly return of risky assets from May 2002 to December 2018 as the
investment sample, we can derive the corresponding path of the time-consistent strategy. The details
see Figures 1–4.
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Figure 1. The time-consistent strategies with and without intertemporal restrictions.
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Figure 2. The time-consistent strategies with and without benchmark orientation.
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Figure 3. The time-consistent strategies with and without benchmark orientation.
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Figure 4. The time-consistent strategies with and without benchmark orientation.

Suppose that ηT = 2 and q = 1.005. We will compare the time-consistent strategy with and
without intertemporal restrictions (i.e., Case I and Case II) to show the impact of the intertemporal
restrictions on the time-consistent strategy. As shown in Figure 1, when the intertemporal restrictions
are considered in the investment decision, the investors will shrink investment position (i.e., shrinking
the long position û2

t , û3
t and û4

t , meanwhile, shrinking the short position û1
t ) invested in the risky

assets compared to the investment strategy without considering intertemporal restrictions. This means
that the amount invested in risk-free asset (Rt −∑n

i=1 ui
t) will be increased for the fixed time period,

indicating that the investors will adopt a conservative strategy to reduce the investment risk in the
earlier periods. Additionally, with the increase in the time period, the position difference of the
time-consistent strategies with and without intertemporal restrictions is decreases.

Using the parameters shown in Figure 2, i.e., ηT = 2 and q = 1.005, we will compare the
time-consistent strategy with and without benchmark orientation (i.e., Case I and Case III), so as to
show the impact of the benchmark on the time-consistent strategy. As shown in Figure 2, we can
find that the time-consistent strategies with and without benchmark orientation almost are coincident.
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In other words, the benchmark has little impact on the time-consistent strategy when the risk aversion
coefficient of the investors is small.

As shown in Figure 3, when the investors have a larger risk aversion coefficient ηT = 100,
the benchmark process leads to a significant impact on the time-consistent strategy, especially for
the investment strategy in the later periods. In this situation, the investors might tend to choose a
conservative investment strategy to imitate the return of the benchmark process.

To evaluate whether the time-consistent strategy that considers the benchmark can imitate the
return of the benchmark or not, we will give a more intuitive simulation to verify this conclusion.
In addition to the condition of Case I, we also suppose that ηT = 100, then the return of the portfolio
at the different time periods can be derived. As shown in Figure 4, we can find that the return of the
benchmark has almost the same trend as that of the proposed portfolio. This results indicate that,
when the investors have the larger risk aversion coefficients, the proposed time-consistent strategy can
indeed imitate the return of the benchmark.

4.2. The Time-Consistent Strategy with Only Risky Assets

In this section, we will discuss the evolution of the time-consistent strategy with only risky assets.
Similar to Section 4.1, we can derive the corresponding path of the time-consistent strategy. The details
see Figures 5–8.
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Figure 8. The time-consistent strategies with and without benchmark orientation.

Suppose that ηT = 2 and q = 1.005. We will compare the time-consistent strategy with
and without intertemporal restrictions (i.e., Case I and Case II). As shown in Figure 5, when
the intertemporal restrictions are considered in the investment decision, the investors will shrink
investment position (i.e., shrinking the short position û1

t and the long position û2
t , meanwhile,

increasing the long position û3
t and û4

t ) invested in the risky assets compared to the investment
strategy without considering intertemporal restrictions. Unlike the time-consistent strategy with both
multiple risky assets and a risk-free asset (e.g., the investors can reduce the portfolio risk by increasing
the amount investment in the risk-free asset), when there are only risky assets, the investors can only
reduce the investment risk that existed in the earlier periods by adjusting the investment position
among the risky assets. Similarly, with the increase in the time period, the position difference of the
time-consistent strategies with and without intertemporal restrictions is decreases.

Similar to Figures 2 and 3, we also suppose that ηT = 2 or 100 and q = 1.005. In the following,
we will compare the time-consistent strategies with and without benchmark orientation (i.e., Case I and
Case III) to show the impact of the benchmark on the time-consistent strategy. Figures 6 and 7 show that
the benchmark will lead to a significant impact on the time-consistent strategy regardless of whether
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the investors have small risk aversion coefficients or large risk aversion coefficients. Additionally,
comparing Figures 2 and 3 and Figures 6 and 7, we can find that, the benchmark has a larger impact
on the time-consistent strategy with only risky assets compared to that on the time-consistent strategy
with both a risk-free asset and multiple risky assets.

In addition to the condition of Case I, we also suppose that ηT = 100. As shown in Figure 8,
we can find that the return of the benchmark and the return of the proposed portfolio have almost the
same trend, which is consistent with the conclusion shown in Figure 4. This result indicates that, when
the investors have the larger risk aversion coefficient, the proposed time-consistent strategy can also
imitate the return of the benchmark.

5. Conclusions

In this paper, we investigate a generalized multiperiod mean-variance portfolio optimization
with consideration of benchmark orientation and intertemporal restrictions. Since the proposed
model is a time-inconsistent problem, we cannot directly solve it by using the traditional dynamic
programming approach. Although this problem can be solved indirectly by the embedding scheme,
this approach cannot guarantee that the derived strategy (i.e., precommitment strategy) satisfies the
time-consistency. Thus, the precommitment strategy has been criticized for lacking rationality by
some researchers. In this paper, we adopt a game approach to solve the proposed model, in which the
investment decision-making process is deemed to be a noncooperative game. We assume that there
exist T players who stand in the different time periods; they all aim to maximize their own generalized
mean-variance sub-objectives. Then, the Nash equilibrium solution of this game problem is defined as
the time-consistent strategy for the proposed model. In this framework, we derive the time-consistent
strategies for the proposed model with and without a risk-free asset by using the backward induction
approach. We find that the time-consistent strategy, when there exists a risk-free asset in the capital
pool, is feedback one on the benchmark process; when the capital pool with only risky assets, the
time-consistent strategy is double feedback one on both benchmark process and wealth process. Finally,
we also provide some numerical simulations to show the conclusions derived in this study. These
results indicate that, the proposed time-consistent strategy not only can reduce the risk existed in the
intermediate process of investment but also can imitate the return of benchmark process.

Apparently, the above game approach can be extended to many time-inconsistent dynamic
optimization problems. More importantly, this approach can provide a more suitable strategy for
sophisticated decision-makers, since it takes possible future revisions into account. Roughly speaking,
the current work can be further extended from the following two aspects. First, this paper assumes
that the risk aversion coefficient is independent with current wealth; however, in some cases, the
risk aversion coefficient of investors also depends on their level of wealth. Intuitively, the greater the
wealth of investors, the less risk averse they are likely to be. Therefore, the case when the risk aversion
depends dynamically on current wealth is worth to be investigated in the further work. Second, we can
introduce the Markov chain into our proposed model to investigate the time-consistent strategy under
the regime switching environment.
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Appendix A. The Proof of Proposition 1

When k = T − 1, according to the definition of Jk(Rk, Bk, u), we have

VT−1(RT−1, BT−1) = max
uT−1
{wT [ξTET−1(RT − θT BT)− ηTVarT−1(RT − θT BT)]} . (A1)

This indicates that Proposition 1 holds for k = T − 1. When k = 0, 1, ..., T − 2, the function
Jk(Rk, Bk, u) can be expressed as

Jk(Rk, Bk, u) = ∑T
t=k+1 wt[ξtEk(Rt − θtBt)− ηtVark(Rt − θtBt)]

= ∑T
t=k+2 wt[ξtEk(Rt − θtBt)− ηtVark(Rt − θtBt)]

+wk+1[ξk+1Ek(Rk+1 − θk+1Bk+1)− ηk+1Vark(Rk+1 − θk+1Bk+1)].
(A2)

By using the law of iterated expectations and the law of total variance, we have

Ek(Rt − θtBt) = Ek[Ek+1(Rt − θtBt)], (A3)

Vark(Rt − θtBt) = Ek[Vark+1(Rt − θtBt)] + Vark[Ek+1(Rt − θtBt)]. (A4)

Then, Jk(Rk, Bk, u) can be rewritten as

Jk(Rk, Bk, u) = Ek

{
T

∑
t=k+2

wt[ξtEk+1(Rt − θtBt)− ηtVark+1(Rt − θtBt)]

}

−
T

∑
t=k+2

wtηtVark[Ek+1(Rt − θtBt)]

+wk+1[ξk+1Ek(Rk+1 − θk+1Bk+1)− ηk+1Vark(Rk+1 − θk+1Bk+1)], (A5)

= Ek[Jk+1(Rk+1, Bk+1, u)]−
T

∑
t=k+2

wtηtVark[Ek+1(Rt − θtBt)]

+wk+1[ξk+1Ek(Rk+1 − θk+1Bk+1)− ηk+1Vark(Rk+1 − θk+1Bk+1)].

Let fk,t(Rk, Bk) = Ek[Rt − θtBt]|û(k) = Ek[ fk+1,t(Rk+1, Bk+1)]. Additionally, due to the fact that
Vk(Rk, Bk) = max

uk
Jk(Rk, Bk, u(k)) = Jk(Rk, Bk, û(k)), then we have

Vk(Rk, Bk) = max
uk

 Ek[Vk+1(Rk+1, Bk+1)]−
T
∑

t=k+2
RtηtVark[ fk+1,t(Rk+1, Bk+1)]

+wk+1[ξk+1Ek(Rk+1 − θk+1Bk+1)− ηk+1Vark(Rk+1 − θk+1Bk+1)]

 , (A6)

k = 0, 1, ..., T − 2,

Therefore, we complete the proof of Proposition 1.
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Appendix B. The Proof of Theorem 1

When k = T − 1, we have

VT−1(RT−1, BT−1)

= max
uT−1

JT−1(RT−1, BT−1, uT−1)

= max
uT−1

{
wT [ξTET−1(RT − θT BT)− ηTVarT−1(RT − θT BT)]

}
(A7)

= max
uT−1

{
wTξT [sT−1RT−1 + µ′T−1uT−1 − θTνT−1BT−1]

−wTηT [u′T−1ΩT−1uT−1 + θ2
TσT−1B2

T−1 − 2θTQ′T−1uT−1BT−1]

}
.

Since (A7) is a convex programming problem, by using the first-order necessary optimality
condition, then we have

ûT−1 =
Ω−1

T−1[ξTµT−1 + 2ηTθTQT−1BT−1]

2ηT
(A8)

= âT−1BT−1 + b̂T−1.

Substituting (A8) into (A7), therefore, VT−1(RT−1, BT−1) can be expressed as

VT−1(RT−1, BT−1)

=


wTξTsT−1RT−1 + [2wTηTθTQ′T−1 âT−1 − wTηT â′T−1ΩT−1 âT−1

−wTηTθ2
TσT−1]B2

T−1 + [wTξTµ′T−1 âT−1 − wTξTθTνT−1

−2wTηT â′T−1ΩT−1b̂T−1 + 2wTηTθTQ′T−1b̂T−1]BT−1

+wTξTµ′T−1b̂T−1 − wTηT b̂′T−1ΩT−1b̂T−1

 (A9)

= wTξTsT−1RT−1 + m̂T−1B2
T−1 + n̂T−1BT−1 + γ̂T−1,

and

fT−1,T(RT−1, BT−1)

= sT−1RT−1 + [µ′T−1 âT−1 − θTνT−1]BT−1 + µ′T−1b̂T−1 (A10)

= sT−1wT−1 + ρ̂T−1,T BT−1 + κ̂T−1,T ,

where 

âT−1 = θTΩ−1
T−1QT−1, b̂T−1 =

ξTΩ−1
T−1µT−1
2ηT

,

m̂T−1 = wTηT(2θTQ′T−1 âT−1 − â′T−1ΩT−1 âT−1 − θ2
TσT−1),

n̂T−1 = wTξT(µ
′
T−1 âT−1 − θTνT−1)− 2wTηT(â′T−1ΩT−1b̂T−1 − θTQ′T−1b̂T−1),

γ̂T−1 = wTξTµ′T−1b̂T−1 − wTηT b̂′T−1ΩT−1b̂T−1,

ρ̂T−1,T = µ′T−1 âT−1 − θTνT−1, κ̂T−1,T = µ′T−1b̂T−1.

(A11)
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Suppose that Theorem 1 holds for k = j + 1, j + 2.., T − 1, then when k = j, we have

Vj(Rj, Bj)

= max
uj

 Ej[Vj+1(Rj+1, Bj+1)]−
T
∑

m=j+2
wmηmVarj[ f j+1,m(Rj+1, Bj+1)]

+wj+1[ξ j+1Ej(Rj+1 − θj+1Bj+1)− ηj+1Varj(Rj+1 − θj+1Bj+1)]



= max
uj



(
T
∑

m=j+1
wmξm

m−1
∏
k=j

sk)Rj + m̂j+1(σj + ν2
j )B2

j + n̂j+1νjBj + γ̂j+1

+(
T
∑

m=j+1
wmξm

m−1
∏

k=j+1
sk)µ

′
juj − 2(

T
∑

m=j+1
wmηmρ̂j+1,m

m−1
∏

k=j+1
sk)Q′jujBj

−(
T
∑

m=j+1
wmηm

m−1
∏

k=j+1
s2

k)u
′
jΩjuj − (

T
∑

m=j+1
wmηmρ̂2

j+1,m)σjB2
j

−wj+1ξ j+1θj+1νjBj


. (A12)

Similarly, due to the fact that (A12) is also a convex programming problem, by using the first-order
necessary optimality condition, we have

ûj =

T
∑

m=j+1
(wmξm

m−1
∏

k=j+1
sk)Ω

−1
j µj − 2

T
∑

m=j+1
(wmηmρ̂j+1,m

m−1
∏

k=j+1
sk)Ω

−1
j Q′jBj

2
T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)

(A13)

= âjBj + b̂j.

Substituting (A13) into (A12), therefore, Vj(Rj, Bj) can be expressed as

Vj(Rj, Bj)

=



(
T
∑

m=j+1
wmξm

m−1
∏
k=j

sk)Rj +

[
m̂j+1(σj + ν2

j )− 2
T
∑

m=j+1
(wmηmρ̂j+1,m

m−1
∏

k=j+1
sk)Q′j âj

−
T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)â′jΩj âj −
T
∑

m=j+1
(wmηmρ̂2

j+1,m)σj

]
B2

j

+

[
n̂j+1νj − wj+1ξ j+1θj+1νj + (

T
∑

m=j+1
wmξm

m−1
∏

k=j+1
sk)µ

′
j âj

−2
T
∑

m=j+1
(wmηmρ̂j+1,m

m−1
∏

k=j+1
sk)Q′j b̂j − 2

T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)â′jΩj b̂j

]
Bj

+γ̂j+1 + (
T
∑

m=j+1
wmξm

m−1
∏

k=j+1
sk)µ

′
j b̂j − (

T
∑

m=j+1
wmηm

m−1
∏

k=j+1
s2

k)b̂
′
jΩ
−1
j b̂j



(A14)

=

(
T

∑
m=j+1

wmξm

m−1

∏
k=j+1

sk

)
Rj + m̂jB2

j + n̂jBj + γ̂j,

as well as the function f j,τ(Rj, Bj) can be shown as follows.

f j,τ(Rj, Bj)

= Ej[ f j+1,τ(Rj+1, Bj+1)]

=

(
τ−1

∏
m=j

sm

)
Rj +

[(
τ−1

∏
m=j+1

sm

)
µ′j âj + ρ̂j+1,τνj

]
Bj +

(
τ−1

∏
m=j+1

sm

)
µ′j b̂j + κ̂j+1,τ (A15)

=

(
τ−1

∏
m=j

sm

)
Rj + ρ̂j,τ Bj + κ̂j,τ ,
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where 

âj = −

T
∑

m=j+1
(wmηm ρ̂j+1,m

m−1
∏

k=j+1
sk)Ω

−1
j Qj

T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)
, b̂j =

T
∑

m=j+1
(wmξm

m−1
∏

k=j+1
sk)Ω

−1
j µj

2
T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)
,

m̂j =

[
m̂j+1(σj + ν2

j )− 2
T
∑

m=j+1
(wmηmρ̂j+1,m

m−1
∏

k=j+1
sk)Q′j âj

−
T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)â′jΩj âj −
T
∑

m=j+1
(wmηmρ̂2

j+1,m)σj

]
,

n̂j =

[
n̂j+1νj − wj+1ξ j+1θj+1νj + (

T
∑

m=j+1
wmξm

m−1
∏

k=j+1
sk)µ

′
j âj

−2
T
∑

m=j+1
(wmηmρ̂j+1,m

m−1
∏

k=j+1
sk)Q′j b̂j − 2

T
∑

m=j+1
(wmηm

m−1
∏

k=j+1
s2

k)â′jΩj b̂j

]
γ̂j = γ̂j+1 + (

T
∑

m=j+1
wmξm

m−1
∏

k=j+1
sk)µ

′
j b̂j − (

T
∑

m=j+1
wmηm

m−1
∏

k=j+1
s2

k)b̂
′
jΩj b̂j,

ρ̂j,τ =

(
τ−1
∏

m=j+1
sm

)
µ′j âj + ρ̂j+1,τνj, κ̂j,τ =

(
τ−1
∏

m=j+1
sm

)
µ′j b̂j + κ̂j+1,τ .

(A16)

According to the above proof, we can conclude that Theorem 2 holds for all t = 0, 1, .., T − 1.

Appendix C. The Proof of Theorem 2

For k = T − 1, we have

VT−1(RT−1, BT−1)

= max
uT−1

{
ξTET−1(RT − θT BT)− ηTVarT−1(RT − θT BT)

}
= max

uT−1
RT−1=I′uT−1

{
wTξT [λ

′
T−1uT−1 − θTνT−1BT−1]

−wTηT [u′T−1ΩT−1uT−1 + θ2
T B2

T−1σT−1 − 2θT BT−1Q′T−1uT−1]

}
(A17)

= max
uT−1

RT−1=I′uT−1


−wTξTθTνT−1BT−1 − wTηTθ2

T B2
T−1σT−1

+wTξTλ′T−1uT−1 − wTηTu′T−1ΩT−1uT−1

+2wTηTθT BT−1Q′T−1uT−1

 .

Here, we can construct the following Lagrange function

LT−1(uT−1, ζT−1) = wTξTλ′T−1uT−1 − wTηTu′T−1ΩT−1uT−1 (A18)

+2wTηTθT BT−1Q′T−1uT−1 − ζT−1(I′uT−1 − RT−1).

Since (A17) is a convex programming problem, by using the first-order necessary optimality
condition, then we have{

wTξTλT−1 − 2wTηTΩT−1uT−1 + 2wTηTθT BT−1QT−1 − ζT−1 I = 0,

I′uT−1 − RT−1 = 0.
(A19)
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By solving Equation (A19), we can conclude that

ûT−1 =
wTξTΩ−1

T−1λT−1 + 2wTηTθT BT−1Ω−1
T−1QT−1

2wTηT

−
wTξT I′Ω−1

T−1λT−1 + 2wTηTθT I′Ω−1
T−1QT−1BT−1 − 2wTηT RT−1

2wTηT I′Ω−1
T−1 I

Ω−1
T−1 I (A20)

=
Ω−1

T−1 I

I′Ω−1
T−1 I

RT−1 +

[
θTΩ−1

T−1QT−1 −
θT I′Ω−1

T−1QT−1Ω−1
T−1 I

I′Ω−1
T−1 I

]
BT−1

+
ξTΩ−1

T−1λT−1

2ηT
−

ξT I′Ω−1
T−1λT−1Ω−1

T−1 I

2ηT I′Ω−1
T−1 I

= ãT−1BT−1 + b̃T−1RT−1 + c̃T−1,

where 
ãT−1 = θTΩ−1

T−1QT−1 −
θT I′Ω−1

T−1QT−1Ω−1
T−1 I

I′Ω−1
T−1 I

,

b̃T−1 =
Ω−1

T−1 I
I′Ω−1

T−1 I
,

c̃T−1 =
ξTΩ−1

T−1λT−1
2ηT

− ξT I′Ω−1
T−1λT−1Ω−1

T−1 I
2ηT I′Ω−1

T−1 I
.

(A21)

Thus, the value function VT−1(RT−1, BT−1) can be expressed as

VT−1(RT−1, BT−1)

=


−wTξTθTνT−1BT−1 − wTηTθ2

TσT−1B2
T−1

+wTξTλ′T−1(ãT−1BT−1 + b̃T−1RT−1 + c̃T−1)

−wTηT(ãT−1BT−1 + b̃T−1RT−1 + c̃T−1)
′ΩT−1(ãT−1BT−1 + b̃T−1RT−1 + c̃T−1)

+2wTηTθT BT−1Q′T−1(ãT−1BT−1 + b̃T−1RT−1 + c̃T−1)

 .(A22)

Since ã′T−1ΩT−1b̃T−1 = 0 and b̃′T−1ΩT−1 c̃T−1 = 0, then we have

VT−1(RT−1, BT−1)

= [−wTηTθ2
TσT−1 − wTηT ã′T−1ΩT−1 ãT−1 + 2wTηTθTQ′T−1 ãT−1]B2

T−1

+[−wTηT b̃′T−1ΩT−1b̃T−1]R2
T−1 + 2wTηTθTQ′T−1b̃T−1BT−1RT−1

+[−wTξTθTνT−1 + wTξTλ′T−1 ãT−1 − 2wTηT a′T−1ΩT−1cT−1 + 2wTηTθTQ′T−1 c̃T−1]BT−1 (A23)

+wTξTλ′T−1b̃T−1RT−1 + [wTξTλ′T−1 c̃T−1 − wTηT c̃′T−1ΩT−1 c̃T−1]

= m̃T−1B2
T−1 + α̃T−1R2

T−1 + ϕ̃T−1BT−1RT−1 + ñT−1BT−1 + β̃T−1RT−1 + γ̃T−1,

where 
m̃T−1 = −wTηTθ2

TσT−1 − wTηT ã′T−1ΩT−1 ãT−1 + 2wTηTθTQ′T−1 ãT−1,

α̃T−1 = −wTηT b̃′T−1ΩT−1b̃T−1, ϕ̃T−1 = 2wTηTθTQ′T−1b̃T−1,

ñT−1 = −wTξTθTνT−1 + wTξTλ′T−1 ãT−1 − 2wTηTθTQ′T−1 c̃T−1,

β̃T−1 = wTξTλ′T−1b̃T−1, γ̃T−1 = wTξTλ′T−1 c̃T−1 − wTηT c̃′T−1ΩT−1 c̃T−1.

(A24)

Additionally, the function fT−1,T(RT−1, BT−1) can be expressed as

fT−1,T(RT−1, BT−1)

= λ′T−1(ãT−1BT−1 + b̃T−1RT−1 + c̃T−1)− θTνT−1BT−1 (A25)

= [λ′T−1 ãT−1 − θTνT−1]BT−1 + λ′T−1b̃T−1RT−1 + λ′T−1 c̃T−1

= ϑ̃T−1,T RT−1 + ρ̃T−1,T BT−1 + κ̃T−1,T ,
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where 
ϑ̃T−1,T = λ′T−1b̃T−1,

ρ̃T−1,T = λ′T−1 ãT−1 − θTνT−1,

κ̃T−1,T = λ′T−1 c̃T−1.

(A26)

Here, we define that

Ω̃T−2 = (
T

∑
m=T−1

wmηmϑ̃2
T−1,m)ΩT−2 − α̃T−1ΞT−2. (A27)

Due to the fact that α̃T−1 = −wTηT b̃′T−1ΩT−1b̃T−1 = − wTηT
I′Ω−1

T−1 I
, then we have

Ω̃T−2 = (wT−1ηT−1 + wTηT ϑ̃2
T−1,T)ΩT−2 +

wTηT

I′Ω−1
T−1 I

ΞT−2. (A28)

Because, for t = 0, 1, ..., T− 1, Ωt and Ξt are both positive definite matrices, then we can derive
that Ω−1

t is also positive definite. Since (wT−1ηT−1 + wTηT ϑ̃2
T−1,T) > 0 and wTηT

I′Ω−1
T−1 I

> 0, we can

conclude that Ω̃T−2 is also a positive definite matrix. The above results show that Theorem 2 holds for
t = T − 1.

Suppose that Theorem 2 holds for t = j + 1, j + 2, ..., T − 1. This indicates that, for

t = j + 1, j + 2, ..., T − 2, Ω̃t = (
T
∑

m=t+1
wmηmϑ̃2

t+1,m)Ωt − α̃t+1Ξt are all positive definite matrices.

Then, for t = j, we have that

Vj(Rj, Bj)

= max
uj


Ej[m̃j+1B2

j+1 + α̃j+1R2
j+1 + ϕ̃j+1Bj+1Rj+1 + ñj+1Bj+1 + β̃ j+1Rj+1 + γ̃j+1]

−
T
∑

m=j+2
wmηmVarj[ϑ̃j+1,mRj+1 + ρ̃j+1,mBj+1 + κ̃j+1,m]

wj+1[ξ j+1Ej(Rj+1 − θj+1Bj+1)− ηj+1Varj(Rj+1 − θj+1Bj+1)]

 (A29)

= max
uj

Rj=I′uj



m̃j+1(σj + ν2
j )B2

j + ñj+1νjBj + γ̃j+1 − wj+1ξ j+1θj+1νjBj

−(
T
∑

m=j+1
wmηmρ̃2

j+1,m)σjB2
j − (

T
∑

m=j+1
wmηmϑ̃2

j+1,m)u
′
jΩjuj

−2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)BjQ′juj + wj+1ξ j+1λ′juj

β̃ j+1λ′juj + α̃j+1u′jΞjuj + ϕ̃j+1Bjφ
′
juj


.

Similarly, we can construct the following Lagrange function

Lj(uj, ζ j) = −(
T

∑
m=j+1

wmηmϑ̃2
j+1,m)u

′
jΩjuj − 2(

T

∑
m=j+1

wmηmϑ̃j+1,mρj+1,m)BjQ′juj (A30)

+wj+1ξ j+1λ′juj + β̃ j+1λ′juj + α̃j+1u′jΞjuj + ϕ̃j+1Bjφ
′
juj − ζ j(I′uj − Rj).

Let Ω̃j = (
T
∑

m=j+1
wmηmϑ̃2

j+1,m)Ωj − α̃j+1Ξj. Since Ω̃j+1 is a positive definite matrix, then we

find that Ω̃−1
j+1 is also positive definite as well as I′Ω̃−1

j+1 I > 0. Additionally, due to the fact that
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α̃j+1 = −b̃′j+1Ω̃j+1b̃j+1 = − 1
I′Ω̃−1

j+1 I
and

T
∑

m=j+1
wmηmϑ̃2

j+1,m > 0, we can conclude that Ω̃j is also a

positive definite matrix. Further, by the first-order necessary optimality condition, we have
−2(

T
∑

m=j+1
wmηmϑ̃2

j+1,m)Ωjuj − 2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)BjQj + wj+1ξ j+1λj

+β̃ j+1λj + 2α̃j+1Ξjuj + ϕ̃j+1Bjφj − ζ j I = 0,

I′uj − Rj = 0.

(A31)

By solving equation set of (A31), we can conclude that

ûj =


Ω̃−1

j [ϕ̃j+1φj − 2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Qj]

2

+

2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)I′Ω̃−1

j Qj − ϕ̃j+1 I′Ω̃−1
j φj

2I′Ω̃−1
j I

Ω̃−1
j I

 Bj (A32)

+
Ω̃−1

j I

I′Ω̃−1
j

Rj +
(wj+1ξ j+1 + β̃ j+1)Ω̃−1

j λj

2
−

(wj+1ξ j+1 + β̃ j+1)I′Ω̃−1
j λj

2I′Ω̃−1
j I

Ω̃−1
j I

= ãjBj + b̃jRj + c̃j,

where 

ãj =

 Ω̃−1
j [ϕ̃j+1φj−2(

T
∑

m=j+1
wmηm ϑ̃j+1,m ρ̃j+1,m)Qj ]

2

−
2(

T
∑

m=j+1
wmηm ϑ̃j+1,m ρ̃j+1,m)I′Ω̃−1

j Qj+ϕ̃j+1 I′Ω̃−1
j φj

2I′Ω̃−1
j I

Ω̃−1
j I

 ,

b̃j =
Ω̃−1

j I

I′Ω̃−1
j I

, c̃j =
(wj+1ξ j+1+β̃ j+1)Ω̃

−1
j λj

2 −
(wj+1ξ j+1+β̃ j+1)I′Ω̃−1

j λj

2I′Ω̃−1
j I

Ω̃−1
j I.

(A33)

Since ã′jΩ̃j b̃j = 0 and b̃′jΩ̃j c̃j = 0, then we have

Vj(Rj, Bj)

=


m̃j+1(σj + ν2

j )− (
T
∑

m=j+1
wmηmρ̃2

j+1,m)σj − ã′jΩ̃j ãj

−2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Q′j ãj + ϕ̃j+1φ′j ãj

 B2
j +

{
−b̃′jΩ̃j b̃j

}
R2

j

+

{
−2(

T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Q′j b̃j + ϕ̃j+1φ′j b̃j

}
BjRj (A34)

+

 ñj+1νj − wj+1ξ j+1θj+1νj − 2ã′jΩ̃j c̃j − 2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Q′j c̃j

+wj+1ξ j+1λ′j ãj + β̃ jλ
′
j ãj + ϕ̃j+1φ′j c̃j

 Bj

+
{

wj+1ξ j+1λ′j b̃j + β̃ j+1λ′j b̃j

}
Rj + γ̃j+1 − c̃′jΩ̃j c̃j + wj+1ξ j+1λ′j c̃j + β̃ j+1λ′j c̃j

= m̃jB2
j + α̃jR2

j + ϕ̃jBjRj + ñjBj + β̃ jRj + γ̃j,
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where 

m̃j = m̃j+1(σj + ν2
j )− (

T
∑

m=j+1
wmηmρ̃2

j+1,m)σj − ã′jΩ̃j ãj

−2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Q′j ãj + ϕ̃j+1φ′j ãj,

α̃j = −b̃′jΩ̃j b̃j, ϕ̃j = −2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Q′j b̃j + ϕ̃j+1φ′j b̃j,

ñj = ñj+1νj − wj+1ξ j+1θj+1νj − 2ã′jΩ̃j c̃j − 2(
T
∑

m=j+1
wmηmϑ̃j+1,mρ̃j+1,m)Q′j c̃j

+wj+1ξ j+1λ′jaj + β̃ j+1λ′j ãj + ϕ̃j+1φ′j c̃j,

β̃ j = wj+1ξ j+1λ′j b̃j + β̃ j+1λ′j b̃j, γ̃j = γ̃j+1 − c̃′jΩ̃jcj + wj+1ξ j+1λ′j c̃j + β̃ j+1λ′j c̃j.

(A35)

Additionally, we have

f j,τ(Rj, Bj)

= Ej[ f j+1,τ(Rj+1, Bj+1)]

= ϑ̃j+1,τλ′j b̃jRj + [ϑ̃j+1,τλ′j ãj + ρ̃j+1,τνj]Bj + ϑ̃j+1,τλ′j c̃j + κ̃j+1,τ (A36)

= ϑ̃j,τ Rj + ρ̃j,τ Bj + κ̃j,τ ,

where 
ϑ̃j,τ = ϑ̃j+1,τλ′j b̃j,

ρ̃j,τ = ϑ̃j+1,τλ′j ãj + ρ̃j+1,τνj,

κ̃j,τ = ϑ̃j+1,τλ′j c̃j + κ̃j+1,τ .

(A37)

According to the above proof, we can conclude that Theorem 2 holds for all t = 0, 1, ..., T − 1.
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