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Abstract: In this paper, we focus on studying the split feasibility problem (SFP) in Hilbert spaces.
Based on the CQ algorithm involving the self-adaptive technique, we introduce a three-step iteration
process for approximating the solution of SFP. Then, the convergence results are established under
mild conditions. Numerical experiments are provided to show the efficiency in signal processing.
Some comparisons to various methods are also provided in this paper.
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1. Introduction

In the present work, we aim to study the split feasibility problem (SFP), which is to find a point

x∗ ∈ C such that Ax∗ ∈ Q, (1)

where C and Q are non-empty, closed, and convex subsets of RM and RN , and A is an M× N matrix.
The SFP was first investigated in 1994 by Censor-Elfving [1]. Subsequently, Xu [2,3] also studied this
problem in finite dimensional Hilbert spaces. There have also been real-world applications, such as
image processing and signal recovery.

Censor et al. [4] (see also [5]) introduced the Split Inverse Problem (SIP). In this, let X and Y be
two vector spaces and A : X → Y be a linear operator, such that two inverse problems are involved.
Denote IP1 and IP2 by such inverse problems in X and Y, respectively. Given these data, the SIP is
formulated as follows: find a point x∗ ∈ X that solves IP1, and such that the point y∗ = Ax∗ ∈ Y
solves IP2.

It is known that the special case of the SFP can be reformulated to the following
constrained minimization:

min
x∈C
‖PQ(Ax)− Ax‖. (2)

Due to this reformulation, it can be seen as the following linear equation:

x∗ ∈ C and Ax∗ = b. (3)

In 2002, Byrne [6,7] introduced a new projection algorithm for the SFP. It was defined as follows:

xn+1 = PC(xn − τn A∗(I − PQ)Axn) (4)
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where PC and PQ are projections onto C and Q, and A∗ denotes the adjoint operator of A. This method
is often called the CQ algorithm. In this case, the convergence is guaranteed when the step-size τn is in
(0, 2
‖A‖2 ), where ‖A‖2 is the spectral radius of the operator A∗A and I stands for the identity operator.

However, it should be noted that projections are not easy to be calculated, and also come with costs
of computation.

In practical applications, the sets C and Q are usually defined by

C = {x ∈ H1 : c(x) ≤ 0} and Q = {y ∈ H2 : q(y) ≤ 0}, (5)

where c : H1 → R and q : H2 → R are convex and sub-differential functions on H1 and H2. We always
assume that ∂c and ∂q are bounded operators.

In 2004, Yang [8] presented the relaxed CQ algorithm, which follows from the idea of
Fukushima [9]. The relaxed CQ algorithm, PC and PQ, has been replaced by PCn and PQn , respectively,
where Cn and Qn are defined by

Cn = {x ∈ H1 : c(xn) ≤ 〈ξn, xn − x〉}, (6)

where ξn ∈ ∂c(xn) and
Qn = {y ∈ H2 : q(Axn) ≤ 〈ζn, Axn − y〉}, (7)

where ζn ∈ ∂q(Axn). It is easily seen that Cn ⊃ C and Qn ⊃ Q for all n ≥ 1. Next, we set

fn(x) =
1
2
‖(I − PQn)Ax‖2, n ≥ 1. (8)

In this case, we get
∇ fn(x) = A∗(I − PQn)Ax. (9)

Since these sets are half-spaces, the computation for these projections is easy. However, if the
step-size depends on the norm of operators, it is not an easy task to undertake. In fact, the relaxed CQ
algorithm in a finite-dimentional Hilbert space was introduced by Yang [8] as follows:

xn+1 = PCn(xn − τn∇ fn(xn)), (10)

where τn ∈ (0, 2/‖A‖2). We note that the norm of A turned out to be costly in the computation.
In particular, A is a dense matrix and has a large dimension.

To overcome this difficultly, in 2012, López et al. [10] presented a new step-size τn as follows:

τn =
ρn fn(xn)

‖∇ fn(xn)‖2 , (11)

where {ρn} is a sequence in (0, 4) such that inf
n∈N

ρn(4− ρn) > 0. It was shown that {xn}, with the

step-size (11), converged weakly to a solution of SFP.
Another algorithm that can produce strong convergence is the Halpern-type algorithm. It is

defined by
xn+1 = αnu + (1− αn)PCn(xn − τn∇ fn(xn)), (12)

where u ∈ H1 is fixed and τn is defined by (11). It was claimed that {xn} converges strongly to PSu

when αn → 0 and
∞

∑
n=1

αn = ∞.

Recently, in 2005, Qu-Xiu [11] suggested the relaxed CQ algorithm by using Armijo-linesearch
in Euclidean spaces, and then Gibali et al. [12] generalized the results of Qu-Xiu [11] to real Hilbert
spaces as follows:
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xn+1 = PCn(xn − τn∇ fn(yn))

yn = PCn(xn − τn∇ fn(xn)), (13)

where σ > 0, ρ, µ ∈ (0, 1), τn = σρµn , and µn is the smallest non-negative integer, such that

τn‖∇ fn(xn)−∇ fn(yn)‖ ≤ µ‖xn − yn‖. (14)

It was shown that {xn} converges weakly to a solution of SFP. Various iterative methods have
been established to solve the SFP and some related problems—see, for example, [2–5,13–17].

We aim to suggest a new three-step iteration process by using the CQ algorithm with step-sizes that
employ the self-adaptive terminology. We remark that our assumptions do not depend on the operator
norms, which is an easy task in practice. We then establish weak and strong convergence results under
suitable conditions. Finally, we apply our results to compressed sensing. Some comparisons are also
given to those of Yang [8], Gibali et al. [12], and López et al. [10].

Moreover, based on the three-step iterative methods, some convergence results, including its
efficiency, have been established—see, for example, [18–23].

2. Basic Concepts

We next recall some useful basic concepts that will be used in our proof. Let H be a real Hilbert
space. Let T : H → H be a nonlinear mapping. Then, T is called

(i) nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖, f or all x, y ∈ H. (15)

(ii) firmly nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖2 ≤ 〈x− y, Tx− Ty〉. (16)

A function f : H → R is convex if

f (λx + (1− λ)y) ≤ λ f (x) + (1− λ) f (y), f or all λ ∈ (0, 1), f or all x, y ∈ H. (17)

A function f : H → R is weakly lower semi-continuous (w-lsc) at x if xn ⇀ x implies

f (x) ≤ lim inf
n→∞

f (xn). (18)

The projection of a non-empty, closed, and convex set C onto H is defined by

PCx := arg min
y∈C
‖x− y‖2, x ∈ H. (19)

We note that PC and I − PC are firmly non-expansive. From [7], we know that if

f (x) =
1
2
‖(I − PQ)Ax‖2,

then ∇ f is ‖A‖2-Lipschitz continuous. Moreover, in real Hilbert spaces, we know that [24]

(i) 〈x− PCx, z− PCx〉 ≤ 0 for all z ∈ C;
(ii) ‖PCx− PCy‖2 ≤ 〈PCx− PCy, x− y〉 for all x, y ∈ H;
(iii) ‖PCx− z‖2 ≤ ‖x− z‖2 − ‖PCx− x‖2 for all z ∈ C.

Lemma 1. [25] Let H be a real Hilbert space and S be a non-empty, closed, and convex subset of H. Let {xn}
be a sequence in H that satisfies the following conditions:
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(i) For each x ∈ S, lim
n→∞

‖xn − x‖ exists;

(ii) ωw(xn) ⊂ S.

Then, {xn} converges weakly to a point in S.

Lemma 2. [26] Let {sn} be a non-negative real sequence, such that

sn+1 ≤ (1− αn)sn + αnµn, n ≥ 1, (20)

sn+1 ≤ sn − λn + υn, n ≥ 1,

where {αn} ⊆ (0, 1), {λn} is a non-negative, real sequence, and {µn} and {υn} are real sequences such that

(i)
∞

∑
n=1

αn = ∞;

(ii) lim
n→∞

υn = 0;

(iii) limk→∞ λnk = 0 implies lim sup
k→∞

µnk ≤ 0 for any subsequence {nk} of {n}.

Then, lim
n→∞

sn = 0.

Next, we propose Algorithms 1 and 2 for solving the split feasibility problem in Hilbert spaces.

3. Weak Convergence Result

We next introduce a new CQ algorithm and derive the weak convergence of the proposed method.

Algorithm 1: The proposed algorithm for weak convergence.
Choose x0 ∈ H1. Let xn+1 be iteratively generated by

zn = xn − τn∇ fn(xn)

yn = zn − γn∇ fn(zn)

xn+1 = PCn(yn − δn∇ fn(yn)) (21)

where Cn is given as (6),

τn =
ρn fn(xn)

‖∇ fn(xn)‖2 , γn =
ρn fn(zn)

‖∇ fn(zn)‖2 and δn =
ρn fn(yn)

‖∇ fn(yn)‖2 , 0 < ρn < 4. (22)

Remark 1. We see that Algorithm 1 is defined as the iterates zn and yn by a gradient method with the step-size
τn and γn, respectively, and the iterate xn+1 is defined by a relaxed CQ algorithm with the step-size δn.

In this paper, we denote S by the solution set of SFP and assume that S is non-empty.
Next, we prove its weak convergence theorem as follows:

Theorem 1. Suppose inf
n

ρn(4− ρn) > 0. Then, {xn}, defined by Algorithm 1, converges weakly to a point of S.

Proof. Let x̂ ∈ S. Because C ⊆ Cn and Q ⊆ Qn, we have x̂ = PC(x̂) = PCn(x̂) and
Ax̂ = PQ(Ax̂) = PQn(Ax̂). It follows that ∇ fn(x̂) = 0. Then we obtain
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‖xn+1 − x̂‖2 = ‖PCn(yn − δn∇ fn(yn))− x̂‖2

≤ ‖yn − δn∇ fn(yn)− x̂‖2 − ‖xn+1 − yn + δn∇ fn(yn)‖2 (23)

= ‖yn − x̂‖2 + δ2
n‖∇ fn(yn)‖2 − 2δn〈yn − x̂,∇ fn(yn)〉

−‖xn+1 − yn + δn∇ fn(yn)‖2.

From (23) and ∇ fn(x̂) = 0, we see that

〈yn − x̂,∇ fn(yn)〉 = 〈yn − x̂,∇ fn(yn)−∇ fn(x̂)〉
= 〈yn − x̂, A∗(I − PQn)Ayn − A∗(I − PQn)Ax̂〉 (24)

= 〈Ayn − Ax̂, (I − PQn)Ayn − (I − PQn)Ax̂〉
≥ ‖(I − PQn)Ayn‖2

= 2 fn(yn).

We can also show that
〈xn − x̂,∇ fn(xn)〉 ≥ 2 fn(xn) (25)

and
〈zn − x̂,∇ fn(zn)〉 ≥ 2 fn(zn). (26)

So, by (26), it follows that

‖yn − x̂‖2 = ‖zn − γn∇ fn(zn)− x̂‖2

= ‖zn − x̂‖2 + γ2
n‖∇ fn(zn)‖2 − 2γn〈zn − x̂,∇ fn(zn)〉 (27)

≤ ‖zn − x̂‖2 + γ2
n‖∇ fn(zn)‖2 − 4γn fn(zn).

Moreover, by (25), we obtain

‖zn − x̂‖2 = ‖xn − τn∇ fn(xn)− x̂‖2

= ‖xn − x̂‖2 + τ2
n‖∇ fn(xn)‖2 − 2τn〈xn − x̂,∇ fn(xn)〉 (28)

≤ ‖xn − x̂‖2 + τ2
n‖∇ fn(xn)‖2 − 4τn fn(xn).

Combining (23)–(28), we have

‖xn+1 − x̂‖2 ≤ ‖xn − x̂‖2 + τ2
n‖∇ fn(xn)‖2 − 4τn fn(xn) + γ2

n‖∇ fn(zn)‖2

−4γn fn(zn) + δ2
n‖∇ fn(yn)‖2 − 4δn fn(yn)− ‖xn+1 − yn + δn∇ fn(yn)‖2

= ‖xn − x̂‖2 +
ρ2

n f 2
n (xn)

(‖∇ fn(xn)‖2)2 ‖∇ fn(xn)‖2 − 4ρn f 2
n (xn)

‖∇ fn(xn)‖2

+
ρ2

n f 2
n (zn)

(‖∇ fn(zn)‖2)2 ‖∇ fn(zn)‖2 − 4ρn f 2
n (zn)

‖∇ fn(zn)‖2 +
ρ2

n f 2
n (yn)

(‖∇ fn(yn)‖2)2 ‖∇ fn(yn)‖2

− 4ρn f 2
n (yn)

‖∇ fn(yn)‖2 − ‖xn+1 − yn + δn∇ fn(yn)‖2 (29)

= ‖xn − x̂‖2 +
ρ2

n f 2
n (xn)

‖∇ fn(xn)‖2 −
4ρn f 2

n (xn)

‖∇ fn(xn)‖2 +
ρ2

n f 2
n (zn)

‖∇ fn(zn)‖2 −
4ρn f 2

n (zn)

‖∇ fn(zn)‖2

+
ρ2

n f 2
n (yn)

‖∇ fn(yn)‖2 −
4ρn f 2

n (yn)

‖∇ fn(yn)‖2 − ‖xn+1 − yn + δn∇ fn(yn)‖2

= ‖xn − x̂‖2 − ρn(4− ρn)
f 2
n (xn)

‖∇ fn(xn)‖2 − ρn(4− ρn)
f 2
n (zn)

‖∇ fn(zn)‖2

−ρn(4− ρn)
f 2
n (yn)

‖∇ fn(yn)‖2 − ‖xn+1 − yn + δn∇ fn(yn)‖2.
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This implies that, since 0 < ρn < 4,

‖xn+1 − x̂‖ ≤ ‖xn − x̂‖. (30)

Thus, lim
n→∞

‖xn − x̂‖ exists and {xn} is bounded. Since inf
n∈N

ρn(4− ρn) > 0, there is a ρ such that

ρn(4− ρn) ≥ ρ(4− ρ) > 0. Again, from (29), it yields

‖xn − x̂‖2 − ‖xn+1 − x̂‖2 ≥ ρ(4− ρ)
f 2
n (xn)

‖∇ fn(xn)‖2 + ρ(4− ρ)
f 2
n (zn)

‖∇ fn(zn)‖2 + ρ(4− ρ)
f 2
n (yn)

‖∇ fn(yn)‖2 (31)

+‖xn+1 − yn + δn∇ fn(yn)‖2.

So, we obtain

0 = lim
n→∞

‖xn+1 − x̂‖2 − ‖xn − x̂‖2 ≥ lim
n→∞

[ ρ(4− ρ)
f 2
n (xn)

‖∇ fn(xn)‖2 + ρ(4− ρ)
f 2
n (zn)

‖∇ fn(zn)‖2

+ρ(4− ρ)
f 2
n (yn)

‖∇ fn(yn)‖2 + ‖xn+1 − yn + δn∇ fn(yn)‖2 ] (32)

≥ 0.

This shows that
lim

n→∞

f 2
n(xn)

‖∇ fn(xn)‖2 = 0,

lim
n→∞

f 2
n(zn)

‖∇ fn(zn)‖2 = 0, (33)

lim
n→∞

f 2
n(yn)

‖∇ fn(yn)‖2 = 0,

lim
n→∞

‖xn+1 − yn + δn∇ fn(yn)‖2 = 0.

We can check that {‖∇ fn(xn)‖} is bounded. So lim
n→∞

fn(xn) = 0. This means

lim
n→∞

‖(I − PQn)Axn‖ = 0. Also lim
n→∞

fn(zn) = lim
n→∞

‖(I− PQn)Azn‖ = 0 and lim
n→∞

fn(yn) = lim
n→∞

‖(I−
PQn)Ayn‖ = 0.

Furthermore, from (33), we get

lim
n→∞

‖xn+1 − yn + δn∇ fn(yn)‖ = 0. (34)

We note that

δn‖∇ fn(yn)‖ =
ρn fn(yn)

‖∇ fn(yn)‖2 ‖∇ fn(yn)‖ → 0, as n→ ∞. (35)

Hence, by (34) and (35), lim
n→∞

‖xn+1 − yn‖ = 0. Further, by (21) and τn‖∇ fn(xn)‖ → 0 as n→ ∞,

we get lim
n→∞

‖zn − xn‖ = 0. Since γn‖∇ fn(xn)‖ → 0 as n → ∞, we also get lim
n→∞

‖yn − zn‖ = 0.

Hence lim
n→∞

‖xn+1 − xn‖ = 0.

By the boundedness of {xn}, the set ωw(xn) is non-empty. Let x∗ ∈ ωw(xn). Then, there is a
subsequence {xnk} of {xn} that xnk ⇀ x∗ ∈ H1.

Next, we show that x∗ is in S. Since xnk+1 ∈ Cnk , by the definition of Cnk , we get

c(xnk ) ≤ 〈ξnk , xnk − xnk+1〉 (36)

where ξnk ∈ ∂c(xnk ). It follows, by the boundedness of ∂c, that

c(xnk ) ≤ ‖ξnk‖‖xnk − xnk+1‖
→ 0, as k→ ∞. (37)
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By the w-lsc of c, xnk ⇀ x∗ and (37), we see that

c(x∗) ≤ lim inf
k→∞

c(xnk ) ≤ 0. (38)

Thus, x∗ ∈ C.
Next, we will show that Ax∗ ∈ Q. Since PQnk

(Axnk ) ∈ Qnk ,

q(Axnk ) ≤ 〈ηnk , Axnk − PQnk
(Axnk )〉 (39)

where ηnk ∈ ∂q(Axnk ). So, we obtain

q(Axnk ) ≤ ‖ηnk‖‖Axnk − PQnk
(Axnk )‖

→ 0, as k→ ∞. (40)

The w-lsc of q and (40) give that

q(Ax∗) ≤ lim inf
k→∞

q(Axnk ) ≤ 0. (41)

Thus, Ax∗ ∈ Q. By Lemma 1, we can deduce that {xn} converges weakly to a point in S.

4. Strong Convergence Result

We next discuss the strong convergence of the sequence generated by the Halpern-type iteration.

Algorithm 2: The proposed algorithm for strong convergence.
Choose x0 ∈ H1. Assume xn, zn and yn have been constructed. Compute the sequence xn+1 by

zn = xn − τn∇ fn(xn)

yn = zn − γn∇ fn(zn)

xn+1 = αnu + (1− αn)PCn(yn − δn∇ fn(yn)) (42)

where u ∈ H1 and {αn} ⊂ (0, 1), Cn is given as (6),

τn =
ρn fn(xn)

‖∇ fn(xn)‖2 , γn =
ρn fn(zn)

‖∇ fn(zn)‖2 and δn =
ρn fn(yn)

‖∇ fn(yn)‖2 , 0 < ρn < 4. (43)

Theorem 2. Assume that {αn} and {ρn} satisfy the conditions:

(a) lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞;

(b) inf
n

ρn(4− ρn) > 0.

Then, {xn}, defined by Algorithm 2, converges strongly to PSu.

Proof. Set x̂ = PSu. By using the same argument as in Theorem 1, we can show that

‖PCn(yn − δn∇ fn(yn))− x̂‖2 ≤ ‖yn − x̂‖2 − ρn(4− ρn)
f 2
n(yn)

‖∇ fn(yn)‖
−‖PCn(yn − δn∇ fn(yn))− yn + δn∇ fn(yn)‖2. (44)
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So,

‖yn − x̂‖2 ≤ ‖zn − x̂‖2 − ρn(4− ρn)
f 2
n(zn)

‖∇ fn(zn)‖2 (45)

and

‖zn − x̂‖2 ≤ ‖xn − x̂‖2 − ρn(4− ρn)
f 2
n(xn)

‖∇ fn(xn)‖2 . (46)

Also, we obtain

‖xn+1 − x̂‖2 = ‖αn(u− x̂) + (1− αn)(PCn(yn − δn∇ fn(yn))− x̂)‖2

≤ (1− αn)‖PCn(yn − δn∇ fn(yn))− x̂‖2 + 2αn〈u− x̂, xn+1 − x̂〉. (47)

Combining (44)–(47), we obtain

‖xn+1 − x̂‖2 ≤ (1− αn)‖xn − x̂‖2 − (1− αn)ρn(4− ρn)
f 2
n(xn)

‖∇ fn(xn)‖2

−(1− αn)ρn(4− ρn)
f 2
n(zn)

‖∇ fn(zn)‖2 − (1− αn)ρn(4− ρn)
f 2
n(yn)

‖∇ fn(yn)‖2 (48)

−(1− αn)‖PCn(yn − δn∇ fn(yn))− yn + δn∇ fn(yn)‖2

+2αn〈u− x̂, xn+1 − x̂〉.

Next, we will show that {xn} is bounded. Again, using (44)–(46), we get

‖xn+1 − x̂‖ = ‖αnu + (1− αn)PCn(yn − δn∇ fn(yn))− x̂‖
≤ αn‖u− x̂‖+ (1− αn)‖yn − x̂‖ (49)

≤ αn‖u− x̂‖+ (1− αn)‖zn − x̂‖
≤ αn‖u− x̂‖+ (1− αn)‖xn − x̂‖.

This shows that {xn} is bounded. From Lemma 2 and (48), we set

sn = ‖xn − x̂‖2;

υn = 2αn〈u− x̂, xn+1 − x̂〉;
µn = 2〈u− x̂, xn+1 − x̂〉; (50)

λn = (1− αn)‖PCn (yn − δn∇ fn(yn))− yn + δn∇ fn(yn)‖2 + (1− αn)ρn(4− ρn)
f 2
n (xn)

‖∇ fn(xn)‖2

+(1− αn)ρn(4− ρn)
f 2
n (yn)

‖∇ fn(yn)‖2 + (1− αn)ρn(4− ρn)
f 2
n (zn)

‖∇ fn(zn)‖2 .

So (48) can be transformed to the inequalities

sn+1 ≤ (1− αn)sn + αnµn, n ≥ 1

sn+1 ≤ sn − λn + υn. (51)

Let {nk} be a subsequence of {n}, such that

lim
k→∞

λnk = 0. (52)
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Then, we have

lim
k→∞

(1− αnk )‖PCnk
(ynk − δnk∇ fnk (ynk ))− ynk + δnk∇ fnk (ynk )‖

2

+ (1− αnk )ρnk (4− ρnk )
f 2
nk
(xnk )

‖∇ fnk (xnk )‖2 + (1− αnk )ρnk (4− ρnk )
f 2
nk
(znk )

‖∇ fnk (znk )‖2 (53)

+ (1− αnk )ρnk (4− ρnk )
f 2
nk
(ynk )

‖∇ fnk (ynk )‖2 = 0

which implies by our assumptions that

f 2
nk
(xnk )

‖∇ fnk (xnk )‖2 → 0,
f 2
nk
(znk )

‖∇ fnk (znk )‖2 → 0,
f 2
nk
(ynk )

‖∇ fnk (ynk )‖2 → 0 and

‖PCnk
(ynk − δnk∇ fnk (ynk ))− ynk + δnk∇ fnk (ynk )‖ → 0

as k → ∞. Since {‖∇ fnk (xnk )‖}, {‖∇ fnk (znk )‖} and {‖∇ fnk (ynk )‖} are bounded, it follows that
fnk (xnk ) → 0, fnk (znk ) → 0 and fnk (ynk ) → 0 as k → ∞. We also get lim

k→∞
‖(I − PQnk

)Axnk‖ = 0,

lim
k→∞
‖(I − PQnk

)Aznk‖ = 0 and lim
k→∞
‖(I − PQnk

)Aynk‖ = 0.

As in Theorem 1, we can show that ωw(xnk ) ⊂ S. Hence, there is a subsequence {xnki
} of {xnk},

such that xnki
⇀ x∗ ∈ S. So, we obtain

lim sup
k→∞

〈u− x̂, xnk − x̂〉 = lim
i→∞
〈u− x̂, xnki

− x̂〉

= 〈u− x̂, x∗ − x̂〉
≤ 0. (54)

On the other hand, we see that

‖xnk+1 − ynk‖ = ‖αnk u + (1− αnk )PCnk
(ynk − δnk∇ fnk (ynk ))− ynk‖

≤ αnk‖u− ynk‖+ (1− αnk )‖PCnk
(ynk − δnk∇ fnk (ynk ))− ynk‖ (55)

≤ αnk‖u− ynk‖+ (1− αnk )‖PCnk
(ynk − δnk∇ fnk (ynk ))− ynk + δnk∇ fnk (ynk )‖

+(1− αnk )δnk‖∇ fnk (ynk )‖
→ 0 as k→ ∞.

We see that

lim
k→∞
‖znk − xnk‖ = 0 and lim

k→∞
‖ynk − znk‖ = 0.

Hence, we obtain

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − ynk‖+ ‖ynk − znk‖+ ‖znk − xnk‖
→ 0 as k→ ∞. (56)

By (54) and (56), we obtain

lim sup
k→∞

〈u− x̂, xnk+1 − x̂〉 ≤ 0. (57)

Hence, we get
lim sup

k→∞
µnk ≤ 0. (58)

By Lemma 2, we can deduce that {xn} converges strongly to x̂ = PSu.



Mathematics 2019, 7, 712 10 of 15

5. Numerical Examples

Finally, we provide numerical experiments of the compressed sensing in signal recovery.
We demonstrate the performance of the relaxed CQ algorithms defined by Yang [8], López et al. [10],
Gibali et al. [12] and our CQ algorithms. The compressed sensing can be modeled as the linear equation:

y = Ax + ε, (59)

where x ∈ RN is a recovered vector with m non-zero components, y ∈ RM is the observed data with
noisy ε, and A : RN → RM (M < N). It is noted that (59) can be seen as solving the LASSO problem:

min
x∈RN

1
2
‖y− Ax‖2 subject to ‖x‖1 ≤ t, (60)

where t > 0. In particular, in case C = {x ∈ RN : ‖x‖1 ≤ t} and Q = {y}, the LASSO problem can be
considered as the SFP (1). From this point of view, we can apply the CQ algorithm to solve (60).

In our experiment, one matrix A ∈ RM×N is generated from a normal distribution with mean
zero and invariance one. The sparse vector x ∈ RN is generated from uniform distribution in the
interval [−1, 1] with m nonzero elements. The observation y is generated by white Gaussian noise with
signal-to-noise ratio SNR=40. Let t = m and x1 = 0.

The stopping criterion is defined by the mean square error (MSE):

MSE =
1
N
‖x̂− x‖2

2 < 10−5, (61)

where x̂ is an approximated signal of x.

In what follows, let τn =
1
‖A‖2 in the CQ algorithm (10) by Yang [8], τn =

ρn‖Ax− y‖2

2‖AT(Ax− y)‖2 with

ρn = 2 in (11) of López et al. [10], τn defined by (14) with σ = 1, ρ = µ = 0.5 in that of Gibali et al. [12]
and τn, γn,δn defined by (22) with ρn = 2. The numerical results are reported as follows.

From Table 1 and Figures 1 and 2, we observe that the convergence behavior of Algorithm 1
outperforms those of Yang [8], López et al. [10], Gibali et al. [12]. Indeed, Algorithm 1 has less number
of iterations than other methods.

Table 1. Number of iterations for Algorithm 1.

Case 1 : N = 512, M = 256 Yang (10) López et al. (11) Gibali et al. (13) Algorithm 1

m = 10 74 65 106 39
m = 20 217 184 246 111

Case 2 : N = 4096, M = 2048 Yang (10) López et al. (11) Gibali et al. (13) Algorithm 1

m = 100 87 77 117 48
m = 200 184 156 220 94
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Figure 1. MSE versus number of iterations of Algorithm 1 in case N= 4096, M = 2048, and m = 200.

Original signal (N=4096, M=2048 with 200 spikes)
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Measured values with noise (SNR=40)

200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

Recovered signal by Algorithm  of Yang
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0

1

Recovered signal by Algorithm  of Lopez et al. 
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Recovered signal by Algorithm  of Gibali et al. 
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-1

0

1

Recovered signal by Algorithm 1

500 1000 1500 2000 2500 3000 3500 4000
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1

Figure 2. From top to bottom: original signal, observation data, recovered signal by Algorithms of
Yang [8], López et al. [10], Gibali et al. [12], and Algorithm 1 with N = 4096, M = 2048 and m = 200.
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Next, we discuss the strong convergence of the relaxed CQ algorithm (12) by López et al. [10] and

Algorithm 2. We set each step-sizes τn as in the weak convergence and let αn =
1

100n + 1
. The initial

vector x1 = 0 and u is generated randomly. Then, we have the following numerical results.
From Table 2 and Figures 3 and 4, it is observed that Algorithm 2 has a smaller number of

iterations than that of López et al. [10].

Table 2. Number of iterations for Algorithm 2.

Case 1 : N = 512, M = 256 López et al. (12) Algorithm 2

m = 10 85 43
m = 20 119 64

Case 2 : N = 4096, M = 2048 López et al. (12) Algorithm 2
m = 100 85 48
m = 200 230 140

0 50 100 150 200 250
Number of iterations

10-5

10-4

10-3

10-2

M
S

E

Algorithm of Lopez et al.
Algorithm  2

Figure 3. MSE versus number of iterations of Algorithm 2 in case N = 4096, M = 2048 and m = 200.

Original signal

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Measured values with noise (SNR = 40)

200 400 600 800 1000 1200 1400 1600 1800 2000
-50

0

50

Recovered signal by Algorithm of Lopez et al. 

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Recovered signal by Algorithm 2

500 1000 1500 2000 2500 3000 3500 4000
-1

0

1

Figure 4. From top to bottom: original signal, observation data, recovered signal by Algorithms (12) of
López et al. [10] and Algorithm 2.

We provide the numerical examples in L2-space, which is an infinite Hilbert space, by using
Algorithm 2. Let H1 = H2 = L2[0, 1] with the inner product given by

〈 f , g〉 =
∫ 1

0
f (t)g(t)dt.
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Let C = {x ∈ L2[0, 1] : ‖x‖L2 ≤ 1} and Q = {x ∈ L2[0, 1] : 〈x, t
2 〉 ≤ 0}. Find x ∈ C such that

Ax ∈ Q, where (Ax)(t) = x(t)
2 . We take αn =

1
10n + 1

, ρn = 1.75. The stopping criterion is defined by

En =
1
2
‖Axn − PQ Axn‖2

L2
< 10−4.

From Table 3 and Figure 5, we see that our algorithm is better than that of López et al. [10] in
terms of number of iterations and CPU time.

Table 3. Numberof iterations for Algorithm 2 in L2-space.

López et al. (12) Algorithm 2

u = t No. of Iter. 9 4
x1 = 7t2 + 2 cpu (time) 6.3707 4.0171

u = t + 1 No. of Iter. 9 4
x1 = 4t2 + t + 3 cpu (time) 6.5169 4.1789

u = t2 No. of Iter. 10 4
x1 = 2t2 + 3et cpu (time) 9.4818 5.5274

u = t3 No. of Iter. 6 3
x1 = 5t3 + sin(t) + 1 cpu (time) 3.7478 2.9404
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Number of iterations

0

0.5
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n

Algorithm of Lopez et al.
Algorithm  2
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Algorithm  2
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Figure 5. Error versus numberof iterations of Algorithm 2 in L2-space.

6. Conclusions

In this work, we have introduced new three-step iterative methods involving the self-adaptive
technique for the SFP in Hilbert spaces. Weak and strong convergence was discussed under suitable
conditions. Preliminary numerical experiments showed that our proposed methods outperform those
of Yang [8], López et al. [10], and Gibali et al. [12]. In future work, we aim to investigate the SFP in
Banach spaces, and to also establish its convergence under suitable conditions.
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14. Ćirić, L. Some Recent Results in Metrical Fixed Point Theory; University of Belgrade: Belgrade, Serbia, 2003.
15. Dang, Y.; Gao, Y. The strong convergence of a KM-CQ-like algorithm for a split feasibility problem.

Inverse Probl. 2011, 27, 015007. [CrossRef]
16. Yang, Q. On variable-step relaxed projection algorithm for variational inequalities. J. Math. Anal. Appl. 2005,

302, 166–179. [CrossRef]
17. Zhao, J.; Zhang, Y.; Yang, Q. Modified projection methods for the split feasibility problem and multiple-sets

feasibility problem. Appl. Math. Comput. 2012, 219, 1644–1653. [CrossRef]
18. Bnouhachem, A.; Noor, M.A. Three-step projection method for general variational inequalities. Int. J. Mod.

Phys. B. 2012, 26, 1250066. [CrossRef]
19. Cordero, A., Hueso, J.L., Martinez, E., Torregrosa, J.R. Efficient three-step iterative methods with sixth order

convergence for nonlinear equations. Numer. Algorithms 2010, 53, 485–495. [CrossRef]
20. Noor, M.A.; Noor, K. I. Three-step iterative methods for nonlinear equations. Appl. Math. Comput. 2006, 183, 322–327.
21. Noor, M.A.; Yao, Y. Three-step iterations for variational inequalities and nonexpansive mappings.

Appl. Math. Comput. 2007, 190, 1312–1321. [CrossRef]
22. Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for

continuous functions on an arbitrary interval. J. Comput. Appl. Math. 2011, 235, 3006–3014. [CrossRef]
23. Rafiq, A.; Hussain, S.; Ahmad, F.; Awais, M.; Zafar, F. An efficient three-step iterative method with sixth-order

convergence for solving nonlinear equations. Int. J. Comput. Math. 2007, 84, 369–375. [CrossRef]
24. Bauschke, H.H.; Combettes, P.L. Convex Analysis and Monotone Operator Theory in Hilbert Spaces; Springer:

London, UK, 2011.

http://dx.doi.org/10.1007/BF02142692
http://dx.doi.org/10.1155/2010/102085
http://dx.doi.org/10.1088/0266-5611/26/10/105018
http://dx.doi.org/10.1007/s11075-011-9490-5
http://dx.doi.org/10.1088/0266-5611/18/2/310
http://dx.doi.org/10.1088/0266-5611/20/1/006
http://dx.doi.org/10.1088/0266-5611/20/4/014
http://dx.doi.org/10.1007/BF01589441
http://dx.doi.org/10.1088/0266-5611/28/8/085004
http://dx.doi.org/10.1088/0266-5611/21/5/009
http://dx.doi.org/10.1007/s11590-017-1148-3
http://dx.doi.org/10.1016/j.amc.2007.08.027
http://dx.doi.org/10.1088/0266-5611/27/1/015007
http://dx.doi.org/10.1016/j.jmaa.2004.07.048
http://dx.doi.org/10.1016/j.amc.2012.08.005
http://dx.doi.org/10.1142/S021797921250066X
http://dx.doi.org/10.1007/s11075-009-9315-y
http://dx.doi.org/10.1016/j.amc.2007.02.013
http://dx.doi.org/10.1016/j.cam.2010.12.022
http://dx.doi.org/10.1080/00207160601178521


Mathematics 2019, 7, 712 15 of 15

25. Bauschke, H.H.; Combettes, P.L. A weak-to-strong convergence principle for Fejér-monotone methods in
Hilbert spaces. Math. Oper. Res. 2001, 26, 248–264. [CrossRef]

26. He, S.; Yang, C. Solving the variational inequality problem defined on intersection of finite level sets.
Abstr. Appl. Anal. 2013. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1287/moor.26.2.248.10558
http://dx.doi.org/10.1155/2013/942315
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Basic Concepts
	Weak Convergence Result
	Strong Convergence Result
	Numerical Examples
	Conclusions
	References

