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Abstract: In this paper, we introduce a new class of Bregman generalized α-nonexpansive mappings
in terms of the Bregman distance. We establish several weak and strong convergence theorems of the
Ishikawa and Noor iterative schemes for Bregman generalized α-nonexpansive mappings in Banach
spaces. A numerical example is given to illustrate the main results of fixed point approximation using
Halpern’s algorithm.
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1. Introduction

In 1967, Bregman [1] discovered an effective technique using the so-called Bregman distance
function D f in the process of designing and analyzing feasibility and optimization algorithms.
This opened a growing area of research in which Bregman’s technique was applied in various ways
in order to design and analyze some algorithms for solving not only feasibility and optimization
problems, but also algorithms for solving variational inequality problems, equilibrium problems, and
fixed point problems for nonlinear mappings (see [2–4]).

In recent years, several authors have been constructing algorithms for finding fixed points
of nonlinear mappings by using the Bregman distance and the Bregman projection (see [5,6] and
the reference therein). In 2003, Bauschke et al. [7,8] first introduced the class of Bregman firmly
nonexpansive mappings which is a generalization of the classical firmly nonexpansive mappings.
A few years ago, Reich [9] studied the class of Bregman strongly nonexpansive mappings and showed
the existence of their common fixed points.

Motivated by the aforementioned results, we investigate the new class of Bregman generalized
α-nonexpansive mappings. We prove the existence of fixed points for such mappings under some
conditions, and establish weak and strong convergence theorems regarding those fixed points. This is
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achieved by utilizing the Ishikawa and Noor iterative schemes, as well as Halpern’s algorithm to
generate a convergent sequence with desired properties.

Throughout this paper, we assume that E is a real Banach space with the norm ‖ · ‖ and the
dual space E∗. We denote the value of x∗ ∈ E∗ at x ∈ E by 〈x, x∗〉. If {xn}n∈N is a sequence in E,
we denote the strong convergence and the weak convergence of {xn}n∈N to a point x ∈ E by xn → x
and xn ⇀ x, respectively.

Let C be a nonempty subset of E and T : C → C be a mapping. Then, a point x ∈ C is called a
fixed point of T if Tx = x and the set of all fixed points of T is denoted by F(T). A mapping T : C → C
is said to be:

• nonexpansive if
‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;

• quasi-nonexpansive if F(T) 6= ∅ and

‖Tx− y‖ ≤ ‖x− y‖, ∀x ∈ C, y ∈ F(T);

• Suzuki-type generalized nonexpansive [10] if

1
2
‖x− Tx‖ ≤ ‖x− y‖ =⇒ ‖Tx− Ty‖ ≤ ‖x− y‖, ∀x, y ∈ C;

• α-nonexpansive, where α < 1, if

‖Tx− Ty‖2 ≤ α‖Tx− y‖2 + α‖x− Ty‖2 + (1− 2α)‖x− y‖2, ∀x, y ∈ C;

• generalized α-nonexpansive [11], where α ∈ [0, 1), if

1
2
‖x− Tx‖ ≤ ‖x− y‖

=⇒ ‖Tx− Ty‖ ≤ α‖Tx− y‖+ α‖x− Ty‖+ (1− 2α)‖x− y‖, ∀x, y ∈ C.

Let C be a nonempty subset of a Banach space E and T : C → C be a nonexpansive mapping.
For any x1 ∈ C,

• The Ishikawa iteration [12] is given by{
yn = βnTxn + (1− βn)xn,
xn+1 = γnTyn + (1− γn)xn, ∀n ∈ N,

(1)

where {βn}n∈N and {γn}n∈N are sequences in [0, 1) with some appropriate conditions.
• The Noor iteration [13] is given by

zn = αnTxn + (1− αn)xn,
yn = βnTzn + (1− βn)xn,
xn+1 = γnTyn + (1− γn)xn, ∀n ∈ N,

(2)

where {αn}n∈N, {βn}n∈N and {γn}n∈N are the sequences in [0, 1) with some
appropriate conditions.

A Banach space E is said to satisfy Opial’s property if, for any sequence {xn}n∈N in E that converges
weakly to x ∈ E, we have

lim sup
n→∞

‖xn − x‖ < lim sup
n→∞

‖xn − y‖, ∀y ∈ E \ {x}.
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Opial’s property is a powerful tool that can be utilized to derive a weak or strong convergence of
some iterative sequences [14]. In fact, since every weakly convergent sequence is necessarily bounded,
we have lim supn→∞ ‖xn − x‖ and lim supn→∞ ‖xn − y‖ are finite.

Note that Opial’s property is satisfied in Banach spaces lp for 1 ≤ p < ∞, but not in Lp[0, 2π]

spaces for 1 ≤ p < ∞ and p 6= 2.
Next, we recall the definition of a Bregman distance which is not a distance in the usual sense.

Let E be a Banach space and f : E → R be a strictly convex and Gâteaux differentiable function.
Let D f : E× E→ R be defined by

D f (x, y) = f (x)− f (y)− 〈x− y,∇ f (y)〉, ∀(x, y) ∈ E× E. (3)

Then, we define The Bregman distance [15] between x and y to be D f (x, y). In general, D f is not
symmetric and does not satisfy the triangle inequality. Clearly, we have D f (x, x) = 0, but D f (x, y) = 0
may not imply x = y, for instance, when f is a linear function on E. Moreover, since f is convex, it is
clear that D f (x, y) ≥ 0 for all x, y ∈ E.

Let f : E→ R be a strictly convex and Gâteaux differentiable function and C ⊆ E be nonempty.
A mapping T : C → E is said to be:

• Bregman nonexpansive if
D f (Tx, Ty) ≤ D f (x, y), ∀x, y ∈ C;

• Bregman quasi-nonexpansive if F(T) 6= ∅ and

D f (p, Tx) ≤ D f (p, x), ∀x ∈ C, p ∈ F(T);

• Bregman skew quasi-nonexpansive if F(T) 6= ∅ and

D f (Tx, p) ≤ D f (x, p), ∀x ∈ C, p ∈ F(T);

• Bregman nonspreading if

D f (Tx, Ty) + D f (Ty, Tx) ≤ D f (Tx, y) + D f (Ty, x), ∀x, y ∈ C.

Working with a Bregman distance D f with respect to f , the following Opial-like inequality holds [16]:
for any Banach space E and sequence {xn}n∈N in E, we have

lim sup
n→∞

D f (xn, x) < lim sup
n→∞

D f (xn, y), (4)

whenever xn ⇀ x 6= y (see Lemma 4 for details). This is called the Bregman–Opial property.
Inspired by the property, we propose a new class of Bregman generalized α-nonexpansive mappings

by using the Bregman distance as follows:
For any α ∈ [0, 1), a mapping T : C → C is said to be Bregman generalized α-nonexpansive if

D f (Tx, Ty) ≤ αD f (Tx, y) + αD f (x, Ty) + (1− 2α)D f (x, y), ∀x, y ∈ C. (5)

Let us give an example of a Bregman generalized α-nonexpansive mapping where F(T) 6= ∅.

Example 1. Let f : R→ R be a mapping defined by f (x) = x4. The associated Bregman distance is given by

D f (x, y) = x4 − y4 − (x− y)(4y3)

= x4 + 3y4 − 4xy3, ∀x, y ∈ R.
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Now, we define a mapping T : [0, 0.9]→ [0, 0.9] by

Tx = x2, ∀x ∈ [0, 0.9].

It is easy to verify that F(T) = {0}. While T is not a generalized α-nonexpansive mapping, it is indeed a
Bregman generalized α-nonexpansive mapping with respect to D f in the sense of the equation (5). Indeed, define
a mapping g : [0, 0.9]× [0, 0.9]→ R by

g(x, y) = αD f (Tx, y) + αD f (x, Ty) + (1− 2α)D f (x, y)− D f (Tx, Ty), ∀x, y ∈ [0, 0.9],

where
D f (Tx, y) = f (Tx)− f (y)− 〈Tx− y,∇ f (y)〉 = x8 + 3y4 − 4x2y3,

D f (x, Ty) = f (x)− f (Ty)− 〈x− Ty,∇ f (Ty)〉 = x4 + 3y8 − 4xy6,

D f (x, y) = f (x)− f (y)− 〈x− y,∇ f (y)〉 = x4 + 3y4 − 4xy3,

D f (Tx, Ty) = f (Tx)− f (Ty)− 〈Tx− Ty,∇ f (Ty)〉 = x8 + 3y8 − 4x2y6.

Then, we have

g(x, y) = αD f (Tx, y) + αD f (x, Ty) + (1− 2α)D f (x, y)− D f (Tx, Ty)

= α(x8 + 3y4 − 4x2y3) + α(x4 + 3y8 − 4xy6)

+ (1− 2α)(x4 + 3y4 − 4xy3)− (x8 + 3y8 − 4x2y6).

= (1− α)(x4 + 3y4 − x8 − 3y8) + 4xy3(α(2− y3) + xy3 − x
)
.

If we take α ∈ [ 1
2 , 1), then we can verify that g(x, y) ≥ 0 for all x, y ∈ [0, 0.9] as shown in Figure 1. Hence, T

is a Bregman generalized α-nonexpansive mapping.

Our paper is organized as follows: in Section 2, we state several definitions and known results
about Banach space and Bregman distance. In Section 3, we apply the Bregman–Opial property
to present some fixed point theorems and we prove some weak and strong convergence theorems
for Bregman generalized α-nonexpansive mappings in Banach spaces. In Section 4, we give some
numerical examples to illustrate the main results, which extend and generalize the results of Suzuki [10],
Pant et al. [11] and Naraghirad et al. [17].

2. Preliminaries

In this section, we introduce necessary definitions and results to be used later on.
Let S = {x ∈ E : ‖x‖ = 1}.

• A Banach space E is said to be strictly convex if
∥∥∥ x+y

2

∥∥∥ < 1 whenever x, y ∈ S and x 6= y.

• The space E is also said to be uniformly convex if, for all ε ∈ (0, 2], there exists δ > 0 such that
x, y ∈ S and ‖x− y‖ ≥ ε imply

∥∥∥ x+y
2

∥∥∥ ≤ 1− δ.
• A Banach space E is said to be smooth if

lim
t→0

‖x + ty‖ − ‖x‖
t

(6)

exists for all x, y ∈ S.
• The space E is also said to be uniformly smooth if the limit (6) is attained uniformly in x, y ∈ S.

Note that the following are well known:

(1) Every uniformly convex Banach space is strictly convex and reflexive.
(2) A Banach space E is uniformly convex if and only if E∗ is uniformly smooth.
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(3) If E is reflexive, then E is strictly convex if and only if E∗ is smooth (see, for instance, Takahashi [18]
for more details).

Let E be a smooth Banach space and let f (x) = ‖x‖2 for all x ∈ E. Then, it follows that
∇ f (x) = 2Jx for all x ∈ E, where J is the normalized duality mapping from E into E∗. Hence,
D f (x, y) = φ(x, y) ([19]), where φ : E× E→ R is defined as follows:

φ(x, y) := ‖x‖2 − 2〈x, Jy〉+ ‖y‖2, ∀(x, y) ∈ E× E. (7)

If E is a Hilbert space, the Equation (7) reduces to D f (x, y) = ‖x− y‖2.
A function f : E → (−∞,+∞] is said to be proper if the dom f = {x ∈ E : f (x) < ∞} 6= ∅. It is

also said to be lower semi-continuous if the set {x ∈ E : f (x) ≤ r} is closed for all r ∈ R. The function f
is said to be convex if

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y), ∀x, y ∈ E, α ∈ (0, 1). (8)

It is also said to be strictly convex if the strict inequality holds in the inequality (8) for all x, y ∈ dom f
with x 6= y and α ∈ (0, 1).

In the sequel, we shall denote by Γ(E) the class of proper lower semi-continuous convex functions
on E.

For each f ∈ Γ(E), the subdifferential ∂ f of f is defined by

∂ f (x) = {x∗ ∈ E∗ : f (x) + 〈y− x, x∗〉 ≤ f (y), ∀y ∈ E}, ∀x ∈ E.

Rockafellar’s theorem [20,21] ensures that ∂ f ⊂ E× E∗ is maximal monotone. If f ∈ Γ(E) and
g : E→ R is a continuous convex function, then ∂( f + g) = ∂ f + ∂g. For each f ∈ Γ(E), the (Fenchel)
conjugate function f ∗ of f is defined by

f ∗(x∗) = sup
x∈E
{〈x, x∗〉 − f (x)}, ∀x∗ ∈ E∗.

It is well known that
f (x) + f ∗(x∗) ≥ 〈x, x∗〉, ∀(x, x∗) ∈ E× E∗,

and (x, x∗) ∈ ∂ f is equivalent to
f (x) + f ∗(x∗) = 〈x, x∗〉. (9)

We also know that, if f ∈ Γ(E), then f ∗ : E∗ → (−∞,+∞] be a proper weak∗ lower
semi-continuous convex function (see Phelps [22] for more details on convex analysis).

In the sequel, we shall denote by Γ∗(E∗) the class of proper weak∗ lower semi-continuous convex
function on E∗.

Let f : E→ R be a convex function.

• For any x ∈ E, the gradient ∇ f (x) of f is defined to be the linear functional in E∗ such that

〈y,∇ f (x)〉 = lim
t→0

f (x + ty)− f (x)
t

, ∀y ∈ E.

• The function f is said to be Gâteaux differentiable at x if 〈−,∇ f (x)〉 ∈ E∗ for all x ∈ E. In this case,
we denote 〈−,∇ f (x)〉 by ∇ f (x).

• The function f is also said to be Fréchet differentiable at x if, for all ε > 0, there exists δ > 0 such
that ‖y− x‖ ≤ δ implies (see [6])

| f (y)− f (x)− 〈y− x,∇ f (x)〉| ≤ ε‖y− x‖.
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• A convex function f : E → R is said to be Gâteaux differentiable on E (Fréchet differentiable
on E, respectively) if it is Gâteaux differentiable everywhere (Fréchet differentiable everywhere,
respectively).

We know that, if a continuous convex function f : E→ R is Gâteaux differentiable on E, then ∇ f
is norm-to-weak∗ continuous on E. We also know that, if f is Fréchet differentiable on E, then ∇ f is
norm-to-norm continuous on E (see Butnariu and Iusem [15]).

Let Sr(x0) = {x ∈ E : ‖x− x0‖ = r} be the closed unit sphere with the radius r > 0 centered at
x0 ∈ E in a Banach space E.

• A function f : E → R is said to be strongly coercive if, for any sequence {xn}n∈N such that ‖xn‖
converges to ∞, we have

lim
n→∞

f (xn)

‖xn‖
= ∞.

• It is also said to be bounded on bounded sets if f (Sr(x0)) is bounded for each r > 0. Let S = {x ∈ E :
‖x‖ = 1} be the unit sphere of E.

• A function f : E→ R is said to be uniformly convex on bounded sets [23] (pp. 203, 221) if ρr(t) > 0
for all r, t > 0 , where ρr : [0,+∞)→ [0,+∞] is called the uniform convexity of f defined by

ρr(t) = inf
x,y∈Sr(0),‖x−y‖=t,α∈(0,1)

α f (x) + (1− α) f (y)− f (αx + (1− α)y)
α(1− α)

, ∀t ≥ 0.

It is known that ρr(t) is a nondecreasing function. The function f is also said to be locally uniformly
smooth on bounded sets ([23], pp. 207, 221) if the function σr : [0,+∞)→ [0,+∞] defined by

σr(t) = sup
x∈Sr(0),y∈SE ,α∈(0,1)

α f (x + (1− α)ty) + (1− α) f (x− αty)− f (x)
α(1− α)

satisfies

lim
t↓0

σr(t)
t

= 0, ∀r > 0.

If f : E→ R is uniformly convex on bounded sets of E, then we have

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y)− α(1− α)ρr(‖x− y‖) (10)

for all x, y in Sr(0) and α ∈ (0, 1).
Let E be a Banach space and f : E→ R be a strictly convex and Gâteaux differentiable function.

By the Equation (3), the Bregman distance D f satisfies [24]

D f (x, z) = D f (x, y) + D f (y, z) + 〈x− y,∇ f (y)−∇ f (z)〉, ∀x, y, z ∈ E. (11)

In particular, we have

D f (x, y) = −D f (y, x) + 〈y− x,∇ f (y)−∇ f (x)〉, ∀x, y ∈ E. (12)

The following definition is slightly different from that in Butnariu and Iusem [15] (p. 65) and
Koshsaka [6]:

Definition 1. Let E be a Banach space. Then, a function f : E→ R is said to be a Bregman function if the
following conditions are satisfied:

(a) f is continuous, strictly convex and Gâteaux differentiable;
(b) the set {y ∈ E : D f (x, y) ≤ r} is bounded for all x ∈ E and r > 0.
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The following lemma follows from Butnariu and Iusem [15] and Zǎlinscu [23]:

Lemma 1. Let E be a reflexive Banach space and let f : E→ R be a strongly coercive Bregman function. Then,
we have the following:

1. ∇ f : E→ E∗ is one-to-one, onto and norm-to-weak∗ continuous.
2. 〈x− y,∇ f (x)−∇(y)〉 = 0 if and only if x = y.
3. {x ∈ E : D f (x, y) ≤ r} is bounded for all y in E and r > 0.
4. dom f ∗ = E∗, f ∗ is Gâteaux differentiable function and ∇ f ∗ = (∇ f )−1.

Let C be a nonempty closed convex subset of a reflexive Banach space E. Let f : E → R be a
strictly convex and Gâteaux differentiable function. Then, it follows from [25] that, for any x ∈ E and
x0 ∈ C, we have

D f (x0, x) = min
y∈C

D f (y, x).

The Bregman projection proj f
C from E onto C is defined by proj f

C(x) = x0 for all x ∈ E. It is well

known that x0 = proj f
C(x) if and only if

〈y− x0,∇ f (x)−∇ f (x0)〉 ≤ 0, ∀y ∈ C. (13)

It is also known that proj f
C from E onto C has the following property:

D f (y, proj f
C(x)) + D f (proj f

C(x), x) ≤ D f (y, x), ∀y ∈ C, x ∈ E. (14)

For more details on Bregman projection proj f
C, see Butnariu and Iusem [15].

Now, we have the following propositions (see Zǎlinscu [23] (pp. 222, 224)):

Proposition 1. Let f ∈ Γ(E) be convex. Consider the following statements:

1. f is bounded and uniformly smooth on bounded sets;
2. f is Fréchet differentiable on E = dom f and ∇ f is uniformly continuous on bounded sets;
3. f ∗ is strongly coercive and uniformly convex on bounded sets.

Then, we have 1⇐⇒ 2⇐= 3. Moreover, if f is strongly coercive, then we also have 1 =⇒ 3. In this case, E∗ is
reflexive (also E is reflexive if E is a Banach space).

Proposition 2. Let f ∈ Γ(E). Consider the following statements:

1. f is strongly coercive and uniformly convex on bounded sets;
2. f ∗ is bounded and uniformly smooth on bounded sets;
3. f ∗ is Fréchet differentiable on E∗ dom f ∗ and ∇ f ∗ is uniformly continuous on bounded sets.

Then, we have 1 =⇒ 2 ⇐⇒ 3. Moreover, if f is bounded on bounded sets then 2 =⇒ 1. In this case E∗ is
reflexive (also E is reflexive if E is a Banach space).

The following result was first proved in Kohsaka and Takahashi [6] (see Lemma 3.1, p. 511):

Lemma 2. Let E be a Banach space and let f : E→ R be a Gâteaux differentiable function, which is uniformly
convex on bounded sets. Let {xn}n∈N and {yn}n∈N be bounded sequences in E and lim

n→∞
D f (xn, yn) = 0,

then we have lim
n→∞

‖xn − yn ‖= 0.

The following lemma is slightly different from that in Kohsaka and Takahashi [6] (see
Lemmas 3.2 and 3.3, pp. 511, 512):
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Lemma 3. Let E be a reflexive Banach space, let f : E→ R be a strongly coercive Bregman function and V be
the function defined by

V(x, x∗) = f (x)− 〈x, x∗〉+ f ∗(x∗), ∀x ∈ E, x∗ ∈ E∗.

The following assertions hold:

1. D f
(

x,∇ f ∗(x∗)
)
= V(x, x∗) for all x ∈ E and x∗ ∈ E∗.

2. V(x, x∗) + 〈∇ f ∗(x∗)− x, y∗〉 ≤ V(x, x∗ + y∗) for all x ∈ E and x∗, y∗ ∈ E∗.

It also follows from the definition that V is convex in the second variable x∗ and

V
(
x,∇ f (y)

)
= D f (x, y).

The following result was proved by Huang [16]:

Lemma 4. Let E be a Banach space and f : E → R be a strictly convex and Gâteaux differentiable function.
Suppose that {xn}n∈N is a sequence in E such that xn ⇀ x for some x ∈ E. Then,

lim sup
n→∞

D f (xn, x) < lim sup
n→∞

D f (xn, y)

for all y in the interior of dom f with y 6= x.

Let C be a nonempty closed convex subset of a reflexive Banach space E. Let {xn}n∈N be a
bounded sequence in E and f ∈ Γ(E) be Gâteaux differentiable function. For any x ∈ E, we set

Br(x, {xn}) = lim sup
n→∞

D f (xn, x).

• The Bregman asymptotic radius of {xn}n∈N relative to C is defined by

Br(C, {xn}) = in f {Br(x, {xn}) : x ∈ C}.

• The Bregman asymptotic center of {xn}n∈N relative to C is defined by

BA(C, {xn}) = {x ∈ C : Br(x, {xn}) = Br(C, {xn})}.

The following result was proved by Naraghirad [17]:

Proposition 3. Let E be a reflexive Banach space and f : E → R be strictly convex, Gâteaux differentiable
function, bounded on bounded sets. Let C be a nonempty closed convex subset of E. If {xn}n∈N is a bounded
sequence of C, then BA(C, {xn}n∈N) = {z} is a singleton.

Proof. In view of the definition of Bregman asymptotic radius, we may assume that {xn}n∈N converges
weakly to z ∈ C. By Lemma 4, we conclude that BA(C, {xn}n∈N) = {z}.

Let S be a nonempty set and B(S) be the Banach space of all bounded real-valued functions on S
with the supremum norm. Let E be a subspace of B(S) and µ be an element of E∗. Then, we denote by
µ( f ) the value of µ at f ∈ E. If e(s) = 1 for all s ∈ S, sometimes µ(e) will be denoted by µ(1). When E
contains constants, a linear functional µ on E is called a mean on E if ‖µ‖ = µ(1) = 1 (see, for instance,
Takahashi [18] for more details).

Theorem 1. Let E be a subspace of B(S) containing constants and let µ be a linear functional on E. Then, the
following conditions are equivalent:
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1. ‖µ‖ = µ(1) = 1, i.e., µ is a mean on E.
2. The inequalities

inf
s∈S

f (s) ≤ µ( f ) ≤ sup
s∈S

f (s)

hold for each f ∈ E.

Let l∞ be the Banach lattice of bounded real sequences with the supremum norm and µ be a linear
continuous functional on l∞. Let x = (x1, x2, · · · ) be a sequence in l∞. Then, sometimes we denote by
µn(xn) the value µ(x).

Theorem 2. (The existence of Banach limit) There exists a linear continuous functional µ on l∞ such that
‖µ‖ = µ(1) = 1 and µ(xn) = µ(xn+1) for each x = (x1, x2, · · · ) ∈ l∞.

Note that

1. If {xn}n∈N ∈ l∞ and xn ≥ 0 for each n ∈ N, then µ(xn) ≥ 0.
2. If xn = 1 for each n ∈ N, then µ(xn) = 1.

Such a functional µ is called a Banach limit and the value of µ at {xn}n∈N ∈ l∞ is denoted by µnxn

(see, for example [18].)
The following lemmas were proved by Reich and Sabach [26]:

Lemma 5. Let E be a reflexive Banach space and let f : E→ R be strictly convex, continuous, strongly coercive,
Gâteaux differentiable function, and bounded on bounded sets. Let C be a nonempty, closed and convex subset of
E. Let T : C → E be a Bregman quasi-nonexpansive mapping. Then, F(T) is closed and convex.

The following result was proved by Mainge [27]:

Lemma 6. Let {an}n∈N be a sequence in R with a subsequence {ani}i∈N such that ani < ani+1 for each i ∈ N.
Then, there exists another subsequence {amk}k∈N such that, for all (sufficiently large) number k, we have

amk < amk+1, ak < amk+1.

In fact, we can set mk = max{j ≤ k : aj < aj+1}.

Lemma 7 ([28]). Let {sn}n∈N be a sequence of nonnegative real numbers satisfying

sn+1 ≤ (1− γn)sn + γnδn, ∀n ≥ 1,

where {γn}n∈N and {δn}n∈N satisfy the following conditions:

(a) {γn}n∈N ⊂ [0, 1] and Σ∞
n=1γn = +∞ or, equivalently, Π∞

n=1(1− γn) = 0;
(b) lim sup

n→∞
δn < 0 or Σ∞

n=1γnδn < ∞.

Then, we have lim
n→∞

sn = 0.

3. The Main Results

3.1. Approximating Fixed Points

In this section, we obtain some fixed point theorem for a generalized α-nonexpansive mapping
with respect to the Bregman–Opial property.
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Lemma 8. Let f : E→ R be a strictly convex and Gâteaux differentiable function. Let C be a nonempty closed
convex subset of a reflexive Banach space E. Let T : C → E be a Bregman generalized α-nonexpansive mapping.
Then, we have

D f (x, Ty) ≤ D f (x, Tx) + (1− α)D f (x, y) + αD f (Tx, Ty)

+ α〈x− Tx,∇ f (y)−∇ f (Ty)〉+ 〈x− Tx,∇ f (Tx)−∇ f (Ty)〉, ∀x, y ∈ C.

Proof. Let x, y ∈ C. In view of the equation (11), we have

D f (Tx, Ty) ≤ αD f (Tx, y) + αD f (x, Ty) + (1− 2α)D f (x, y)

= α
[
D f (Tx, x) + D f (x, y) + 〈Tx− x,∇ f (x)−∇ f (y)〉

]
+ α
[
D f (x, Tx) + D f (Tx, Ty) + 〈x− Tx,∇ f (Tx)−∇ f (Ty)〉]

+ (1− 2α)D f (x, y)

= αD f (Tx, x) + αD f (x, y) + α〈Tx− x,∇ f (x)−∇ f (y)〉
+ αD f (x, Tx) + αD f (Tx, Ty) + α〈x− Tx,∇ f (Tx)−∇ f (Ty)〉
+ (1− 2α)D f (x, y)

= D f (Tx, x) + (1− α)D f (x, y) + αD f (x, Tx) + αD f (Tx, Ty)

+ α〈Tx− x,∇ f (x)−∇ f (y)〉+ α〈x− Tx,∇ f (Tx)−∇ f (Ty)〉
= −αD f (x, Tx) + α〈x− Tx,∇ f (x)−∇ f (Tx)〉
+ (1− α)D f (x, y) + αD f (x, Tx) + αD f (Tx, Ty)

+ α〈Tx− x,∇ f (x)−∇ f (y)〉+ α〈x− Tx,∇ f (Tx)−∇ f (Ty)〉
= (1− α)D f (x, y) + αD f (Tx, Ty)

+ α〈x− Tx,∇ f (y)−∇ f (Ty)〉+ α〈x− Tx,∇ f (Tx)−∇ f (Ty)〉
= (1− α)D f (x, y) + αD f (Tx, Ty) + α〈x− Tx,∇ f (y)−∇ f (Ty)〉.

This, together with the equation (11), implies that

D f (x, Ty) = D f (x, Tx) + D f (Tx, Ty) + 〈x− Tx,∇ f (Tx)−∇ f (Ty)〉
≤ D f (x, Tx) + (1− α)D f (x, y) + αD f (Tx, Ty)

+ α〈x− Tx,∇ f (y)−∇ f (Ty)〉+ 〈x− Tx,∇ f (Tx)−∇ f (Ty)〉.

This completes the proof.

Proposition 4. (Demiclosedness Principle) Let f : E→ R be a strictly convex, Gâteaux differentiable function
and bounded on bounded sets function. Let C be a nonempty subset of a reflexive Banach space E and T : C → E
be a Bregman generalized α-nonexpansive mapping. If xn ⇀ z in C and lim

n→∞
‖Txn − xn ‖= 0, then we have

Tz = z.

Proof. Since {xn}n∈N converges weakly to z and limn→∞ ‖Txn− xn ‖= 0, both the sequences {xn}n∈N
and {Txn}n∈N are bounded. Since ∇ f is uniformly norm-to-norm continuous on bounded subsets of
E (see, for instance, [23]), we arrive at

lim
n→∞

‖∇ f (xn)−∇ f (Txn) ‖= 0.

In view of Lemma 2, we deduce that lim
n→∞

D f (xn, Txn) = 0. Set

M1 = sup{‖∇ f (xn)‖, ‖∇ f (Txn)‖, ‖∇ f (z)‖, ‖∇ f (Tz)‖ : n ∈ N} < +∞.
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By Lemma 8, it follows that, for all n ∈ N,

D f (xn, Tz) ≤ D f (xn, Txn) + (1− α)D f (xn, z) + αD f (Txn, Tz)

+ α〈xn − Txn,∇ f (z)−∇ f (Tz)〉+ 〈xn − Txn,∇ f (Txn)−∇ f (Tz)〉
= D f (xn, Txn) + (1− α)D f (xn, z)

+ α[D f (Txn, xn) + D f (xn, Tz) + 〈Txn − xn,∇ f (xn)−∇ f (Tz)〉]
+ α〈xn − Txn,∇ f (z)−∇ f (Tz)〉+ 〈xn − Txn,∇ f (Txn)−∇ f (Tz)〉

= D f (xn, Txn) + (1− α)D f (xn, z)

+ αD f (Txn, xn) + αD f (xn, Tz) + α〈Txn − xn,∇ f (xn)−∇ f (Tz)〉
+ α〈xn − Txn,∇ f (z)−∇ f (Tz)〉+ 〈xn − Txn,∇ f (Txn)−∇ f (Tz)〉

= D f (xn, Txn) + (1− α)D f (xn, z)

− αD f (xn, Txn) + α〈xn − Txn,∇ f (xn)−∇ f (Txn)〉
+ αD f (xn, Tz) + α〈xn − Txn,∇ f (Tz)−∇ f (xn)〉
+ α〈xn − Txn,∇ f (z)−∇ f (Tz)〉+ 〈xn − Txn,∇ f (Txn)−∇ f (Tz)〉

= (1− α)D f (xn, Txn) + (1− α)D f (xn, z) + αD f (xn, Tz)

+ α〈xn − Txn,∇ f (z)−∇ f (Txn)〉+ 〈xn − Txn,∇ f (Txn)−∇ f (Tz)〉
≤ (1− α)D f (xn, Txn) + (1− α)D f (xn, z) + αD f (xn, Tz)

+ α‖xn − Txn‖‖∇ f (z)−∇ f (Txn)‖
+ ‖xn − Txn‖‖∇ f (Txn)−∇ f (Tz)‖
≤ (1− α)D f (xn, Txn) + (1− α)D f (xn, z) + αD f (xn, Tz)

+ 2αM1‖xn − Txn‖+ 2M1‖xn − Txn‖
≤ (1− α)D f (xn, Txn) + D f (xn, z)

+ 2αM1‖xn − Txn‖+ 2M1‖xn − Txn‖,

which implies that
lim sup

n→∞
D f (xn, Tz) ≤ lim sup

n→∞
D f (xn, z).

Therefore, it follows from the Bregman–Opial-like property that Tz = z. This completes the proof.

By Theorem 2, we can derive the following result, in which examples of the mapping T satisfying
all the conditions can be found in Hussain [5].

Theorem 3. Let f : E→ R be a strictly convex, continuous, strongly coercive, Gâteaux differentiable function,
bounded on bounded sets and uniformly convex on bounded sets of E. Let C be a nonempty closed convex subset
of a reflexive Banach space E and T : C → C be a mapping. Let {xn}n∈N be a bounded sequence of C and µ be a
mean on l∞. Suppose that

µnD f (xn, Ty) ≤ µnD f (xn, y), ∀y ∈ C.

Then, T has a fixed point in C.

Corollary 1. Let f , C and T be given as above. If C is also bounded and T : C → C is a Bregman generalized
α-nonexpansive mapping, then T has a fixed point.

Proof. Let µ be a Banach limit on l∞ and x ∈ C be such that {Tnx}n∈N is bounded. For each n ∈ N,
we have

D f (Tnx, Ty) ≤ αD f (Tnx, y) + αD f (Tn−1x, Ty) + (1− 2α)D f (Tn−1x, y), ∀y ∈ C.
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This implies that

µnD f (Tnx, Ty) ≤ αµnD f (Tnx, y) + αµnD f (Tnx, Ty) + (1− 2α)µnD f (Tnx, y)

≤ (1− α)µnD f (Tnx, y) + αµnD f (Tnx, Ty).

Thus, we have
µnD f (Tnx, Ty) ≤ µnD f (Tnx, y), ∀y ∈ C.

Therefore, it follows from Theorem 3 that F(T) 6= ∅. This completes the proof.

3.2. Weak and Strong Convergence Theorems for Bregman Generalized α-Nonexpansive Mappings

In this section, we prove some weak and strong convergence theorems concerning Bregman
generalized α-nonexpansive mappings in a reflexive Banach space. Naraghirad [17] proves the
following lemma.

Lemma 9. Let f : E→ R be a strictly convex and Gâteaux differentiable function. Let C be a nonempty closed
convex subset of a reflexive Banach space E and T : C → C be a Bregman skew quasi-nonexpansive mapping
with F(T) 6= ∅. Let {xn}n∈N and {yn}n∈N be the sequences defined by the Ishikawa iteration:{

yn = βnTxn + (1− βn)xn,
xn+1 = γnTyn + (1− γn)xn, ∀n ∈ N,

(15)

where {βn}n∈N and {γn}n∈N satisfy the following control conditions:

(a) 0 ≤ γn ≤ βn < 1 for all n ∈ N;
(b) lim

n→∞
βn = 0;

(c) Σ∞
n=1γnβn = ∞.

Then, the following assertions hold:

1. max{D f (xn+1, z), D f (yn, z)} ≤ D f (xn, z) for all z ∈ F(T) and n ∈ N.
2. lim

n→∞
D f (xn, z) exists for any z ∈ F(T).

Proof. 1. Let z ∈ F(T). In view of inequality (10), we have

D f (yn, z) = D f (βnTxn + (1− βn)xn, z)

≤ βnD f (Txn, z) + (1− βn)D f (xn, z)− βn(1− βn)ρr
(
‖Txn, z)− (xn, z)‖

)
≤ βnD f (xn, z) + (1− βn)D f (xn, z)

= D f (xn, z).

Consequently, we get

D f (xn+1, z) = D f (γnTyn + (1− γn)xn, z)

≤ γnD f (Tyn, z) + (1− γn)D f (xn, z)− γn(1− γn)ρr
(
‖Tyn, z)− (xn, z)‖

)
≤ γnD f (yn, z) + (1− γn)D f (xn, z)

≤ γnD f (xn, z) + (1− γn)D f (xn, z)

= D f (xn, z).

Therefore, we have 1.
2. Since D f (xn+1, z) ≤ D f (xn, z) for each n ∈ N, {D f (xn, z)}n∈N is a bounded and nonincreasing

sequence for all z ∈ F(T). Thus, we have limn→∞ D f (xn, z) exists for any z ∈ F(T). This completes the
proof.
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Theorem 4. Let f : E→ R be a strictly convex, Gâteaux differentiable function, bounded on bounded sets and
uniformly convex on bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E
and T : C → C be a Bregman generalized α-nonexpansive and Bregman skew quasi-nonexpansive mapping.
Let {βn}n∈N and {γn}n∈N be the sequences in [0, 1) and {xn}n∈N be the sequence defined by the Ishikawa
iteration with x1 ∈ C. Assume that lim

n→∞
‖xn − Txn‖ = 0. Then, we have the following:

1. If {xn}n∈N is bounded and lim inf
n→∞

‖Txn − xn‖ = 0, then F(T) 6= ∅.

2. If F(T) 6= ∅, then {xn}n∈N is bounded.

Proof. 1. By Corollary 1, we see that the fixed point set F(T) of T is nonempty. Assume that {xn}n∈N
is bounded and lim inf

n→∞
‖Txn − xn ‖= 0. Consequently, there is a bounded subsequence {Txnk}k∈N

of {Txn}n∈N such that lim
k→∞
‖Txnk − xnk‖ = 0. Since ∇g is uniformly norm-to-norm continuous on

bounded sets of E (see, for example, [23]), we have

lim
k→∞
‖∇ f (Txnk )−∇ f (xnk )‖ = 0.

In view of Proposition 3, we conclude that BA(C, {xnk}) = {z} for some z in C. Let

M2 = sup{‖∇ f (xnk )‖, ‖∇ f (Txnk )‖, ‖∇ f (z)‖, ‖∇ f (Tz)‖ : k ∈ N} < +∞.

It follows from Lemma 4 that

D f (xnk , Tz) ≤ D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (Txnk , Tz)

+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉
= D f (xnk , Txnk ) + (1− α)D f (xnk , z)

+ α[D f (Txnk , xnk ) + D f (xnk , Tz) + 〈Txnk − xnk ,∇ f (xnk )−∇ f (Tz)〉]
+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉

= D f (xnk , Txnk ) + (1− α)D f (xnk , z)

+ αD f (Txnk , xnk ) + αD f (xnk , Tz) + α〈Txnk − xnk ,∇ f (xnk )−∇ f (Tz)〉
+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉

= D f (xnk , Txnk ) + (1− α)D f (xnk , z)

− αD f (xnk , Txnk ) + α〈xnk − Txnk ,∇ f (xnk )−∇ f (Txnk )〉
+ αD f (xnk , Tz) + α〈xnk − Txnk ,∇ f (Tz)−∇ f (xnk )〉
+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉

= (1− α)D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (xnk , Tz)

+ α〈xnk − Txnk ,∇ f (z)−∇ f (Txnk )〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉
≤ (1− α)D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (xnk , Tz)

+ α‖xnk − Txnk‖‖∇ f (z)−∇ f (Txnk )‖+ ‖xnk − Txnk‖‖∇ f (Txnk )−∇ f (Tz)‖
≤ (1− α)D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (xnk , Tz)

+ 2αM1‖xnk − Txnk‖+ 2M1‖xnk − Txnk‖
≤ (1− α)D f (xnk , Txnk ) + D f (xnk , z)

+ 2αM1‖xnk − Txnk‖+ 2M1‖xnk − Txnk‖

for each k ∈ N. This implies

lim sup
n→∞

D f (xnk , Tz) ≤ lim sup
n→∞

D f (xnk , z).
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From the Bregman–Opial-like property, we obtain Tz = z.
2. Let F(T) 6= ∅ and let z ∈ F(T). It follows from Lemma 9 that lim

n→∞
‖xn − z ‖= 0 exists and

hence {xn}n∈N is bounded. This implies that the sequence {Tyn}n∈N is bounded too. This completes
the proof.

Theorem 5. Let f : E → R be a uniformly convex, Gâteaux differentiable function and bounded subset on
bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T : C → C be a
Bregman generalized α-nonexpansive and Bregman skew quasi-nonexpansive mapping with F(T) 6= ∅. Let
{βn}n∈N and {γn}n∈N be the sequences in [0, 1) and {xn}n∈N be the sequence with x1 ∈ C defined by the
Ishikawa iteration. Then, the sequence {xn}n∈N converges weakly to a fixed point of T.

Proof. By Corollary 1, we see that the fixed point set F(T) of T is nonempty. It follows from Theorem 4
that {xn}n∈N is bounded and lim

n→∞
‖Tyn − xn‖ = 0. Since E is reflexive, there exists a subsequence

{xni}i∈N of {xn}n∈N such that xni ⇀ p ∈ C as i→ ∞. By Proposition 4, we have p ∈ F(T).
Now, we claim that xn ⇀ p as n→ ∞. If not, then there exists a subsequence {xni}i∈N of {xn}n∈N

such that {xnj}j∈N converges weakly to a point q ∈ C with p 6= q. In view of Proposition 4 again,
we conclude that q ∈ F(T). By Lemma 9, lim

n→∞
D f (xn, z) exists for all z ∈ F(T). Thus, it follows from

the Bregman–Opial-like property that

lim
n→∞

D f (xn, p) = lim
i→∞

D f (xni , p) < lim
i→∞

D f (xni , q)

= lim
n→∞

D f (xn, q) = lim
j→∞

D f (xnj , q)

< lim
j→∞

D f (xnj , p) = lim
n→∞

D f (xn, p),

which is a contradiction. Thus, we have p = q and the desired assertion follows. This completes the
proof.

Theorem 6. Let f : E → R be a uniformly convex, Gâteaux differentiable function bounded subset on
bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T : C → C
the Bregman generalized α-nonexpansive and Bregman skew quasi-nonexpansive mapping. Let {βn}n∈N,
{γn}n∈N be the sequences in [0, 1) and {xn}n∈N be the sequence with x1 ∈ C defined by the Ishikawa iteration.
Then, the sequence {xn}n∈N converges strongly to a fixed point z of T.

Proof. By Corollary 1, we see that the fixed point set F(T) of T is nonempty. In view of Theorem 4,
it follows that {xn}n∈N is bounded and lim inf

n→∞
‖Txn − xn‖ = 0. By the compactness of C, there exists a

subsequence {xnk}k∈N of {xn}n∈N such that {xnk}k∈N converges strongly to a point z ∈ C. In view of
Lemma 2, we deduce that lim

k→∞
D f (xnk , z) = 0.

Now, we assume that lim
k→∞
‖Txnk − xnk‖ = 0 and, in particular, {Txnk}k∈N is bounded. Since ∇ f

is uniformly norm-to-norm continuous on bounded sets of E (see, for example, [23]), we have

lim
k→∞
‖∇ f (Txnk )−∇ f (xnk )‖ = 0.

Let
M3 = sup{‖∇ f (xnk )‖, ‖Txnk‖, ‖∇ f (z)‖, ‖∇ f (Tz)‖ : k ∈ N} < +∞.



Mathematics 2019, 7, 709 15 of 28

In view of Lemma 8, we obtain

D f (xnk , Tz) ≤ D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (Txnk , Tz)

+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉
= D f (xnk , Txnk ) + (1− α)D f (xnk , z)

+ α[D f (Txnk , xnk ) + D f (xnk , Tz) + 〈Txnk − xnk ,∇ f (xnk )−∇ f (Tz)〉]
+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉

= D f (xnk , Txnk ) + (1− α)D f (xnk , z)

+ αD f (Txnk , xnk ) + αD f (xnk , Tz) + α〈Txnk − xnk ,∇ f (xnk )−∇ f (Tz)〉
+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉

= D f (xnk , Txnk ) + (1− α)D f (xnk , z)

− αD f (xnk , Txnk ) + α〈xnk − Txnk ,∇ f (xnk )−∇ f (Txnk )〉
+ αD f (xnk , Tz) + α〈xnk − Txnk ,∇ f (Tz)−∇ f (xnk )〉
+ α〈xnk − Txnk ,∇ f (z)−∇ f (Tz)〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉

= (1− α)D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (xnk , Tz)

+ α〈xnk − Txnk ,∇ f (z)−∇ f (Txnk )〉+ 〈xnk − Txnk ,∇ f (Txnk )−∇ f (Tz)〉
≤ (1− α)D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (xnk , Tz)

+ α‖xnk − Txnk‖‖∇ f (z)−∇ f (Txnk )‖+ ‖xnk − Txnk‖‖∇ f (Txnk )−∇ f (Tz)‖
≤ (1− α)D f (xnk , Txnk ) + (1− α)D f (xnk , z) + αD f (xnk , Tz)

+ 2αM3‖xnk − Txnk‖+ 2M3‖xnk − Txnk‖
≤ (1− α)D f (xnk , Txnk ) + D f (xnk , z)

+ 2αM3‖xnk − Txnk‖+ 2M3‖xnk − Txnk‖

for all k ∈ N. It follows that lim
k→∞
‖xnk − Tz‖ = 0, and thus we have Tz = z. In view of Lemmas 2

and 9, we conclude that lim
n→∞

‖xn − z‖ = 0. Therefore, z is the strong limit of the sequence {xn}n∈N.

This completes the proof.

3.3. Bregman Noor’s Type Iteration for Bregman Generalized α-Nonexpansive Mappings

In this section, we propose the following Bregman Noor type iteration for Bregman generalized
α-nonexpansive mappings.

Let E be a reflexive Banach space and C be a nonempty closed convex subset of E. Let f : E→ R
be a strictly convex and Gâteaux differentiable function. Let T : C → C be a Bregman generalized
α-nonexpansive mapping with the fixed point set F(T) 6= ∅. Let {xn}n∈N, {yn}n∈N and {zn}n∈N be
three sequences defined by

zn = αn∇ f (Txn) + (1− αn)∇ f (xn),
yn = ∇ f ∗[βn∇ f (Tzn) + (1− βn)∇ f (xn)],
xn+1 = proj f

C
(
∇ f ∗[γn∇ f (Tyn) + (1− γn)∇ f (xn)]

)
, ∀n ∈ N,

(16)

where {αn}n∈N, {βn}n∈N and {γn}n∈N are the sequences in [0, 1).

Lemma 10. Let f : E→ R be a strongly coercive Bregman function. Let C be a nonempty closed convex subset
of a reflexive Banach space E. Let T : C → C be the Bregman quasi-nonexpansive mapping. Let {xn}n∈N,
{yn}n∈N and {zn}n∈N be the sequences defined by the equation (16) and {αn}n∈N , {βn}n∈N and {γn}n∈N be
the sequences in [0, 1). Then, the following assertions hold:
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1. max{D f (w, xn+1), D f (w, yn), D f (w, zn)} ≤ D f (w, xn) for all w ∈ F(T) and n ∈ N.
2. lim

n→∞
D f (w, xn) exists for any w ∈ F(T).

Proof. Let w ∈ F(T). In view of Lemma 3 and the equation (16), we conclude that

D f (w, zn) = D f
(
w, αn∇ f (Txn) + (1− αn)∇ f (xn)

)
= V

(
w, αn∇ f (Txn) + (1− αn)∇ f (xn)

)
≤ αnV

(
w,∇ f (Txn)

)
+ (1− αn)V

(
w,∇ f (xn)

)
= αnD f

(
w, Txn

)
+ (1− αn)D f

(
w, xn

)
≤ αnD f

(
w, xn

)
+ (1− αn)D f

(
w, xn

)
= D f

(
w, xn

)
.

In addition, we have

D f (w, yn) = D f
(
w,∇ f ∗[βn∇ f (Tzn) + (1− βn)∇ f (xn)

)
= V

(
w, βn∇ f (Tzn) + (1− βn)∇ f (xn)

)
≤ βnV

(
w,∇ f (Tzn)

)
+ (1− βn)V

(
w,∇ f (xn)

)
= βnD f

(
w, Tzn

)
+ (1− βn)D f

(
w, xn

)
≤ βnD f

(
w, zn

)
+ (1− βn)D f

(
w, xn

)
= βnD f

(
w, xn

)
+ (1− βn)D f

(
w, xn

)
= D f

(
w, xn

)
.

Consequently, using the inequality (14), we have

D f (w, xn+1) = D f
(
w, proj f

C
(
∇ f ∗[γn∇ f (Tyn) + (1− γn)∇ f (xn)])

)
≤ D f

(
w,∇ f ∗[γn∇ f (Tyn) + (1− γn)∇ f (xn)]

)
= V

(
w, γn∇ f (Tyn) + (1− γn)∇ f (xn)

)
≤ γnV

(
w,∇ f (Tyn)

)
+ (1− γn)V

(
w,∇ f (xn)

)
= γnD f

(
w, Tyn

)
+ (1− γn)D f

(
w, xn

)
≤ γnD f

(
w, yn

)
+ (1− γn)D f

(
w, xn

)
= γnD f

(
w, xn

)
+ (1− γn)D f

(
w, xn

)
= D f

(
w, xn

)
.

This implies that {D f (w, xn)}n∈N is a bounded and nonincreasing sequence for all w ∈ F(T). Thus,
we have lim

n→∞
D f (w, xn) exists for any w ∈ F(T). This completes the proof.

Theorem 7. Let f : E → R be a strongly coercive Bregman function that is bounded on bounded sets and
locally uniformly convex and locally uniformly smooth on E. Let C be a nonempty, closed and convex subset of a
reflexive Banach space E. Let T : C → C be the Bregman generalized α-nonexpansive mapping. Let {αn}n∈N,
{βn}n∈N and {γn}n∈N be the sequences in [0, 1) satisfying the following control condition:

∞

∑
n=1

γnβnαn(1− αn) = +∞. (17)

Then, the following are equivalent:
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1. There exists a bounded sequence {xn}n∈N ⊂ C generated by equations (16) such that

lim inf
n→∞

‖Txn − xn‖ = 0.

2. The fixed point set F(T) 6= ∅.

Proof. The implication 1 =⇒ 2 follows similarly as in the first part of the proof of Theorem 4.
For the implication 2 =⇒ 1, we assume that F(T) 6= ∅. The boundedness of the sequences

{xn}n∈N, {yn}n∈N and {zn}n∈N follows from Lemma 10 and Definition 1. Since T is a Bregman
quasi-nonexpansive mapping, it follows that, for any q ∈ F(T), we have

D f (q, Txn) ≤ D f (q, xn), ∀n ∈ N.

This, together with Definition 1 and the boundedness of {xn}n∈N, implies that {Txn}n∈N is bounded.
The function f is bounded on bounded sets of E and so∇ f is also bounded on bounded sets of E∗ (see,
for example, [[15], Proposition 1.1.11] for more details). This implies that the sequences {∇ f (xn)}n∈N,
{∇ f (yn)}n∈N, {∇ f (zn)}n∈N, {∇ f (Tzn)}n∈N, {∇ f (Tyn)}n∈N and {∇ f (Txn)}n∈N are bounded in E∗.
In view of Proposition 1, it follows that dom f ∗ = E∗ and f ∗ is strongly coercive and uniformly convex
on bounded sets of E∗. Let s2 = sup{‖∇ f (xn)‖, ‖∇ f (Txn)‖ : n ∈ N} < ∞ and let ρ∗s2

: E∗ → R be the
gauge of uniform convexity of the (Fenchel) conjugate function f ∗.

Claim. For any p ∈ F(T) and n ∈ N, we have

D f (p, zn) ≤ D f (p, xn)− αn(1− αn)ρ
∗
s2
(‖∇ f (xn)−∇ f (Txn)‖). (18)

Let p ∈ F(T). For each n ∈ N, it follows from the definition of the Bregman distance (3), Lemma 3,
the inequality (10) and the equation (16) that

D f (p, zn) = f (p)− f (zn)− 〈p− zn,∇ f (zn)〉
= f (p) + f ∗

(
∇ f (zn)

)
− 〈zn,∇ f (zn)〉 − 〈p− zn,∇ f (zn)〉

= f (p) + f ∗
(
∇ f (zn)

)
− 〈zn,∇ f (zn)〉 − 〈p,∇ f (zn)〉+ 〈zn,∇ f (zn)〉

= f (p) + f ∗
(
(1− αn)∇ f (xn) + αn∇ f (Txn)

)
− 〈p, ((1− αn)∇ f (xn) + αn∇ f (Txn)〉

≤ (1− αn) f (p) + αn f (p) + (1− αn) f ∗(∇ f (xn) + αn f ∗(∇ f (Txn))

− αn(1− αn)ρ
∗
s2
(‖∇ f (xn)−∇ f (Txn)‖)− (1− αn)〈p,∇ f (xn)〉 − αn〈p,∇ f (Txn)〉

= (1− αn)[ f (p) + f ∗(∇ f (xn))− 〈p,∇ f (xn)〉]
+ αn[ f (p) + f ∗(∇ f (Txn))− 〈p,∇ f (Txn)〉]− αn(1− αn)ρ

∗
s2
(‖∇ f (xn)−∇ f (Txn)‖)

= (1− αn)[ f (p)− f (xn) + 〈xn,∇ f (xn)〉 − 〈p,∇ f (xn)〉]
+ αn[ f (p)− f (Txn) + 〈Txn,∇ f (Txn)〉 − 〈p,∇ f (Txn)〉]
− αn(1− αn)ρ

∗
s2
(‖∇ f (xn)−∇ f (Txn)‖)

= (1− αn)D f (p, xn) + αnD f (p, Txn)− αn(1− αn)ρ
∗
s2
(‖∇ f (xn)−∇ f (Txn)‖)

≤ (1− αn)D f (p, xn) + αnD f (p, xn)− αn(1− αn)ρ
∗
s2
(‖∇ f (xn)−∇ f (Txn)‖)

= D f (p, xn)− αn(1− αn)ρ
∗
s2
(‖∇ f (xn)−∇ f (Txn)‖).
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In view of Lemma 3 and the inequality (18), we obtain

D f (p, yn) = D f
(

p, βn∇ f (Tzn) + (1− βn)∇ f (xn)
)

= V
(

p, βn∇ f (Tzn) + (1− βn)∇ f (xn)
)

≤ βnV
(

p,∇ f (Tzn)
)
+ (1− βn)V

(
p,∇ f (xn)

)
= βnD f

(
p, Tzn

)
+ (1− βn)D f

(
p, xn

)
≤ βnD f

(
p, zn

)
+ (1− βn)D f

(
p, xn

)
= βnD f

(
p, xn

)
− βnαn(1− αn)ρ

∗
s2
(‖∇ f (xn)−∇ f (Txn)‖).

Thus, it follows from Lemma 3 and the inequality (18) that

D f (p, xn+1) = D f
(

p,∇ f ∗[γn∇ f (Tyn) + (1− γn)∇ f (xn)])
)

= V
(

p, γn∇ f (Tyn) + (1− γn)∇ f (xn)
)

≤ γnV
(

p,∇ f (Tyn)
)
+ (1− γn)V

(
p,∇ f (xn)

)
= γnD f

(
p, Tyn

)
+ (1− γn)D f

(
p, xn

)
≤ γnD f

(
p, yn

)
+ (1− γn)D f

(
p, xn

)
= γnD f

(
p, xn

)
− γnαnβn(1− αn)ρ

∗
s2
(‖∇ f (xn)−∇ f (Txn)‖) + (1− γn)D f

(
p, xn

)
≤ D f

(
p, xn

)
− γnαnβn(1− αn)ρ

∗
s2
(‖∇ f (xn)−∇ f (Txn)‖)

and so
γnαnβn(1− αn)ρ

∗
s2
(‖∇ f (xn)−∇ f (Txn)‖) ≤ D f (p, xn)− D f (p, xn+1). (19)

Since {D f (xn, z)}n∈N converges, together with the control condition in equation (17), we have

lim
n→∞

‖∇ f (xn)−∇ f (Txn)‖ = 0.

Since ∇ f ∗ is uniformly norm-to-norm continuous on bounded sets of E∗ (see [23]), we arrive at

lim inf
n→∞

‖xn − Txn‖ = 0. (20)

This completes the proof.

Theorem 8. Let f : E → R be a strongly coercive Bregman function which is bounded on bounded sets,
locally uniformly convex and locally uniformly smooth on E. Let C be a nonempty closed convex subset of a
reflexive Banach space E. Let T : C → C be the Bregman generalized α-nonexpansive mapping with F(T) 6= ∅.
Let {αn}n∈N, {βn}n∈N and {γn}n∈N be the sequences in [0, 1) satisfying the following control condition:

Σ∞
n=1γnβnαn(1− αn) = +∞.

Let {xn}n∈N be iteratively generated by the Equation (16). Then, there exists a subsequence {xni}i∈N of
{xn}n∈N which converges weakly to a fixed point of T.

Proof. It follows from Theorem 7 that {xn}n∈N is bounded and lim inf
n→∞

‖Txn − xn‖ = 0. Since E is

reflexive, then there exists a subsequence {xni}i∈N of {xn}n∈N such that xni ⇀ p ∈ C as i→ ∞. Thus,
in view of Proposition 4, we conclude that p ∈ F(T) and the desired conclusion follows. This completes
the proof.

The construction of fixed points of nonexpansive mappings via Halpern’s algorithm [29] has
been extensively investigated recently in the current literature (see, for example, [30] and the references
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therein). Numerous results have been proved on Halpern’s iterations for nonexpansive mappings in
Hilbert and Banach spaces (see, for example, [10,31,32]).

Theorem 9. Let f : E→ R be a strongly coercive Bregman function which is bounded on bounded sets, locally
uniformly convex and locally uniformly smooth on E. Let C be a nonempty closed convex subset of a reflexive
Banach space E. Let T : C → C be the Bregman generalized α-nonexpansive mapping with F(T) 6= ∅. Let
{αn}n∈N, {βn}n∈N and {γn}n∈N be the sequences in [0, 1) satisfying the following control conditions:

(a) lim
n→∞

γn = 0;
(b) Σ∞

n=1γn = +∞;
(c) 0 < lim inf

n→∞
βn ≤ lim sup

n→∞
βn < 1.

Let u, x1 ∈ C be chosen arbitrarily and let {xn}n∈N be the sequence generated by
zn = αn∇ f (xn) + (1− αn)∇ f (Txn),
yn = ∇ f ∗[βn∇ f (xn) + (1− βn)∇ f (zn)],
xn+1 = proj f

C
(
∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
, ∀n ∈ N.

(21)

Then, {xn} converges strongly to proj f
F(T)u.

Proof. We divide the proof into three steps. In view of Lemma 5, we conclude that F(T) is closed and
convex. Set

w = proj f
F(T)u.

Step 1. Now, we prove that {xn}n∈N, {yn}n∈N and {zn}n∈N are the bounded sequences in C.
In fact, we first show that {xn}n∈N is bounded. Let p ∈ F(T) be fixed. In view of Lemma 3 and the
Equation (21), we have

D f (p, zn) = D f
(

p, αn∇ f (xn) + (1− αn)∇ f (Txn)
)

= V
(

p, αn∇ f (xn) + (1− αn)∇ f (Txn)
)

≤ αnV
(

p,∇ f (xn)
)
+ (1− αn)V

(
p,∇ f (Txn)

)
= αnD f

(
p, xn

)
+ (1− αn)D f

(
p, Txn

)
≤ αnD f

(
p, xn

)
+ (1− αn)D f

(
p, xn

)
= D f

(
p, xn

)
.

In addition, we have

D f (p, yn) = D f
(

p,∇ f ∗[βn∇ f (xn) + (1− βn)∇ f (zn)]
)

= V
(

p, βn∇ f (xn) + (1− βn)∇ f (zn)
)

≤ βnV
(

p,∇ f (xn)
)
+ (1− βn)V

(
p,∇ f (zn)

)
= βnD f

(
p, xn

)
+ (1− βn)D f

(
p, zn

)
≤ βnD f

(
p, xn

)
+ (1− βn)D f

(
p, xn

)
= D f

(
p, xn

)
.
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This, together with the Equation (16), implies that

D f (p, xn+1) = D f
(

p, proj f
C
(
∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
= D f

(
p,∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
= V

(
p, γn∇ f (u) + (1− γn)∇ f (yn)

)
≤ γnV

(
p,∇ f (u)

)
+ (1− γn)V

(
p,∇ f (yn)

)
= γnD f

(
p, u
)
+ (1− γn)D f

(
p, yn

)
≤ γnD f

(
p, u
)
+ (1− γn)D f

(
p, yn

)
≤ γnD f

(
p, u
)
+ (1− γn)D f

(
p, xn

)
≤ max{D f

(
p, u
)
, D f

(
p, xn

)
}.

Thus, by induction, we obtain

D f
(

p, xn+1
)
≤ max{D f

(
p, u
)
, D f

(
p, x1

)
}, ∀n ∈ N. (22)

This implies that the sequence {D f (p, xn)}n∈N is bounded:

D f
(

p, xn
)
≤ M4, ∀n ∈ N. (23)

In view of Definition 1, we deduce that the sequence {xn}n∈N is bounded. Since T is the Bregman
quasi-nonexpansive mapping from C into itself, we conclude that

D f
(

p, Txn
)
≤ D f

(
p, xn

)
, ∀n ∈ N. (24)

This, together with Definition 1 and the boundedness of {xn}n∈N, implies that {Txn}n∈N is bounded.
The function f is bounded on bounded sets of E and so ∇ f is also bounded on bounded sets of E∗

(see, for example, [[15], Proposition 1.1.11] for more details). This, together with Step 1, implies that the
sequences {∇ f (xn)}n∈N, {∇ f (yn)}n∈N, {∇ f (zn)}n∈N and {∇ f (Txn)}n∈N are bounded in E∗. In view
of Proposition 1, it follows that dom f ∗ = E∗ and f ∗ is strongly coercive and uniformly convex on
bounded sets of E. Let s3 = sup{‖∇ f (xn)‖, ‖∇ f (Txn)‖ : n ∈ N} and ρ∗s3

: E∗ → R be the gauge of the
uniform convexity of the (Fenchel) conjugate function f ∗.

Step 2. Next, we prove that

D f (w, zn) ≤ D f (w, xn)− αn(1− αn)(1− βn)ρ
∗
s3

(
‖∇ f (xn)−∇ f (Txn)‖

)
, ∀n ∈ N. (25)



Mathematics 2019, 7, 709 21 of 28

For each n ∈ N, in view of the definition of the Bregman distance (3), Lemma 3 and Lemma (9),
we obtain

D f (w, zn) = f (w)− f (zn)− 〈w− zn,∇ f (zn)〉
= f (w) + f ∗

(
∇ f (zn)

)
− 〈zn,∇ f (zn)〉 − 〈w− zn,∇ f (zn)〉

= f (w) + f ∗
(
∇ f (zn)

)
− 〈zn,∇ f (zn)〉 − 〈w,∇ f (zn)〉+ 〈zn,∇ f (zn)〉

= f (w) + f ∗
(
(1− αn)∇ f (xn) + αn∇ f (Txn)

)
− 〈w, ((1− αn)∇ f (xn) + αn∇ f (Txn)〉

≤ (1− αn) f (w) + αn f (w) + (1− αn) f ∗(∇ f (xn) + αn f ∗(∇ f (Txn))

− αn(1− αn)ρ
∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)

− (1− αn)〈w,∇ f (xn)〉 − αn〈w,∇ f (Txn)〉
= (1− αn)[ f (w) + f ∗(∇ f (xn))− 〈w,∇ f (xn)〉]
+ αn[ f (w) + f ∗(∇ f (Txn))− 〈w,∇ f (Txn)〉]
− αn(1− αn)ρ

∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)

= (1− αn)[ f (w)− f (xn) + 〈xn,∇ f (xn)〉 − 〈w,∇ f (xn)〉]
+ αn[ f (w)− f (Txn) + 〈Txn,∇ f (Txn)〉 − 〈w,∇ f (Txn)〉]
− αn(1− αn)ρ

∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)

= (1− αn)D f (w, xn) + αnD f (w, Txn)− αn(1− αn)ρ
∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)

≤ (1− αn)D f (w, xn) + αnD f (w, xn)− αn(1− αn)ρ
∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)

= D f (w, xn)− αn(1− αn)ρ
∗
s3
(‖∇ f (xn)−∇ f (Txn)‖).

In addition, we have

D f (w, yn) = D f
(
w, βn∇ f (xn) + (1− βn)∇ f (zn)

)
= V

(
w, βn∇ f (xn) + (1− βn)∇ f (zn)

)
≤ βnV

(
w,∇ f (xn)

)
+ (1− βn)V

(
w,∇ f (zn)

)
= βnD f

(
w, xn

)
+ (1− βn)D f

(
w, zn

)
≤ βnD f

(
w, xn

)
+ (1− βn)D f

(
w, xn

)
− αn(1− αn)(1− βn)ρ

∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)

= D f
(
w, xn

)
− αn(1− αn)(1− βn)ρ

∗
s3
(‖∇ f (xn)−∇ f (Txn)‖).

In view of Lemma 3 and the inequality (25), we obtain

D f (w, xn+1) = D f
(
w, proj f

C
(
∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
= D f

(
w,∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
= V

(
w, γn∇ f (u) + (1− γn)∇ f (yn)

)
≤ γnV

(
w,∇ f (u)

)
+ (1− γn)V

(
w,∇ f (yn)

)
= γnD f

(
w, u

)
+ (1− γn)D f

(
w, yn

)
≤ γnD f

(
w, u

)
+ (1− γn)[D f

(
w, xn

)
− αn(1− αn)(1− βn)ρ

∗
s3
(‖∇ f (xn)−∇ f (Txn)‖)].

(26)

Let

M5 = sup{|D f
(
w, u

)
− D f

(
w, xn

)
|+ αn(1− αn)(1− βn)ρ

∗
s3
(‖∇ f (xn)−∇ f (Txn)‖) : n ∈ N}.
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It follows from the inequality (26) that

αn(1− αn)(1− βn)ρ
∗
s3
(‖∇ f (xn)−∇ f (Txn)‖) ≤ D f (w, xn)− D f (w, xn+1) + γn M5. (27)

Let
wn = ∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)].

Then, xn+1 = proj f
C(wn) for each n ∈ N. In view of Lemma 3 and the inequality (25), we obtain

D f (w, xn+1) = D f
(
w, proj f

C
(
∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
≤ D f

(
w,∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]

)
= V

(
w, γn∇ f (u) + (1− γn)∇ f (yn)

)
≤ V

(
w, γn∇ f (u) + (1− γn)∇ f (yn)

)
− γn(∇ f (u)−∇ f (w))

− 〈∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)]− w,−γn(∇ f (u)−∇ f (w))〉
= V

(
w, γn∇ f (w) + (1− γn)∇ f (yn)

)
+ γn〈wn − w,∇ f (u)−∇ f (w)〉

≤ γnV
(
w,∇ f (w)

)
+ (1− γn)V

(
w,∇ f (yn)

)
+ γn〈wn − w,∇ f (u)−∇ f (w)〉

= γnD f
(
w, w

)
+ (1− γn)D f

(
w, yn

)
+ γn〈wn − w,∇ f (u)−∇ f (w)〉

= (1− γn)D f
(
w, yn

)
+ γn〈wn − w,∇ f (u)−∇ f (w)〉.

(28)

Step 3. Next, we show that xn → w as n→ ∞.
Case 1. If there exists n0 ∈ N such that {D f (w, xn)}∞

n=n0
is nonincreasing, then {D f (w, xn)}n∈N

is convergent. Thus, we have D f (w, xn) − D f (w, xn+1) → 0 as n → ∞. This, together with the
inequality (27) and the conditions (a) and (c), implies that

lim
n→∞

ρ∗s3

(
‖∇ f (xn)−∇ f (Txn)‖ = 0.

Therefore, from the property of ρ∗s3
, it follows that

lim
n→∞

‖∇ f (xn)−∇ f (Txn)‖ = 0. (29)

Since ∇ f ∗ = (∇ f )−1 (Lemma 1) is uniformly norm-to-norm continuous on bounded sets of E∗ (see,
for example, [23]), we arrive at

lim
n→∞

‖xn − Txn‖ = 0. (30)

On the other hand, we have

D f (Txn, zn) = D f
(
Txn, γn∇ f (xn) + (1− γn)∇ f (Txn)

)
= V

(
Txn, γn∇ f (xn) + (1− γn)∇ f (Txn)

)
≤ γnV

(
Txn,∇ f (xn)

)
+ (1− γn)V

(
Txn,∇ f (Txn)

)
= γnD f

(
Txn, xn

)
+ (1− γn)D f

(
Txn, Txn

)
≤ γnD f

(
Txn, xn

)
.

This, together with Lemma 2 and the Equation (30), implies that

lim
n→∞

D f (Txn, zn) = 0.

Similarly, we have

D f (zn, wn) ≤ γnD f (zn, u) + (1− γn)D f (zn, zn) = γnD f (zn, u)→ 0
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as n→ ∞. In view of Lemma 2 and the Equation (30), we conclude that

lim
n→∞

‖zn − Txn‖ = 0, lim
n→∞

‖wn − xn‖ = 0.

Since {xn}n∈N is bounded, together with the inequality (13), we can assume that there exists a
subsequence {xni}i∈N of {xn}n∈N such that xni ⇀ z ∈ F(T) (Proposition 4) and

lim sup
n→∞

〈xn − w,∇ f (u)−∇ f (w)〉 = lim
i→∞
〈xni − w,∇ f (u)−∇ f (w)〉

= 〈y− w,∇ f (u)−∇ f (w)〉
≤ 0.

Thus, it follows that

lim sup
n→∞

〈zn − w,∇ f (u)−∇ f (w)〉 = lim sup
n→∞

〈xn − w,∇ f (u)−∇ f (w)〉 ≤ 0.

The desired result follows from Lemmas 2 and 7 and the inequality (28).
Case 2. Suppose that there exists a subsequence {ni}i∈N of {n}n∈N such that

D f (w, xni ) < D f (w, xni+1), ∀i ∈ N.

By Lemma 6, there exists a non-decreasing sequence {mk}k∈N of positive integers with mk → ∞
such that

D f (w, xmk ) < D f (w, xmk+1), and D f (w, xk) < D f (w, xmk+1), ∀k ∈ N.

This, together with the inequality (27), implies that

αmk (1− αmk )(1− βmk )ρ
∗
s3
(‖∇ f (xmk )−∇ f (Txmk )‖) ≤ D f (w, xmk )− D f (w, xmk+1) + γmk M5

≤ γmk M5, ∀k ∈ N.

Then, by the conditions (a) and (c), we get

lim
k→∞

ρ∗s3

(
‖∇g(xmk )−∇ f (Txmk )‖) = 0.

By the same argument as in Case 1, we arrive at

lim sup
k→∞

〈wmk − w,∇ f (u)−∇ f (w)〉 = lim sup
k→∞

〈xmk − w,∇ f (u)−∇ f (w)〉 ≤ 0. (31)

It follows from the inequality (28) that

D f (w, xmk+1) ≤ (1− γmk )D f (w, xmk ) + γmk D f (w, xmk ) + γmk 〈zmk − w,∇ f (u)−∇ f (w)〉. (32)

Since D f (w, xmk ) ≤ D f (w, xmk+1), it follows that

γmk D f (w, xmk ) ≤ D f (w, xmk )− D f (w, xmk+1) + γmk 〈wmk − w,∇ f (u)−∇ f (w)〉
≤ γmk 〈wmk − w,∇ f (u)−∇ f (w)〉.

In particular, since γmk > 0, we obtain

D f (w, xmk ) ≤ 〈wmk − w,∇ f (u)−∇ f (w)〉.



Mathematics 2019, 7, 709 24 of 28

In view of the inequality (31), we deduce that

lim
k→∞

D f (w, xmk ) = 0.

This, together with the inequality (32), implies

lim
k→∞

D f (w, xmk+1) = 0.

On the other hand, we have
D f (w, xk) ≤ D f (w, xmk+1), ∀k ∈ N.

This ensures that xk → w as k→ ∞ by Lemma 2. This completes the proof.

4. Numerical Examples

In this section, we illustrate a direct application of Theorem 9 on a typical example on a real line.

Example 2. Let the mappings f and T be given in Example 1 and set

{αn} =
{n + 1

4n

}
, {βn

}
=
{n + 1

5n

}
, {γn} =

{ 1
500n

}
, ∀n ≥ 1.

Consider the following:

E = R, C = [0, 0.9], Tx = x2, f (x) = x4, ∇ f (x) = 4x3,

f ∗(x∗) = sup{〈x∗, x〉 − f (x) : x ∈ E}, f ∗(z) =
3z

4
3

4
4
3

, ∇ f ∗(z) =
( z

4

) 1
3
.

Let initial values x1 = 0 and u = 0.1. Then, we use iteration from the Equation (21) to generate the sequences
{xn}, {yn} and {zn} as follows:

zn = αn∇ f (xn) + (1− αn)∇ f (Txn) =

(
n + 1

n

)
x3

n +

(
3n + 1

n

)
x6

n,

yn = ∇ f ∗[βn∇ f (xn) + (1− βn)∇ f (zn)] =

[(
n + 1

5n

)
x3

n +

(
3n + 1

4n

)
z3

n

] 1
3

,

xn+1 = ∇ f ∗[γn∇ f (u) + (1− γn)∇ f (yn)] =

[
u3

500n
+

(
500n− 1

500n

)
y3

n

] 1
3

.

We have the following Table 1 and Figures 2 and 3 which show that {xn}, {zn} and {yn} converge to w = 0.
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Table 1. Values of zn, yn and xn.

No. of Iterations zn yn xn ‖xn+1− xn‖
1 0.0000000 0.0000000 0.0200000 0.0200000
2 0.0000120 0.0133887 0.0185640 0.0014360
3 0.0000085 0.0119489 0.0163510 0.0022130
4 0.0000055 0.0103005 0.0145690 0.0017821
5 0.0000037 0.0090538 0.0132797 0.0012893
6 0.0000027 0.0081755 0.0123411 0.0009386
7 0.0000021 0.0075456 0.0116283 0.0007128
8 0.0000018 0.0070726 0.0110622 0.0005662
9 0.0000015 0.0067004 0.0105959 0.0004662
10 0.0000013 0.0063966 0.0102015 0.0003944
...

...
...

...
...

100 0.0000001 0.0027372 0.0046494 0.0000157
200 0.0000001 0.0021635 0.0036871 0.0000062
300 0.0000000 0.0018873 0.0032201 0.0000036
400 0.0000000 0.0017135 0.0029252 0.0000024
...

...
...

...
...

491 0.0000000 0.0015998 0.0027318 0.0000019
492 0.0000000 0.0015987 0.0027300 0.0000019
493 0.0000000 0.0015976 0.0027281 0.0000018
494 0.0000000 0.0015965 0.0027263 0.0000018
495 0.0000000 0.0015954 0.0027244 0.0000018
496 0.0000000 0.0015943 0.0027226 0.0000018
497 0.0000000 0.0015933 0.0027208 0.0000018
498 0.0000000 0.0015922 0.0027190 0.0000018
499 0.0000000 0.0015911 0.0027171 0.0000018

Figure 1. Plotting of g(x, y) for all x, y ∈ [0, 0.9] and α = 0.56.



Mathematics 2019, 7, 709 26 of 28

Figure 2. Plotting of {xn}, {yn} and {zn} converging to 0 as n→ ∞.

Figure 3. Plotting of ‖xn+1 − xn‖.

5. Conclusions

First, we have established the new class of Bregman generalized α-nonexpansive mappings.
Second, we have obtained new theorems on fixed points and weak and strong convergence using
multi-step iterations and Bregman generalized α-nonexpansive mappings. Finally, we have analysed
computational procedures based on Ishikawa and Noor iterations with a numerical simulation to
support the results.
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