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Abstract

:

In this paper, we introduce a new class of Bregman generalized α-nonexpansive mappings in terms of the Bregman distance. We establish several weak and strong convergence theorems of the Ishikawa and Noor iterative schemes for Bregman generalized α-nonexpansive mappings in Banach spaces. A numerical example is given to illustrate the main results of fixed point approximation using Halpern’s algorithm.
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1. Introduction


In 1967, Bregman [1] discovered an effective technique using the so-called Bregman distance function Df in the process of designing and analyzing feasibility and optimization algorithms. This opened a growing area of research in which Bregman’s technique was applied in various ways in order to design and analyze some algorithms for solving not only feasibility and optimization problems, but also algorithms for solving variational inequality problems, equilibrium problems, and fixed point problems for nonlinear mappings (see [2,3,4]).



In recent years, several authors have been constructing algorithms for finding fixed points of nonlinear mappings by using the Bregman distance and the Bregman projection (see [5,6] and the reference therein). In 2003, Bauschke et al. [7,8] first introduced the class of Bregman firmly nonexpansive mappings which is a generalization of the classical firmly nonexpansive mappings. A few years ago, Reich [9] studied the class of Bregman strongly nonexpansive mappings and showed the existence of their common fixed points.



Motivated by the aforementioned results, we investigate the new class of Bregman generalized α-nonexpansive mappings. We prove the existence of fixed points for such mappings under some conditions, and establish weak and strong convergence theorems regarding those fixed points. This is achieved by utilizing the Ishikawa and Noor iterative schemes, as well as Halpern’s algorithm to generate a convergent sequence with desired properties.



Throughout this paper, we assume that E is a real Banach space with the norm ∥·∥ and the dual space E∗. We denote the value of x∗∈E∗ at x∈E by ⟨x,x∗⟩. If {xn}n∈N is a sequence in E, we denote the strong convergence and the weak convergence of {xn}n∈N to a point x∈E by xn→x and xn⇀x, respectively.



Let C be a nonempty subset of E and T:C→C be a mapping. Then, a point x∈C is called a fixed point of T if Tx=x and the set of all fixed points of T is denoted by F(T). A mapping T:C→C is said to be:




	
nonexpansive if


∥Tx−Ty∥≤∥x−y∥,∀x,y∈C;











	
quasi-nonexpansive if F(T)≠∅ and


∥Tx−y∥≤∥x−y∥,∀x∈C,y∈F(T);











	
Suzuki-type generalized nonexpansive [10] if


12∥x−Tx∥≤∥x−y∥⟹∥Tx−Ty∥≤∥x−y∥,∀x,y∈C;











	
α-nonexpansive, where α<1, if


∥Tx−Ty∥2≤α∥Tx−y∥2+α∥x−Ty∥2+(1−2α)∥x−y∥2,∀x,y∈C;











	
generalized α-nonexpansive [11], where α∈[0,1), if


12∥x−Tx∥≤∥x−y∥










⟹∥Tx−Ty∥≤α∥Tx−y∥+α∥x−Ty∥+(1−2α)∥x−y∥,∀x,y∈C.
















Let C be a nonempty subset of a Banach space E and T:C→C be a nonexpansive mapping. For any x1∈C,




	
The Ishikawa iteration [12] is given by


yn=βnTxn+(1−βn)xn,xn+1=γnTyn+(1−γn)xn,∀n∈N,



(1)




where {βn}n∈N and {γn}n∈N are sequences in [0,1) with some appropriate conditions.



	
The Noor iteration [13] is given by


zn=αnTxn+(1−αn)xn,yn=βnTzn+(1−βn)xn,xn+1=γnTyn+(1−γn)xn,∀n∈N,



(2)




where {αn}n∈N, {βn}n∈N and {γn}n∈N are the sequences in [0,1) with some appropriate conditions.








A Banach space E is said to satisfy Opial’s property if, for any sequence {xn}n∈N in E that converges weakly to x∈E, we have


lim supn→∞∥xn−x∥<lim supn→∞∥xn−y∥,∀y∈E∖{x}.











Opial’s property is a powerful tool that can be utilized to derive a weak or strong convergence of some iterative sequences [14]. In fact, since every weakly convergent sequence is necessarily bounded, we have lim supn→∞∥xn−x∥ and lim supn→∞∥xn−y∥ are finite.



Note that Opial’s property is satisfied in Banach spaces lp for 1≤p<∞, but not in Lp[0,2π] spaces for 1≤p<∞ and p≠2.



Next, we recall the definition of a Bregman distance which is not a distance in the usual sense. Let E be a Banach space and f:E→R be a strictly convex and Gâteaux differentiable function. Let Df:E×E→R be defined by


Df(x,y)=f(x)−f(y)−⟨x−y,∇f(y)⟩,∀(x,y)∈E×E.



(3)







Then, we define The Bregman distance [15] between x and y to be Df(x,y). In general, Df is not symmetric and does not satisfy the triangle inequality. Clearly, we have Df(x,x)=0, but Df(x,y)=0 may not imply x=y, for instance, when f is a linear function on E. Moreover, since f is convex, it is clear that Df(x,y)≥0 for all x,y∈E.



Let f:E→R be a strictly convex and Gâteaux differentiable function and C⊆E be nonempty. A mapping T:C→E is said to be:




	
Bregman nonexpansive if


Df(Tx,Ty)≤Df(x,y),∀x,y∈C;











	
Bregman quasi-nonexpansive if F(T)≠∅ and


Df(p,Tx)≤Df(p,x),∀x∈C,p∈F(T);











	
Bregman skew quasi-nonexpansive if F(T)≠∅ and


Df(Tx,p)≤Df(x,p),∀x∈C,p∈F(T);











	
Bregman nonspreading if


Df(Tx,Ty)+Df(Ty,Tx)≤Df(Tx,y)+Df(Ty,x),∀x,y∈C.
















Working with a Bregman distance Df with respect to f, the following Opial-like inequality holds [16]: for any Banach space E and sequence {xn}n∈N in E, we have


lim supn→∞Df(xn,x)<lim supn→∞Df(xn,y),



(4)




whenever xn⇀x≠y (see Lemma 4 for details). This is called the Bregman–Opial property.



Inspired by the property, we propose a new class of Bregman generalized α-nonexpansive mappings by using the Bregman distance as follows:



For any α∈[0,1), a mapping T:C→C is said to be Bregman generalized α-nonexpansive if


Df(Tx,Ty)≤αDf(Tx,y)+αDf(x,Ty)+(1−2α)Df(x,y),∀x,y∈C.



(5)







Let us give an example of a Bregman generalized α-nonexpansive mapping where F(T)≠∅.



Example 1.

Let f:R→R be a mapping defined by f(x)=x4. The associated Bregman distance is given by


Df(x,y)=x4−y4−(x−y)(4y3)=x4+3y4−4xy3,∀x,y∈R.








Now, we define a mapping T:[0,0.9]→[0,0.9] by


Tx=x2,∀x∈[0,0.9].








It is easy to verify that F(T)={0}. While T is not a generalized α-nonexpansive mapping, it is indeed a Bregman generalized α-nonexpansive mapping with respect to Df in the sense of the equation (5). Indeed, define a mapping g:[0,0.9]×[0,0.9]→R by


g(x,y)=αDf(Tx,y)+αDf(x,Ty)+(1−2α)Df(x,y)−Df(Tx,Ty),∀x,y∈[0,0.9],








where


Df(Tx,y)=f(Tx)−f(y)−⟨Tx−y,∇f(y)⟩=x8+3y4−4x2y3,Df(x,Ty)=f(x)−f(Ty)−⟨x−Ty,∇f(Ty)⟩=x4+3y8−4xy6,Df(x,y)=f(x)−f(y)−⟨x−y,∇f(y)⟩=x4+3y4−4xy3,Df(Tx,Ty)=f(Tx)−f(Ty)−⟨Tx−Ty,∇f(Ty)⟩=x8+3y8−4x2y6.








Then, we have


g(x,y)=αDf(Tx,y)+αDf(x,Ty)+(1−2α)Df(x,y)−Df(Tx,Ty)=α(x8+3y4−4x2y3)+α(x4+3y8−4xy6)+(1−2α)(x4+3y4−4xy3)−(x8+3y8−4x2y6).=(1−α)(x4+3y4−x8−3y8)+4xy3α(2−y3)+xy3−x.








If we take α∈[12,1), then we can verify that g(x,y)≥0 for all x,y∈[0,0.9] as shown in Figure 1. Hence, T is a Bregman generalized α-nonexpansive mapping.





Our paper is organized as follows: in Section 2, we state several definitions and known results about Banach space and Bregman distance. In Section 3, we apply the Bregman–Opial property to present some fixed point theorems and we prove some weak and strong convergence theorems for Bregman generalized α-nonexpansive mappings in Banach spaces. In Section 4, we give some numerical examples to illustrate the main results, which extend and generalize the results of Suzuki [10], Pant et al. [11] and Naraghirad et al. [17].




2. Preliminaries


In this section, we introduce necessary definitions and results to be used later on.



Let S={x∈E:∥x∥=1}.




	
A Banach space E is said to be strictly convex if x+y2<1 whenever x,y∈S and x≠y.



	
The space E is also said to be uniformly convex if, for all ϵ∈(0,2], there exists δ>0 such that x,y∈S and ∥x−y∥≥ϵ imply x+y2≤1−δ.



	
A Banach space E is said to be smooth if


limt→0∥x+ty∥−∥x∥t



(6)




exists for all x,y∈S.



	
The space E is also said to be uniformly smooth if the limit (6) is attained uniformly in x,y∈S.








Note that the following are well known:




	(1)

	
Every uniformly convex Banach space is strictly convex and reflexive.




	(2)

	
A Banach space E is uniformly convex if and only if E∗ is uniformly smooth.




	(3)

	
If E is reflexive, then E is strictly convex if and only if E∗ is smooth (see, for instance, Takahashi [18] for more details).









Let E be a smooth Banach space and let f(x)=∥x∥2 for all x∈E. Then, it follows that ∇f(x)=2Jx for all x∈E, where J is the normalized duality mapping from E into E∗. Hence, Df(x,y)=ϕ(x,y) ([19]), where ϕ:E×E→R is defined as follows:


ϕ(x,y):=∥x∥2−2⟨x,Jy⟩+∥y∥2,∀(x,y)∈E×E.



(7)







If E is a Hilbert space, the Equation (7) reduces to Df(x,y)=∥x−y∥2.



A function f:E→(−∞,+∞] is said to be proper if the domf={x∈E:f(x)<∞}≠∅. It is also said to be lower semi-continuous if the set {x∈E:f(x)≤r} is closed for all r∈R. The function f is said to be convex if


f(αx+(1−α)y)≤αf(x)+(1−α)f(y),∀x,y∈E,α∈(0,1).



(8)







It is also said to be strictly convex if the strict inequality holds in the inequality (8) for all x,y∈domf with x≠y and α∈(0,1).



In the sequel, we shall denote by Γ(E) the class of proper lower semi-continuous convex functions on E.



For each f∈Γ(E), the subdifferential∂f of f is defined by


∂f(x)={x∗∈E∗:f(x)+⟨y−x,x∗⟩≤f(y),∀y∈E},∀x∈E.











Rockafellar’s theorem [20,21] ensures that ∂f⊂E×E∗ is maximal monotone. If f∈Γ(E) and g:E→R is a continuous convex function, then ∂(f+g)=∂f+∂g. For each f∈Γ(E), the (Fenchel) conjugate functionf∗ of f is defined by


f∗(x∗)=supx∈E{⟨x,x∗⟩−f(x)},∀x∗∈E∗.








It is well known that


f(x)+f∗(x∗)≥⟨x,x∗⟩,∀(x,x∗)∈E×E∗,








and (x,x∗)∈∂f is equivalent to


f(x)+f∗(x∗)=⟨x,x∗⟩.



(9)







We also know that, if f∈Γ(E), then f∗:E∗→(−∞,+∞] be a proper weak∗ lower semi-continuous convex function (see Phelps [22] for more details on convex analysis).



In the sequel, we shall denote by Γ∗(E∗) the class of proper weak∗ lower semi-continuous convex function on E∗.



Let f:E→R be a convex function.




	
For any x∈E, the gradient∇f(x) of f is defined to be the linear functional in E∗ such that


⟨y,∇f(x)⟩=limt→0f(x+ty)−f(x)t,∀y∈E.











	
The function f is said to be Gâteaux differentiable at x if ⟨−,∇f(x)⟩∈E∗ for all x∈E. In this case, we denote ⟨−,∇f(x)⟩ by ∇f(x).



	
The function f is also said to be Fréchet differentiable at x if, for all ϵ>0, there exists δ>0 such that ∥y−x∥≤δ implies (see [6])


|f(y)−f(x)−⟨y−x,∇f(x)⟩|≤ϵ∥y−x∥.











	
A convex function f:E→R is said to be Gâteaux differentiable on E (Fréchet differentiable on E, respectively) if it is Gâteaux differentiable everywhere (Fréchet differentiable everywhere, respectively).








We know that, if a continuous convex function f:E→R is Gâteaux differentiable on E, then ∇f is norm-to-weak∗ continuous on E. We also know that, if f is Fréchet differentiable on E, then ∇f is norm-to-norm continuous on E (see Butnariu and Iusem [15]).



Let Sr(x0)={x∈E:∥x−x0∥=r} be the closed unit sphere with the radius r>0 centered at x0∈E in a Banach space E.




	
A function f:E→R is said to be strongly coercive if, for any sequence {xn}n∈N such that ∥xn∥ converges to ∞, we have


limn→∞f(xn)∥xn∥=∞.











	
It is also said to be bounded on bounded sets if f(Sr(x0)) is bounded for each r>0. Let S={x∈E:∥x∥=1} be the unit sphere of E.



	
A function f:E→R is said to be uniformly convex on bounded sets [23] (pp. 203, 221) if ρr(t)>0 for all r,t>0, where ρr:[0,+∞)→[0,+∞] is called the uniform convexity of f defined by


ρr(t)=infx,y∈Sr(0),∥x−y∥=t,α∈(0,1)αf(x)+(1−α)f(y)−f(αx+(1−α)y)α(1−α),∀t≥0.
















It is known that ρr(t) is a nondecreasing function. The function f is also said to be locally uniformly smooth on bounded sets ([23], pp. 207, 221) if the function σr:[0,+∞)→[0,+∞] defined by


σr(t)=supx∈Sr(0),y∈SE,α∈(0,1)αf(x+(1−α)ty)+(1−α)f(x−αty)−f(x)α(1−α)








satisfies


limt↓0σr(t)t=0,∀r>0.











If f:E→R is uniformly convex on bounded sets of E, then we have


f(αx+(1−α)y)≤αf(x)+(1−α)f(y)−α(1−α)ρr(∥x−y∥)



(10)




for all x,y in Sr(0) and α∈(0,1).



Let E be a Banach space and f:E→R be a strictly convex and Ga^teaux differentiable function. By the Equation (3), the Bregman distance Df satisfies [24]


Df(x,z)=Df(x,y)+Df(y,z)+⟨x−y,∇f(y)−∇f(z)⟩,∀x,y,z∈E.



(11)







In particular, we have


Df(x,y)=−Df(y,x)+⟨y−x,∇f(y)−∇f(x)⟩,∀x,y∈E.



(12)







The following definition is slightly different from that in Butnariu and Iusem [15] (p. 65) and Koshsaka [6]:



Definition 1.

Let E be a Banach space. Then, a function f:E→R is said to be a  Bregman function if the following conditions are satisfied:




	(a) 

	
f is continuous, strictly convex and Gâteaux differentiable;




	(b) 

	
the set {y∈E:Df(x,y)≤r} is bounded for all x∈E and r>0.











The following lemma follows from Butnariu and Iusem [15] and Zǎlinscu [23]:



Lemma 1.

Let E be a reflexive Banach space and let f:E→R be a strongly coercive Bregman function. Then, we have the following:




	1. 

	
∇f:E→E∗ is one-to-one, onto and norm-to-weak∗ continuous.




	2. 

	
⟨x−y,∇f(x)−∇(y)⟩=0 if and only if x=y.




	3. 

	
{x∈E:Df(x,y)≤r} is bounded for all y in E and r>0.




	4. 

	
dom f∗=E∗,f∗ is Gâteaux differentiable function and ∇f∗=(∇f)−1.











Let C be a nonempty closed convex subset of a reflexive Banach space E. Let f:E→R be a strictly convex and Gâteaux differentiable function. Then, it follows from [25] that, for any x∈E and x0∈C, we have


Df(x0,x)=miny∈CDf(y,x).











The Bregman projection projCf from E onto C is defined by projCf(x)=x0 for all x∈E. It is well known that x0=projCf(x) if and only if


⟨y−x0,∇f(x)−∇f(x0)⟩≤0,∀y∈C.



(13)







It is also known that projCf from E onto C has the following property:


Df(y,projCf(x))+Df(projCf(x),x)≤Df(y,x),∀y∈C,x∈E.



(14)







For more details on Bregman projection projCf, see Butnariu and Iusem [15].



Now, we have the following propositions (see Zǎlinscu [23] (pp. 222, 224)):



Proposition 1.

Let f∈Γ(E) be convex. Consider the following statements:




	1. 

	
f is bounded and uniformly smooth on bounded sets;




	2. 

	
f is Fréchet differentiable on E= dom f and ∇f is uniformly continuous on bounded sets;




	3. 

	
f∗ is strongly coercive and uniformly convex on bounded sets.









Then, we have 1⟺2⟸3. Moreover, if f is strongly coercive, then we also have 1⟹3. In this case, E∗ is reflexive (also E is reflexive if E is a Banach space).





Proposition 2.

Let f∈Γ(E). Consider the following statements:




	1. 

	
f is strongly coercive and uniformly convex on bounded sets;




	2. 

	
f∗ is bounded and uniformly smooth on bounded sets;




	3. 

	
f∗ is Fréchet differentiable on E∗ dom f∗ and ∇f∗ is uniformly continuous on bounded sets.









Then, we have 1⟹2⟺3. Moreover, if f is bounded on bounded sets then 2⟹1. In this case E∗ is reflexive (also E is reflexive if E is a Banach space).





The following result was first proved in Kohsaka and Takahashi [6] (see Lemma 3.1, p. 511):



Lemma 2.

Let E be a Banach space and let f:E→R be a Gâteaux differentiable function, which is uniformly convex on bounded sets. Let {xn}n∈N and {yn}n∈N be bounded sequences in E and limn→∞Df(xn,yn)=0, then we have limn→∞∥xn−yn‖=0.





The following lemma is slightly different from that in Kohsaka and Takahashi [6] (see Lemmas 3.2 and 3.3, pp. 511, 512):



Lemma 3.

Let E be a reflexive Banach space, let f:E→R be a strongly coercive Bregman function and V be the function defined by


V(x,x∗)=f(x)−⟨x,x∗⟩+f∗(x∗),∀x∈E,x∗∈E∗.








The following assertions hold:




	1. 

	
Dfx,∇f∗(x∗)=V(x,x∗) for all x∈E and x∗∈E∗.




	2. 

	
V(x,x∗)+⟨∇f∗(x∗)−x,y∗⟩≤V(x,x∗+y∗) for all x∈E and x∗,y∗∈E∗.











It also follows from the definition that V is convex in the second variable x∗ and


Vx,∇f(y)=Df(x,y).











The following result was proved by Huang [16]:



Lemma 4.

Let E be a Banach space and f:E→R be a strictly convex and Gâteaux differentiable function. Suppose that {xn}n∈N is a sequence in E such that xn⇀x for some x∈E. Then,


lim supn→∞Df(xn,x)<lim supn→∞Df(xn,y)








for all y in the interior of domf with y≠x.





Let C be a nonempty closed convex subset of a reflexive Banach space E. Let {xn}n∈N be a bounded sequence in E and f∈Γ(E) be Gâteaux differentiable function. For any x∈E, we set


Br(x,{xn})=lim supn→∞Df(xn,x).












	
The Bregman asymptotic radius of {xn}n∈N relative to C is defined by


Br(C,{xn})=inf{Br(x,{xn}):x∈C}.











	
The Bregman asymptotic center of {xn}n∈N relative to C is defined by


BA(C,{xn})={x∈C:Br(x,{xn})=Br(C,{xn})}.
















The following result was proved by Naraghirad [17]:



Proposition 3.

Let E be a reflexive Banach space and f:E→R be strictly convex, Gâteaux differentiable function, bounded on bounded sets. Let C be a nonempty closed convex subset of E. If {xn}n∈N is a bounded sequence of C, then BA(C,{xn}n∈N)={z} is a singleton.





Proof. 

In view of the definition of Bregman asymptotic radius, we may assume that {xn}n∈N converges weakly to z∈C. By Lemma 4, we conclude that BA(C,{xn}n∈N)={z}. □





Let S be a nonempty set and B(S) be the Banach space of all bounded real-valued functions on S with the supremum norm. Let E be a subspace of B(S) and μ be an element of E∗. Then, we denote by μ(f) the value of μ at f∈E. If e(s)=1 for all s∈S, sometimes μ(e) will be denoted by μ(1). When E contains constants, a linear functional μ on E is called a mean on E if ∥μ∥=μ(1)=1 (see, for instance, Takahashi [18] for more details).



Theorem 1.

Let E be a subspace of B(S) containing constants and let μ be a linear functional on E. Then, the following conditions are equivalent:




	1. 

	
∥μ∥=μ(1)=1, i.e., μ is a mean on E.




	2. 

	
The inequalities


infs∈Sf(s)≤μ(f)≤sups∈Sf(s)








hold for each f∈E.











Let l∞ be the Banach lattice of bounded real sequences with the supremum norm and μ be a linear continuous functional on l∞. Let x=(x1,x2,⋯) be a sequence in l∞. Then, sometimes we denote by μn(xn) the value μ(x).



Theorem 2.

(The existence of Banach limit) There exists a linear continuous functional μ on l∞ such that ∥μ∥=μ(1)=1 and μ(xn)=μ(xn+1) for each x=(x1,x2,⋯)∈l∞.





Note that




	
If {xn}n∈N∈l∞ and xn≥0 for each n∈N, then μ(xn)≥0.



	
If xn=1 for each n∈N, then μ(xn)=1.








Such a functional μ is called a Banach limit and the value of μ at {xn}n∈N∈l∞ is denoted by μnxn (see, for example [18].)



The following lemmas were proved by Reich and Sabach [26]:



Lemma 5.

Let E be a reflexive Banach space and let f:E→R be strictly convex, continuous, strongly coercive, Ga^teaux differentiable function, and bounded on bounded sets. Let C be a nonempty, closed and convex subset of E. Let T:C→E be a Bregman quasi-nonexpansive mapping. Then, F(T) is closed and convex.





The following result was proved by Mainge [27]:



Lemma 6.

Let {an}n∈N be a sequence in R with a subsequence {ani}i∈N such that ani<ani+1 for each i∈N. Then, there exists another subsequence {amk}k∈N such that, for all (sufficiently large) number k, we have


amk<amk+1,ak<amk+1.








In fact, we can set mk=max{j≤k:aj<aj+1}.





Lemma 7. ([28])

Let {sn}n∈N be a sequence of nonnegative real numbers satisfying


sn+1≤(1−γn)sn+γnδn,∀n≥1,








where {γn}n∈N and {δn}n∈N satisfy the following conditions:




	(a) 

	
{γn}n∈N⊂[0,1] and Σn=1∞γn=+∞ or, equivalently, Πn=1∞(1−γn)=0;




	(b) 

	
lim supn→∞δn<0 or Σn=1∞γnδn<∞.









Then, we have limn→∞sn=0.






3. The Main Results


3.1. Approximating Fixed Points


In this section, we obtain some fixed point theorem for a generalized α-nonexpansive mapping with respect to the Bregman–Opial property.



Lemma 8.

Let f:E→R be a strictly convex and Gâteaux differentiable function. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T:C→E be a Bregman generalized α-nonexpansive mapping. Then, we have


Df(x,Ty)≤Df(x,Tx)+(1−α)Df(x,y)+αDf(Tx,Ty)+α⟨x−Tx,∇f(y)−∇f(Ty)⟩+⟨x−Tx,∇f(Tx)−∇f(Ty)⟩,∀x,y∈C.













Proof. 

Let x,y∈C. In view of the equation (11), we have


Df(Tx,Ty)≤αDf(Tx,y)+αDf(x,Ty)+(1−2α)Df(x,y)=αDf(Tx,x)+Df(x,y)+⟨Tx−x,∇f(x)−∇f(y)⟩+α[Df(x,Tx)+Df(Tx,Ty)+⟨x−Tx,∇f(Tx)−∇f(Ty)⟩]+(1−2α)Df(x,y)=αDf(Tx,x)+αDf(x,y)+α⟨Tx−x,∇f(x)−∇f(y)⟩+αDf(x,Tx)+αDf(Tx,Ty)+α⟨x−Tx,∇f(Tx)−∇f(Ty)⟩+(1−2α)Df(x,y)=Df(Tx,x)+(1−α)Df(x,y)+αDf(x,Tx)+αDf(Tx,Ty)+α⟨Tx−x,∇f(x)−∇f(y)⟩+α⟨x−Tx,∇f(Tx)−∇f(Ty)⟩=−αDf(x,Tx)+α⟨x−Tx,∇f(x)−∇f(Tx)⟩+(1−α)Df(x,y)+αDf(x,Tx)+αDf(Tx,Ty)+α⟨Tx−x,∇f(x)−∇f(y)⟩+α⟨x−Tx,∇f(Tx)−∇f(Ty)⟩=(1−α)Df(x,y)+αDf(Tx,Ty)+α⟨x−Tx,∇f(y)−∇f(Ty)⟩+α⟨x−Tx,∇f(Tx)−∇f(Ty)⟩=(1−α)Df(x,y)+αDf(Tx,Ty)+α⟨x−Tx,∇f(y)−∇f(Ty)⟩.








This, together with the equation (11), implies that


Df(x,Ty)=Df(x,Tx)+Df(Tx,Ty)+⟨x−Tx,∇f(Tx)−∇f(Ty)⟩≤Df(x,Tx)+(1−α)Df(x,y)+αDf(Tx,Ty)+α⟨x−Tx,∇f(y)−∇f(Ty)⟩+⟨x−Tx,∇f(Tx)−∇f(Ty)⟩.








This completes the proof. □





Proposition 4.

(Demiclosedness Principle) Let f:E→R be a strictly convex, Gâteaux differentiable function and bounded on bounded sets function. Let C be a nonempty subset of a reflexive Banach space E and T:C→E be a Bregman generalized α-nonexpansive mapping. If xn⇀z in C and limn→∞∥Txn−xn‖=0, then we have Tz = z.





Proof. 

Since {xn}n∈N converges weakly to z and limn→∞∥Txn−xn‖=0, both the sequences {xn}n∈N and {Txn}n∈N are bounded. Since ∇f is uniformly norm-to-norm continuous on bounded subsets of E (see, for instance, [23]), we arrive at


limn→∞∥∇f(xn)−∇f(Txn)‖=0.








In view of Lemma 2, we deduce that limn→∞Df(xn,Txn)=0. Set


M1=sup{∥∇f(xn)∥,∥∇f(Txn)∥,∥∇f(z)∥,∥∇f(Tz)∥:n∈N}<+∞.








By Lemma 8, it follows that, for all n∈N,


Df(xn,Tz)≤Df(xn,Txn)+(1−α)Df(xn,z)+αDf(Txn,Tz)+α⟨xn−Txn,∇f(z)−∇f(Tz)⟩+⟨xn−Txn,∇f(Txn)−∇f(Tz)⟩=Df(xn,Txn)+(1−α)Df(xn,z)+α[Df(Txn,xn)+Df(xn,Tz)+⟨Txn−xn,∇f(xn)−∇f(Tz)⟩]+α⟨xn−Txn,∇f(z)−∇f(Tz)⟩+⟨xn−Txn,∇f(Txn)−∇f(Tz)⟩=Df(xn,Txn)+(1−α)Df(xn,z)+αDf(Txn,xn)+αDf(xn,Tz)+α⟨Txn−xn,∇f(xn)−∇f(Tz)⟩+α⟨xn−Txn,∇f(z)−∇f(Tz)⟩+⟨xn−Txn,∇f(Txn)−∇f(Tz)⟩=Df(xn,Txn)+(1−α)Df(xn,z)−αDf(xn,Txn)+α⟨xn−Txn,∇f(xn)−∇f(Txn)⟩+αDf(xn,Tz)+α⟨xn−Txn,∇f(Tz)−∇f(xn)⟩+α⟨xn−Txn,∇f(z)−∇f(Tz)⟩+⟨xn−Txn,∇f(Txn)−∇f(Tz)⟩=(1−α)Df(xn,Txn)+(1−α)Df(xn,z)+αDf(xn,Tz)+α⟨xn−Txn,∇f(z)−∇f(Txn)⟩+⟨xn−Txn,∇f(Txn)−∇f(Tz)⟩≤(1−α)Df(xn,Txn)+(1−α)Df(xn,z)+αDf(xn,Tz)+α∥xn−Txn∥∥∇f(z)−∇f(Txn)∥+∥xn−Txn∥∥∇f(Txn)−∇f(Tz)∥≤(1−α)Df(xn,Txn)+(1−α)Df(xn,z)+αDf(xn,Tz)+2αM1∥xn−Txn∥+2M1∥xn−Txn∥≤(1−α)Df(xn,Txn)+Df(xn,z)+2αM1∥xn−Txn∥+2M1∥xn−Txn∥,








which implies that


lim supn→∞Df(xn,Tz)≤lim supn→∞Df(xn,z).








Therefore, it follows from the Bregman–Opial-like property that Tz=z. This completes the proof. □





By Theorem 2, we can derive the following result, in which examples of the mapping T satisfying all the conditions can be found in Hussain [5].



Theorem 3.

Let f:E→R be a strictly convex, continuous, strongly coercive, Gâteaux differentiable function, bounded on bounded sets and uniformly convex on bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E and T:C→C be a mapping. Let {xn}n∈N be a bounded sequence of C and μ be a mean on l∞. Suppose that


μnDf(xn,Ty)≤μnDf(xn,y),∀y∈C.








Then, T has a fixed point in C.





Corollary 1.

Let f,C and T be given as above. If C is also bounded and T:C→C is a Bregman generalized α-nonexpansive mapping, then T has a fixed point.





Proof. 

Let μ be a Banach limit on l∞ and x∈C be such that {Tnx}n∈N is bounded. For each n∈N, we have


Df(Tnx,Ty)≤αDf(Tnx,y)+αDf(Tn−1x,Ty)+(1−2α)Df(Tn−1x,y),∀y∈C.








This implies that


μnDf(Tnx,Ty)≤αμnDf(Tnx,y)+αμnDf(Tnx,Ty)+(1−2α)μnDf(Tnx,y)≤(1−α)μnDf(Tnx,y)+αμnDf(Tnx,Ty).








Thus, we have


μnDf(Tnx,Ty)≤μnDf(Tnx,y),∀y∈C.








Therefore, it follows from Theorem 3 that F(T)≠∅. This completes the proof. □






3.2. Weak and Strong Convergence Theorems for Bregman Generalized α-Nonexpansive Mappings


In this section, we prove some weak and strong convergence theorems concerning Bregman generalized α-nonexpansive mappings in a reflexive Banach space. Naraghirad [17] proves the following lemma.



Lemma 9.

Let f:E→R be a strictly convex and Gâteaux differentiable function. Let C be a nonempty closed convex subset of a reflexive Banach space E and T:C→C be a Bregman skew quasi-nonexpansive mapping with F(T)≠∅. Let {xn}n∈N and {yn}n∈N be the sequences defined by the Ishikawa iteration:


yn=βnTxn+(1−βn)xn,xn+1=γnTyn+(1−γn)xn,∀n∈N,



(15)




where {βn}n∈N and {γn}n∈N satisfy the following control conditions:




	(a) 

	
0≤γn≤βn<1 for all n∈N;




	(b) 

	
limn→∞βn=0;




	(c) 

	
Σn=1∞γnβn=∞.









Then, the following assertions hold:




	1. 

	
max{Df(xn+1,z),Df(yn,z)}≤Df(xn,z) for all z∈F(T) and n∈N.




	2. 

	
limn→∞Df(xn,z) exists for any z∈F(T).











Proof. 

1. Let z∈F(T). In view of inequality (10), we have


Df(yn,z)=Df(βnTxn+(1−βn)xn,z)≤βnDf(Txn,z)+(1−βn)Df(xn,z)−βn(1−βn)ρr∥Txn,z)−(xn,z)∥≤βnDf(xn,z)+(1−βn)Df(xn,z)=Df(xn,z).








Consequently, we get


Df(xn+1,z)=Df(γnTyn+(1−γn)xn,z)≤γnDf(Tyn,z)+(1−γn)Df(xn,z)−γn(1−γn)ρr∥Tyn,z)−(xn,z)∥≤γnDf(yn,z)+(1−γn)Df(xn,z)≤γnDf(xn,z)+(1−γn)Df(xn,z)=Df(xn,z).








Therefore, we have 1.



2. Since Df(xn+1,z)≤Df(xn,z) for each n∈N,{Df(xn,z)}n∈N is a bounded and nonincreasing sequence for all z∈F(T). Thus, we have limn→∞Df(xn,z) exists for any z∈F(T). This completes the proof. □





Theorem 4.

Let f:E→R be a strictly convex, Gâteaux differentiable function, bounded on bounded sets and uniformly convex on bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E and T:C→C be a Bregman generalized α-nonexpansive and Bregman skew quasi-nonexpansive mapping. Let {βn}n∈N and {γn}n∈N be the sequences in [0,1) and {xn}n∈N be the sequence defined by the Ishikawa iteration with x1∈C. Assume that limn→∞∥xn−Txn∥=0. Then, we have the following:




	1. 

	
If {xn}n∈N is bounded and lim infn→∞∥Txn−xn∥=0, then F(T)≠∅.




	2. 

	
If F(T)≠∅, then {xn}n∈N is bounded.











Proof. 

1. By Corollary 1, we see that the fixed point set F(T) of T is nonempty. Assume that {xn}n∈N is bounded and lim infn→∞∥Txn−xn‖=0. Consequently, there is a bounded subsequence {Txnk}k∈N of {Txn}n∈N such that limk→∞∥Txnk−xnk∥=0. Since ∇g is uniformly norm-to-norm continuous on bounded sets of E (see, for example, [23]), we have


limk→∞∥∇f(Txnk)−∇f(xnk)∥=0.








In view of Proposition 3, we conclude that BA(C,{xnk})={z} for some z in C. Let


M2=sup{∥∇f(xnk)∥,∥∇f(Txnk)∥,∥∇f(z)∥,∥∇f(Tz)∥:k∈N}<+∞.








It follows from Lemma 4 that


Df(xnk,Tz)≤Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(Txnk,Tz)+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=Df(xnk,Txnk)+(1−α)Df(xnk,z)+α[Df(Txnk,xnk)+Df(xnk,Tz)+⟨Txnk−xnk,∇f(xnk)−∇f(Tz)⟩]+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(Txnk,xnk)+αDf(xnk,Tz)+α⟨Txnk−xnk,∇f(xnk)−∇f(Tz)⟩+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=Df(xnk,Txnk)+(1−α)Df(xnk,z)−αDf(xnk,Txnk)+α⟨xnk−Txnk,∇f(xnk)−∇f(Txnk)⟩+αDf(xnk,Tz)+α⟨xnk−Txnk,∇f(Tz)−∇f(xnk)⟩+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=(1−α)Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(xnk,Tz)+α⟨xnk−Txnk,∇f(z)−∇f(Txnk)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩≤(1−α)Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(xnk,Tz)+α∥xnk−Txnk∥∥∇f(z)−∇f(Txnk)∥+∥xnk−Txnk∥∥∇f(Txnk)−∇f(Tz)∥≤(1−α)Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(xnk,Tz)+2αM1∥xnk−Txnk∥+2M1∥xnk−Txnk∥≤(1−α)Df(xnk,Txnk)+Df(xnk,z)+2αM1∥xnk−Txnk∥+2M1∥xnk−Txnk∥








for each k∈N. This implies


lim supn→∞Df(xnk,Tz)≤lim supn→∞Df(xnk,z).








From the Bregman–Opial-like property, we obtain Tz=z.



2. Let F(T)≠∅ and let z∈F(T). It follows from Lemma 9 that limn→∞∥xn−z‖=0 exists and hence {xn}n∈N is bounded. This implies that the sequence {Tyn}n∈N is bounded too. This completes the proof. □





Theorem 5.

Let f:E→R be a uniformly convex, Gâteaux differentiable function and bounded subset on bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T:C→C be a Bregman generalized α-nonexpansive and Bregman skew quasi-nonexpansive mapping with F(T)≠∅. Let {βn}n∈N and {γn}n∈N be the sequences in [0,1) and {xn}n∈N be the sequence with x1∈C defined by the Ishikawa iteration. Then, the sequence {xn}n∈N converges weakly to a fixed point of T.





Proof. 

By Corollary 1, we see that the fixed point set F(T) of T is nonempty. It follows from Theorem 4 that {xn}n∈N is bounded and limn→∞∥Tyn−xn∥=0. Since E is reflexive, there exists a subsequence {xni}i∈N of {xn}n∈N such that xni⇀p∈C as i→∞. By Proposition 4, we have p∈F(T).



Now, we claim that xn⇀p as n→∞. If not, then there exists a subsequence {xni}i∈N of {xn}n∈N such that {xnj}j∈N converges weakly to a point q∈C with p≠q. In view of Proposition 4 again, we conclude that q∈F(T). By Lemma 9, limn→∞Df(xn,z) exists for all z∈F(T). Thus, it follows from the Bregman–Opial-like property that


limn→∞Df(xn,p)=limi→∞Df(xni,p)<limi→∞Df(xni,q)=limn→∞Df(xn,q)=limj→∞Df(xnj,q)<limj→∞Df(xnj,p)=limn→∞Df(xn,p),








which is a contradiction. Thus, we have p=q and the desired assertion follows. This completes the proof. □





Theorem 6.

Let f:E→R be a uniformly convex, Gâteaux differentiable function bounded subset on bounded sets of E. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T:C→C the Bregman generalized α-nonexpansive and Bregman skew quasi-nonexpansive mapping. Let {βn}n∈N, {γn}n∈N be the sequences in [0,1) and {xn}n∈N be the sequence with x1∈C defined by the Ishikawa iteration. Then, the sequence {xn}n∈N converges strongly to a fixed point z of T.





Proof. 

By Corollary 1, we see that the fixed point set F(T) of T is nonempty. In view of Theorem 4, it follows that {xn}n∈N is bounded and lim infn→∞∥Txn−xn∥=0. By the compactness of C, there exists a subsequence {xnk}k∈N of {xn}n∈N such that {xnk}k∈N converges strongly to a point z∈C. In view of Lemma 2, we deduce that limk→∞Df(xnk,z)=0.



Now, we assume that limk→∞∥Txnk−xnk∥=0 and, in particular, {Txnk}k∈N is bounded. Since ∇f is uniformly norm-to-norm continuous on bounded sets of E (see, for example, [23]), we have


limk→∞∥∇f(Txnk)−∇f(xnk)∥=0.








Let


M3=sup{∥∇f(xnk)∥,∥Txnk∥,∥∇f(z)∥,∥∇f(Tz)∥:k∈N}<+∞.








In view of Lemma 8, we obtain


Df(xnk,Tz)≤Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(Txnk,Tz)+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=Df(xnk,Txnk)+(1−α)Df(xnk,z)+α[Df(Txnk,xnk)+Df(xnk,Tz)+⟨Txnk−xnk,∇f(xnk)−∇f(Tz)⟩]+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(Txnk,xnk)+αDf(xnk,Tz)+α⟨Txnk−xnk,∇f(xnk)−∇f(Tz)⟩+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=Df(xnk,Txnk)+(1−α)Df(xnk,z)−αDf(xnk,Txnk)+α⟨xnk−Txnk,∇f(xnk)−∇f(Txnk)⟩+αDf(xnk,Tz)+α⟨xnk−Txnk,∇f(Tz)−∇f(xnk)⟩+α⟨xnk−Txnk,∇f(z)−∇f(Tz)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩=(1−α)Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(xnk,Tz)+α⟨xnk−Txnk,∇f(z)−∇f(Txnk)⟩+⟨xnk−Txnk,∇f(Txnk)−∇f(Tz)⟩≤(1−α)Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(xnk,Tz)+α∥xnk−Txnk∥∥∇f(z)−∇f(Txnk)∥+∥xnk−Txnk∥∥∇f(Txnk)−∇f(Tz)∥≤(1−α)Df(xnk,Txnk)+(1−α)Df(xnk,z)+αDf(xnk,Tz)+2αM3∥xnk−Txnk∥+2M3∥xnk−Txnk∥≤(1−α)Df(xnk,Txnk)+Df(xnk,z)+2αM3∥xnk−Txnk∥+2M3∥xnk−Txnk∥








for all k∈N. It follows that limk→∞∥xnk−Tz∥=0, and thus we have Tz=z. In view of Lemmas 2 and 9, we conclude that limn→∞∥xn−z∥=0. Therefore, z is the strong limit of the sequence {xn}n∈N. This completes the proof. □






3.3. Bregman Noor’s Type Iteration for Bregman Generalized α-Nonexpansive Mappings


In this section, we propose the following Bregman Noor type iteration for Bregman generalized α-nonexpansive mappings.



Let E be a reflexive Banach space and C be a nonempty closed convex subset of E. Let f:E→R be a strictly convex and Gâteaux differentiable function. Let T:C→C be a Bregman generalized α-nonexpansive mapping with the fixed point set F(T)≠∅. Let {xn}n∈N,{yn}n∈N and {zn}n∈N be three sequences defined by


zn=αn∇f(Txn)+(1−αn)∇f(xn),yn=∇f∗[βn∇f(Tzn)+(1−βn)∇f(xn)],xn+1=projCf∇f∗[γn∇f(Tyn)+(1−γn)∇f(xn)],∀n∈N,



(16)




where {αn}n∈N, {βn}n∈N and {γn}n∈N are the sequences in [0,1).



Lemma 10.

Let f:E→R be a strongly coercive Bregman function. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T:C→C be the Bregman quasi-nonexpansive mapping. Let {xn}n∈N, {yn}n∈N and {zn}n∈N be the sequences defined by the equation (16) and {αn}n∈N, {βn}n∈N and {γn}n∈N be the sequences in [0,1). Then, the following assertions hold:




	1. 

	
max{Df(w,xn+1),Df(w,yn),Df(w,zn)}≤Df(w,xn) for all w∈F(T) and n∈N.




	2. 

	
limn→∞Df(w,xn) exists for any w∈F(T).











Proof. 

Let w∈F(T). In view of Lemma 3 and the equation (16), we conclude that


Df(w,zn)=Dfw,αn∇f(Txn)+(1−αn)∇f(xn)=Vw,αn∇f(Txn)+(1−αn)∇f(xn)≤αnVw,∇f(Txn)+(1−αn)Vw,∇f(xn)=αnDfw,Txn+(1−αn)Dfw,xn≤αnDfw,xn+(1−αn)Dfw,xn=Dfw,xn.








In addition, we have


Df(w,yn)=Dfw,∇f∗[βn∇f(Tzn)+(1−βn)∇f(xn)=Vw,βn∇f(Tzn)+(1−βn)∇f(xn)≤βnVw,∇f(Tzn)+(1−βn)Vw,∇f(xn)=βnDfw,Tzn+(1−βn)Dfw,xn≤βnDfw,zn+(1−βn)Dfw,xn=βnDfw,xn+(1−βn)Dfw,xn=Dfw,xn.








Consequently, using the inequality (14), we have


Df(w,xn+1)=Df(w,projCf∇f∗[γn∇f(Tyn)+(1−γn)∇f(xn)])≤Dfw,∇f∗[γn∇f(Tyn)+(1−γn)∇f(xn)]=Vw,γn∇f(Tyn)+(1−γn)∇f(xn)≤γnVw,∇f(Tyn)+(1−γn)Vw,∇f(xn)=γnDfw,Tyn+(1−γn)Dfw,xn≤γnDfw,yn+(1−γn)Dfw,xn=γnDfw,xn+(1−γn)Dfw,xn=Dfw,xn.








This implies that {Df(w,xn)}n∈N is a bounded and nonincreasing sequence for all w∈F(T). Thus, we have limn→∞Df(w,xn) exists for any w∈F(T). This completes the proof. □





Theorem 7.

Let f:E→R be a strongly coercive Bregman function that is bounded on bounded sets and locally uniformly convex and locally uniformly smooth on E. Let C be a nonempty, closed and convex subset of a reflexive Banach space E. Let T:C→C be the Bregman generalized α-nonexpansive mapping. Let {αn}n∈N,{βn}n∈N and {γn}n∈N be the sequences in [0,1) satisfying the following control condition:


∑n=1∞γnβnαn(1−αn)=+∞.



(17)




Then, the following are equivalent:




	1. 

	
There exists a bounded sequence {xn}n∈N⊂C generated by equations (16) such that


lim infn→∞∥Txn−xn∥=0.












	2. 

	
The fixed point set F(T)≠∅.











Proof. 

The implication 1⟹2 follows similarly as in the first part of the proof of Theorem 4.



For the implication 2⟹1, we assume that F(T)≠∅. The boundedness of the sequences {xn}n∈N, {yn}n∈N and {zn}n∈N follows from Lemma 10 and Definition 1. Since T is a Bregman quasi-nonexpansive mapping, it follows that, for any q∈F(T), we have


Df(q,Txn)≤Df(q,xn),∀n∈N.








This, together with Definition 1 and the boundedness of {xn}n∈N, implies that {Txn}n∈N is bounded. The function f is bounded on bounded sets of E and so ∇f is also bounded on bounded sets of E∗ (see, for example, [[15], Proposition 1.1.11] for more details). This implies that the sequences {∇f(xn)}n∈N,{∇f(yn)}n∈N,{∇f(zn)}n∈N,{∇f(Tzn)}n∈N, {∇f(Tyn)}n∈N and {∇f(Txn)}n∈N are bounded in E∗. In view of Proposition 1, it follows that domf∗=E∗ and f∗ is strongly coercive and uniformly convex on bounded sets of E∗. Let s2=sup{∥∇f(xn)∥,∥∇f(Txn)∥:n∈N}<∞ and let ρs2∗:E∗→R be the gauge of uniform convexity of the (Fenchel) conjugate function f∗.



Claim. For any p∈F(T) and n∈N, we have


Df(p,zn)≤Df(p,xn)−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥).



(18)







Let p∈F(T). For each n∈N, it follows from the definition of the Bregman distance (3), Lemma 3, the inequality (10) and the equation (16) that


Df(p,zn)=f(p)−f(zn)−⟨p−zn,∇f(zn)⟩=f(p)+f∗∇f(zn)−⟨zn,∇f(zn)⟩−⟨p−zn,∇f(zn)⟩=f(p)+f∗∇f(zn)−⟨zn,∇f(zn)⟩−⟨p,∇f(zn)⟩+⟨zn,∇f(zn)⟩=f(p)+f∗(1−αn)∇f(xn)+αn∇f(Txn)−⟨p,((1−αn)∇f(xn)+αn∇f(Txn)⟩≤(1−αn)f(p)+αnf(p)+(1−αn)f∗(∇f(xn)+αnf∗(∇f(Txn))−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)−(1−αn)⟨p,∇f(xn)⟩−αn⟨p,∇f(Txn)⟩=(1−αn)[f(p)+f∗(∇f(xn))−⟨p,∇f(xn)⟩]+αn[f(p)+f∗(∇f(Txn))−⟨p,∇f(Txn)⟩]−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)=(1−αn)[f(p)−f(xn)+⟨xn,∇f(xn)⟩−⟨p,∇f(xn)⟩]+αn[f(p)−f(Txn)+⟨Txn,∇f(Txn)⟩−⟨p,∇f(Txn)⟩]−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)=(1−αn)Df(p,xn)+αnDf(p,Txn)−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)≤(1−αn)Df(p,xn)+αnDf(p,xn)−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)=Df(p,xn)−αn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥).








In view of Lemma 3 and the inequality (18), we obtain


Df(p,yn)=Dfp,βn∇f(Tzn)+(1−βn)∇f(xn)=Vp,βn∇f(Tzn)+(1−βn)∇f(xn)≤βnVp,∇f(Tzn)+(1−βn)Vp,∇f(xn)=βnDfp,Tzn+(1−βn)Dfp,xn≤βnDfp,zn+(1−βn)Dfp,xn=βnDfp,xn−βnαn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥).








Thus, it follows from Lemma 3 and the inequality (18) that


Df(p,xn+1)=Dfp,∇f∗[γn∇f(Tyn)+(1−γn)∇f(xn)])=Vp,γn∇f(Tyn)+(1−γn)∇f(xn)≤γnVp,∇f(Tyn)+(1−γn)Vp,∇f(xn)=γnDfp,Tyn+(1−γn)Dfp,xn≤γnDfp,yn+(1−γn)Dfp,xn=γnDfp,xn−γnαnβn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)+(1−γn)Dfp,xn≤Dfp,xn−γnαnβn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)








and so


γnαnβn(1−αn)ρs2∗(∥∇f(xn)−∇f(Txn)∥)≤Df(p,xn)−Df(p,xn+1).



(19)




Since {Df(xn,z)}n∈N converges, together with the control condition in equation (17), we have


limn→∞∥∇f(xn)−∇f(Txn)∥=0.








Since ∇f∗ is uniformly norm-to-norm continuous on bounded sets of E∗ (see [23]), we arrive at


lim infn→∞∥xn−Txn∥=0.



(20)




This completes the proof. □





Theorem 8.

Let f:E→R be a strongly coercive Bregman function which is bounded on bounded sets, locally uniformly convex and locally uniformly smooth on E. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T:C→C be the Bregman generalized α-nonexpansive mapping with F(T)≠∅. Let {αn}n∈N,{βn}n∈N and {γn}n∈N be the sequences in [0,1) satisfying the following control condition:


Σn=1∞γnβnαn(1−αn)=+∞.








Let {xn}n∈N be iteratively generated by the Equation (16). Then, there exists a subsequence {xni}i∈N of {xn}n∈N which converges weakly to a fixed point of T.





Proof. 

It follows from Theorem 7 that {xn}n∈N is bounded and lim infn→∞∥Txn−xn∥=0. Since E is reflexive, then there exists a subsequence {xni}i∈N of {xn}n∈N such that xni⇀p∈C as i→∞. Thus, in view of Proposition 4, we conclude that p∈F(T) and the desired conclusion follows. This completes the proof. □





The construction of fixed points of nonexpansive mappings via Halpern’s algorithm [29] has been extensively investigated recently in the current literature (see, for example, [30] and the references therein). Numerous results have been proved on Halpern’s iterations for nonexpansive mappings in Hilbert and Banach spaces (see, for example, [10,31,32]).



Theorem 9.

Let f:E→R be a strongly coercive Bregman function which is bounded on bounded sets, locally uniformly convex and locally uniformly smooth on E. Let C be a nonempty closed convex subset of a reflexive Banach space E. Let T:C→C be the Bregman generalized α-nonexpansive mapping with F(T)≠∅. Let {αn}n∈N,{βn}n∈N and {γn}n∈N be the sequences in [0,1) satisfying the following control conditions:




	(a) 

	
limn→∞γn=0;




	(b) 

	
Σn=1∞γn=+∞;




	(c) 

	
0<lim infn→∞βn≤lim supn→∞βn<1.









Let u,x1∈C be chosen arbitrarily and let {xn}n∈N be the sequence generated by


zn=αn∇f(xn)+(1−αn)∇f(Txn),yn=∇f∗[βn∇f(xn)+(1−βn)∇f(zn)],xn+1=projCf∇f∗[γn∇f(u)+(1−γn)∇f(yn)],∀n∈N.



(21)




Then, {xn} converges strongly to projF(T)fu.





Proof. 

We divide the proof into three steps. In view of Lemma 5, we conclude that F(T) is closed and convex. Set


w=projF(T)fu.











Step 1. Now, we prove that {xn}n∈N, {yn}n∈N and {zn}n∈N are the bounded sequences in C. In fact, we first show that {xn}n∈N is bounded. Let p∈F(T) be fixed. In view of Lemma 3 and the Equation (21), we have


Df(p,zn)=Dfp,αn∇f(xn)+(1−αn)∇f(Txn)=Vp,αn∇f(xn)+(1−αn)∇f(Txn)≤αnVp,∇f(xn)+(1−αn)Vp,∇f(Txn)=αnDfp,xn+(1−αn)Dfp,Txn≤αnDfp,xn+(1−αn)Dfp,xn=Dfp,xn.








In addition, we have


Df(p,yn)=Dfp,∇f∗[βn∇f(xn)+(1−βn)∇f(zn)]=Vp,βn∇f(xn)+(1−βn)∇f(zn)≤βnVp,∇f(xn)+(1−βn)Vp,∇f(zn)=βnDfp,xn+(1−βn)Dfp,zn≤βnDfp,xn+(1−βn)Dfp,xn=Dfp,xn.











This, together with the Equation (16), implies that


Df(p,xn+1)=Df(p,projCf∇f∗[γn∇f(u)+(1−γn)∇f(yn)]=Dfp,∇f∗[γn∇f(u)+(1−γn)∇f(yn)]=Vp,γn∇f(u)+(1−γn)∇f(yn)≤γnVp,∇f(u)+(1−γn)Vp,∇f(yn)=γnDfp,u+(1−γn)Dfp,yn≤γnDfp,u+(1−γn)Dfp,yn≤γnDfp,u+(1−γn)Dfp,xn≤max{Dfp,u,Dfp,xn}.








Thus, by induction, we obtain


Dfp,xn+1≤max{Dfp,u,Dfp,x1},∀n∈N.



(22)




This implies that the sequence {Df(p,xn)}n∈N is bounded:


Dfp,xn≤M4,∀n∈N.



(23)




In view of Definition 1, we deduce that the sequence {xn}n∈N is bounded. Since T is the Bregman quasi-nonexpansive mapping from C into itself, we conclude that


Dfp,Txn≤Dfp,xn,∀n∈N.



(24)




This, together with Definition 1 and the boundedness of {xn}n∈N, implies that {Txn}n∈N is bounded. The function f is bounded on bounded sets of E and so ∇f is also bounded on bounded sets of E∗ (see, for example, [[15], Proposition 1.1.11] for more details). This, together with Step 1, implies that the sequences {∇f(xn)}n∈N, {∇f(yn)}n∈N, {∇f(zn)}n∈N and {∇f(Txn)}n∈N are bounded in E∗. In view of Proposition 1, it follows that domf∗=E∗ and f∗ is strongly coercive and uniformly convex on bounded sets of E. Let s3=sup{∥∇f(xn)∥,∥∇f(Txn)∥:n∈N} and ρs3∗:E∗→R be the gauge of the uniform convexity of the (Fenchel) conjugate function f∗.



Step 2. Next, we prove that


Df(w,zn)≤Df(w,xn)−αn(1−αn)(1−βn)ρs3∗∥∇f(xn)−∇f(Txn)∥,∀n∈N.



(25)




For each n∈N, in view of the definition of the Bregman distance (3), Lemma 3 and Lemma (10), we obtain


Df(w,zn)=f(w)−f(zn)−⟨w−zn,∇f(zn)⟩=f(w)+f∗∇f(zn)−⟨zn,∇f(zn)⟩−⟨w−zn,∇f(zn)⟩=f(w)+f∗∇f(zn)−⟨zn,∇f(zn)⟩−⟨w,∇f(zn)⟩+⟨zn,∇f(zn)⟩=f(w)+f∗(1−αn)∇f(xn)+αn∇f(Txn)−⟨w,((1−αn)∇f(xn)+αn∇f(Txn)⟩≤(1−αn)f(w)+αnf(w)+(1−αn)f∗(∇f(xn)+αnf∗(∇f(Txn))−αn(1−αn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)−(1−αn)⟨w,∇f(xn)⟩−αn⟨w,∇f(Txn)⟩=(1−αn)[f(w)+f∗(∇f(xn))−⟨w,∇f(xn)⟩]+αn[f(w)+f∗(∇f(Txn))−⟨w,∇f(Txn)⟩]−αn(1−αn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)=(1−αn)[f(w)−f(xn)+⟨xn,∇f(xn)⟩−⟨w,∇f(xn)⟩]+αn[f(w)−f(Txn)+⟨Txn,∇f(Txn)⟩−⟨w,∇f(Txn)⟩]−αn(1−αn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)=(1−αn)Df(w,xn)+αnDf(w,Txn)−αn(1−αn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)≤(1−αn)Df(w,xn)+αnDf(w,xn)−αn(1−αn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)=Df(w,xn)−αn(1−αn)ρs3∗(∥∇f(xn)−∇f(Txn)∥).








In addition, we have


Df(w,yn)=Dfw,βn∇f(xn)+(1−βn)∇f(zn)=Vw,βn∇f(xn)+(1−βn)∇f(zn)≤βnVw,∇f(xn)+(1−βn)Vw,∇f(zn)=βnDfw,xn+(1−βn)Dfw,zn≤βnDfw,xn+(1−βn)Dfw,xn−αn(1−αn)(1−βn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)=Dfw,xn−αn(1−αn)(1−βn)ρs3∗(∥∇f(xn)−∇f(Txn)∥).








In view of Lemma 3 and the inequality (25), we obtain


Df(w,xn+1)=Df(w,projCf∇f∗[γn∇f(u)+(1−γn)∇f(yn)]=Dfw,∇f∗[γn∇f(u)+(1−γn)∇f(yn)]=Vw,γn∇f(u)+(1−γn)∇f(yn)≤γnVw,∇f(u)+(1−γn)Vw,∇f(yn)=γnDfw,u+(1−γn)Dfw,yn≤γnDfw,u+(1−γn)[Dfw,xn−αn(1−αn)(1−βn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)].



(26)




Let


M5=sup{|Dfw,u−Dfw,xn|+αn(1−αn)(1−βn)ρs3∗(∥∇f(xn)−∇f(Txn)∥):n∈N}.








It follows from the inequality (26) that


αn(1−αn)(1−βn)ρs3∗(∥∇f(xn)−∇f(Txn)∥)≤Df(w,xn)−Df(w,xn+1)+γnM5.



(27)




Let


wn=∇f∗[γn∇f(u)+(1−γn)∇f(yn)].








Then, xn+1=projCf(wn) for each n∈N. In view of Lemma 3 and the inequality (25), we obtain


Df(w,xn+1)=Df(w,projCf∇f∗[γn∇f(u)+(1−γn)∇f(yn)]≤Dfw,∇f∗[γn∇f(u)+(1−γn)∇f(yn)]=Vw,γn∇f(u)+(1−γn)∇f(yn)≤Vw,γn∇f(u)+(1−γn)∇f(yn)−γn(∇f(u)−∇f(w))−⟨∇f∗[γn∇f(u)+(1−γn)∇f(yn)]−w,−γn(∇f(u)−∇f(w))⟩=Vw,γn∇f(w)+(1−γn)∇f(yn)+γn⟨wn−w,∇f(u)−∇f(w)⟩≤γnVw,∇f(w)+(1−γn)Vw,∇f(yn)+γn⟨wn−w,∇f(u)−∇f(w)⟩=γnDfw,w+(1−γn)Dfw,yn+γn⟨wn−w,∇f(u)−∇f(w)⟩=(1−γn)Dfw,yn+γn⟨wn−w,∇f(u)−∇f(w)⟩.



(28)







Step 3. Next, we show that xn→w as n→∞.



Case 1. If there exists n0∈N such that {Df(w,xn)}n=n0∞ is nonincreasing, then {Df(w,xn)}n∈N is convergent. Thus, we have Df(w,xn)−Df(w,xn+1)→0 as n→∞. This, together with the inequality (27) and the conditions (a) and (c), implies that


limn→∞ρs3∗(∥∇f(xn)−∇f(Txn)∥=0.








Therefore, from the property of ρs3∗, it follows that


limn→∞∥∇f(xn)−∇f(Txn)∥=0.



(29)




Since ∇f∗=(∇f)−1 (Lemma 1) is uniformly norm-to-norm continuous on bounded sets of E∗ (see, for example, [23]), we arrive at


limn→∞∥xn−Txn∥=0.



(30)




On the other hand, we have


Df(Txn,zn)=DfTxn,γn∇f(xn)+(1−γn)∇f(Txn)=VTxn,γn∇f(xn)+(1−γn)∇f(Txn)≤γnVTxn,∇f(xn)+(1−γn)VTxn,∇f(Txn)=γnDfTxn,xn+(1−γn)DfTxn,Txn≤γnDfTxn,xn.








This, together with Lemma 2 and the Equation (30), implies that


limn→∞Df(Txn,zn)=0.








Similarly, we have


Df(zn,wn)≤γnDf(zn,u)+(1−γn)Df(zn,zn)=γnDf(zn,u)→0








as n→∞. In view of Lemma 2 and the Equation (30), we conclude that


limn→∞∥zn−Txn∥=0,limn→∞∥wn−xn∥=0.








Since {xn}n∈N is bounded, together with the inequality (13), we can assume that there exists a subsequence {xni}i∈N of {xn}n∈N such that xni⇀z∈F(T) (Proposition 4) and


lim supn→∞⟨xn−w,∇f(u)−∇f(w)⟩=limi→∞⟨xni−w,∇f(u)−∇f(w)⟩=⟨y−w,∇f(u)−∇f(w)⟩≤0.








Thus, it follows that


lim supn→∞⟨zn−w,∇f(u)−∇f(w)⟩=lim supn→∞⟨xn−w,∇f(u)−∇f(w)⟩≤0.








The desired result follows from Lemmas 2 and 7 and the inequality (28).



Case 2. Suppose that there exists a subsequence {ni}i∈N of {n}n∈N such that


Df(w,xni)<Df(w,xni+1),∀i∈N.








By Lemma 6, there exists a non-decreasing sequence {mk}k∈N of positive integers with mk→∞ such that


Df(w,xmk)<Df(w,xmk+1),andDf(w,xk)<Df(w,xmk+1),∀k∈N.








This, together with the inequality (27), implies that


αmk(1−αmk)(1−βmk)ρs3∗(∥∇f(xmk)−∇f(Txmk)∥)≤Df(w,xmk)−Df(w,xmk+1)+γmkM5≤γmkM5,∀k∈N.








Then, by the conditions (a) and (c), we get


limk→∞ρs3∗(∥∇g(xmk)−∇f(Txmk)∥)=0.








By the same argument as in Case 1, we arrive at


lim supk→∞⟨wmk−w,∇f(u)−∇f(w)⟩=lim supk→∞⟨xmk−w,∇f(u)−∇f(w)⟩≤0.



(31)




It follows from the inequality (28) that


Df(w,xmk+1)≤(1−γmk)Df(w,xmk)+γmkDf(w,xmk)+γmk⟨zmk−w,∇f(u)−∇f(w)⟩.



(32)




Since Df(w,xmk)≤Df(w,xmk+1), it follows that


γmkDf(w,xmk)≤Df(w,xmk)−Df(w,xmk+1)+γmk⟨wmk−w,∇f(u)−∇f(w)⟩≤γmk⟨wmk−w,∇f(u)−∇f(w)⟩.








In particular, since γmk>0, we obtain


Df(w,xmk)≤⟨wmk−w,∇f(u)−∇f(w)⟩.








In view of the inequality (31), we deduce that


limk→∞Df(w,xmk)=0.








This, together with the inequality (32), implies


limk→∞Df(w,xmk+1)=0.








On the other hand, we have


Df(w,xk)≤Df(w,xmk+1),∀k∈N.








This ensures that xk→w as k→∞ by Lemma 2. This completes the proof. □







4. Numerical Examples


In this section, we illustrate a direct application of Theorem 9 on a typical example on a real line.



Example 2.

Let the mappings f and T be given in Example 1 and set


{αn}=n+14n,{βn}=n+15n,{γn}=1500n,∀n≥1.








Consider the following:


E=R,C=[0,0.9],Tx=x2,f(x)=x4,∇f(x)=4x3,f∗(x∗)=sup{⟨x∗,x⟩−f(x):x∈E},f∗(z)=3z43443,∇f∗(z)=z413.








Let initial values x1=0 and u=0.1. Then, we use iteration from the Equation (21) to generate the sequences {xn},{yn} and {zn} as follows:


zn=αn∇f(xn)+(1−αn)∇f(Txn)=n+1nxn3+3n+1nxn6,yn=∇f∗[βn∇f(xn)+(1−βn)∇f(zn)]=n+15nxn3+3n+14nzn313,xn+1=∇f∗[γn∇f(u)+(1−γn)∇f(yn)]=u3500n+500n−1500nyn313.








We have the following Table 1 and Figure 2 and Figure 3 which show that {xn},{zn} and {yn} converge to w=0.






5. Conclusions


First, we have established the new class of Bregman generalized α-nonexpansive mappings. Second, we have obtained new theorems on fixed points and weak and strong convergence using multi-step iterations and Bregman generalized α-nonexpansive mappings. Finally, we have analysed computational procedures based on Ishikawa and Noor iterations with a numerical simulation to support the results.
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Figure 1. Plotting of g(x,y) for all x,y∈[0,0.9] and α=0.56. 
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Figure 2. Plotting of {xn},{yn} and {zn} converging to 0 as n→∞. 
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Figure 3. Plotting of ∥xn+1−xn∥. 
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Table 1. Values of zn, yn and xn.






Table 1. Values of zn, yn and xn.





	No. of Iterations
	zn
	yn
	xn
	∥xn+1−xn∥





	1
	0.0000000
	0.0000000
	0.0200000
	0.0200000



	2
	0.0000120
	0.0133887
	0.0185640
	0.0014360



	3
	0.0000085
	0.0119489
	0.0163510
	0.0022130



	4
	0.0000055
	0.0103005
	0.0145690
	0.0017821



	5
	0.0000037
	0.0090538
	0.0132797
	0.0012893



	6
	0.0000027
	0.0081755
	0.0123411
	0.0009386



	7
	0.0000021
	0.0075456
	0.0116283
	0.0007128



	8
	0.0000018
	0.0070726
	0.0110622
	0.0005662



	9
	0.0000015
	0.0067004
	0.0105959
	0.0004662



	10
	0.0000013
	0.0063966
	0.0102015
	0.0003944



	⋮
	⋮
	⋮
	⋮
	⋮



	100
	0.0000001
	0.0027372
	0.0046494
	0.0000157



	200
	0.0000001
	0.0021635
	0.0036871
	0.0000062



	300
	0.0000000
	0.0018873
	0.0032201
	0.0000036



	400
	0.0000000
	0.0017135
	0.0029252
	0.0000024



	⋮
	⋮
	⋮
	⋮
	⋮



	491
	0.0000000
	0.0015998
	0.0027318
	0.0000019



	492
	0.0000000
	0.0015987
	0.0027300
	0.0000019



	493
	0.0000000
	0.0015976
	0.0027281
	0.0000018



	494
	0.0000000
	0.0015965
	0.0027263
	0.0000018



	495
	0.0000000
	0.0015954
	0.0027244
	0.0000018



	496
	0.0000000
	0.0015943
	0.0027226
	0.0000018



	497
	0.0000000
	0.0015933
	0.0027208
	0.0000018



	498
	0.0000000
	0.0015922
	0.0027190
	0.0000018



	499
	0.0000000
	0.0015911
	0.0027171
	0.0000018
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