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Abstract: We investigate the split variational inclusion problem in Hilbert spaces. We propose
efficient algorithms in which, in each iteration, the stepsize is chosen self-adaptive, and proves weak
and strong convergence theorems. We provide numerical experiments to validate the theoretical
results for solving the split variational inclusion problem as well as the comparison to algorithms
defined by Byrne et al. and Chuang, respectively. It is shown that the proposed algorithms outrun
other algorithms via numerical experiments. As applications, we apply our method to compressed
sensing in signal recovery. The proposed methods have as a main advantage that the computation of
the Lipschitz constants for the gradient of functions is dropped in generating the sequences.
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1. Introduction

Let H be a real Hilbert space. Then, B : H → 2H is called monotone if 〈u− v, x− y〉 ≥ 0 for each
u ∈ Bx, v ∈ By. Moreover, B is maximal monotone provided its graph is not properly included in the
graph of other monotone mappings. Many problems in optimization can be reduced to finding x∗ ∈ H
such that 0 ∈ Bx∗. Martinet [1] and Rockafellar [2] suggested the proximal method for solving this
problem. They construct the sequence {xn} ⊂ H by choosing x1 ∈ H and putting

xn+1 = JB
βn

xn, n ∈ N, (1)

where {βn} ⊆ (0, ∞), B is a set-valued maximal monotone operator and JB
β is defined by

JB
β = (I + βB)−1 for each β > 0. We see that Equation (1) is equivalent to xn − xn+1 ∈ βnBxn+1,

n ∈ N.
The split variational inclusion problem (SVIP) was first investigated by Moudafi [3]. The problem

consists of finding x∗ ∈ H1 such that

0 ∈ B1(x∗) and 0 ∈ B2(Ax∗), (2)

where H1 and H2 are real Hilbert spaces, B1 and B2 are set-valued mappings on H1 and H2. In addition,
A : H1 → H2 is a bounded and linear operator and A∗ is the adjoint of A. We know that the SVIP
is a generalization of the split feasibility problem that was investigated by Censor and Elfving [4] in
Euclidean spaces. See [4–9]. In this paper, we denote by Ω the solution set of SVIP. Suppose that Ω
is nonempty.

In 2011, Byrne et al. [6] established a weak convergence theorem for SVIP as follows:
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Theorem 1. Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded linear operator.
Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal monotone operators. Let β > 0 and
γ ∈ (0, 2

‖A‖2 ). Let {xn} be generated by

xn+1 = JB1
β (xn − γA∗(I − JB2

β )Axn), n ∈ N. (3)

Then, {xn} converges weakly to x∗ in Ω.

In 2015, Chuang [10] introduced the following iteration for SVIP in Hilbert spaces.
Chuang [10] established its convergence as follows:

Theorem 2. Let H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded and linear operator.
Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal monotone operators. Choose δ ∈ (0, 1)
and let {βn} ⊆ (0, ∞) and {γn} ⊆ (0, δ

‖A‖2 ) and assume that

∞

∑
n=1

γn = ∞,
∞

∑
n=1

γ2
n < ∞, lim inf

n→∞
βn > 0. (4)

If H1 is finite dimensional, then limn→∞ xn = x∗ ∈ Ω.

Chuang [10] also provided the following result.

Theorem 3. Let H1 and H2 be infinite dimensional Hilbert spaces, A : H1 → H2 be a bounded and linear
operator. Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal monotone mappings. Choose δ ∈ (0, 1)
and let {βn} ⊆ (0, ∞), lim infn→∞ βn > 0 and {γn} ⊆ (0, δ

‖A‖2 ) with infn∈N γn > 0. Then, xn → x∗ ∈ Ω.

In 2013, Chuang [11] proved strong convergence theorem for SVIP using the following algorithm.

Algorithm 1:
[11]
For n ∈ N, set yn as

yn = JB1
βn
(xn − γn A∗(I − JB2

βn
)Axn), (5)

where γn > 0 is chosen such that

γn‖A∗(I − JB2
βn
)Axn − A∗(I − JB2

βn
)Ayn‖ ≤ δ‖xn − yn‖, 0 < δ < 1. (6)

The iterative xn+1 is generated by

xn+1 = JB1
βn
(xn − αnD(xn, γn)), (7)

where
D(xn, γn) = xn − yn + γn(A∗(I − JB2

βn
)Ayn − A∗(I − JB2

βn
)Axn) (8)

and

αn =
〈xn − yn, D(xn, γn)〉
‖D(xn, γn)‖2 . (9)

Theorem 4. Let H1 and H2 be two real Hilbert spaces, A : H1 → H2 be a bounded and linear operator.
Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be two set-valued maximal monotone operators. Let {an}, {bn}, {cn},
and {dn} be sequences of real numbers in [0, 1] with an + bn + cn + dn = 1 and 0 < an < 1 for each n ∈ N.
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Let {βn} ⊆ (0, ∞) and let {γn} ⊆ (0, 2
‖A‖2+1 ). Let {vn} be a bounded sequence in H1. Fix u ∈ H1 and let

the sequence {xn} ⊆ H1 be generated by

xn+1 = anu + bnxn + cn JB1
βn
(xn − γn A∗(I − JB2

βn
)Axn) + dnvn (10)

for each n ∈ N. Suppose that

(i) limn→∞ an = limn→∞
dn
an

= 0; ∑∞
n=1 an = ∞; ∑∞

n=1 dn < ∞;
(ii) lim infn→∞ cnγn > 0, lim infn→∞ bncn > 0, lim infn→∞ βn > 0.

Then, limn→∞ xn = x∗, where x∗ = PΩu and PΩu is nearest to u.

We aim to find the approximate algorithms with a new step size which is self-adaptive
(see López et al. [8]) for solving our SVIP and prove its convergence. We present numerical examples
and the comparison to algorithms of Byne et al. [6] and algorithms of Chuang [10,11]. We also obtain
the result for split feasibility problem (SFP) and its applications to compressed sensing in signal
recovery. It reveals that our methods have a better convergence than those of Byrne et al. [6] and
Chuang [10,11].

2. Preliminaries

We next provide some basic concepts for our proof. In what follows, we shall use the
following symbols:

• ⇀ stands for the weak convergence,
• → stands for the strong convergence.

Recall that a mapping T : H → H is called

(1) nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖ ≤ ‖x− y‖. (11)

(2) firmly-nonexpansive if, for all x, y ∈ H,

‖Tx− Ty‖2 ≤ 〈Tx− Ty, x− y〉. (12)

It is clear that I − T is also firmly-nonexpansive when T is firmly-nonexpansive. We know that,
for each x, y ∈ H,

〈x, y〉 = 1
2
‖x‖2 +

1
2
‖y‖2 − 1

2
‖x− y‖2 (13)

and
‖tx + (1− t)y‖2 = t‖x‖2 + (1− t)‖y‖2 − t(1− t)‖x− y‖2 (14)

for all x, y ∈ H and for all t ∈ [0, 1].
The following lemma can be found in [12].

Lemma 1. Let C be a nonempty closed convex subset of a real Hilbert space H. Let T : C → C be a nonexpansive
mapping. If xn ⇀ x ∈ C and lim

n→∞
‖xn − Txn‖ = 0, then x = Tx.

We use Fix(T) by the fixed point set of a mapping T, that is, Fix(T) = {x ∈ H : x = Tx} and
D(T) by the domain of a mapping T, i.e., D(T) = {x ∈ H : T(x) 6= ∅}.

The following lemma can be found in [11,13].

Lemma 2. Let H be a real Hilbert space and let B : H → 2H be a maximal monotone operator. Then,
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(i) JB
β is single-valued and firmly nonexpansive for each β > 0;

(ii) D(JB
β ) = H and Fix(JB

β ) = {x ∈ D(B) : 0 ∈ Bx};
(iii) ‖x− JB

β x‖ ≤ ‖x− JB
γ x‖ for all 0 < β ≤ γ and for all x ∈ H;

(iv) If B−1(0) 6= ∅, then we have ‖x− JB
β x‖2 + ‖JB

β x− x∗‖2 ≤ ‖x− x∗‖2 for all x ∈ H, each x∗ ∈ B−1(0),
and each β > 0;

(v) If B−1(0) 6= ∅, then we have 〈x− JB
β x, JB

β x− w〉 ≥ 0 for all x ∈ H, each w ∈ B−1(0), and each β > 0.

Lemma 3. Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a bounded and linear operator. Let β > 0,
γ > 0, B1 : H1 → 2H1 and B2 : H2 → 2H2 be maximal monotone operators. Let x∗ ∈ H1.

(i) If x∗ is a solution of (SVIP), then JB1
β (x∗ − γA∗(I − JB2

β )Ax∗) = x∗.

(ii) Suppose that JB1
β (x∗ − γA∗(I − JB2

β )Ax∗) = x∗ and the solution set of (SVIP) is nonempty. Then, x∗ is
a solution of (SVIP).

Lemma 4. Let H1 and H2 be real Hilbert spaces. Let A : H1 → H2 be a bounded and linear operator and β > 0.
Let B : H2 → 2H2 be a maximal monotone operator. Define a mapping T : H1 → H1 by Tx := A∗(I − JB

β )Ax
for each x ∈ H1. Then,

(i) ‖(I − JB
β )Ax− (I − JB

β )Ay‖2 ≤ 〈Tx− Ty, x− y〉 for all x, y ∈ H1;

(ii) ‖A∗(I − JB
β )Ax− A∗(I − JB

β )Ay‖2 ≤ ‖A‖2 · 〈Tx− Ty, x− y〉 for all x, y ∈ H1.

The following lemma can be found in [14].

Lemma 5. Let C be a nonempty subset of a Hilbert space H. Let {xn} be a sequence in H that satisfies the
following assumptions:

(i) lim
n→∞

‖xn − x‖ exists for each x ∈ C;

(ii) every sequential weak limit point of {xn} is in C.

Then, {xn} weakly converges to a point in C.

The following lemma can be found in [15].

Lemma 6. Assume {sn} ⊆ (0, ∞) such that

sn+1 ≤ (1− αn)sn + αnδn, n ≥ 1, (15)

sn+1 ≤ sn − λn + ϕn, n ≥ 1, (16)

where {αn} ⊆ (0, 1), {λn} ⊆ (0, 1) and {δn} and {ϕn} are real sequences such that

(i)
∞

∑
n=1

αn = ∞;

(ii) lim
n→∞

ϕn = 0;

(iii) limk→∞ λnk = 0 implies lim sup
k→∞

δnk ≤ 0 for any subsequence {nk} of {n}.

Then, lim
n→∞

sn = 0.

3. Weak Convergence Result

Let, H1 and H2 be real Hilbert spaces, A : H1 → H2 be a bounded and linear operator.
Let B1 : H1 → 2H1 and B2 : H2 → 2H2 be set-valued maximal monotone operators.

Let Ω be a solution set of problem (SVIP) and assume that Ω 6= ∅. We remark that the stepsize
sequence {γn} does not depend on the norm of an operator A as introduced by Byrne et al. [6] and
Chuang [10,11].
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Theorem 5. Suppose that lim inf
n→∞

βn > 0, inf
n

ρn(4− ρn) > 0 and lim
n→∞

θn = 0. Then, {xn} defined by
Algorithm 2 converges weakly to a solution in Ω.

Algorithm 2:
Choose x1 ∈ H1 and define

xn+1 = JB1
βn
(xn − γng(xn)), (17)

where

γn =
ρn f (xn)

‖g(xn)‖2 + θn
, 0 < ρn < 4, 0 < θn < 1, βn > 0, (18)

and
f (xn) =

1
2
‖(I − JB2

βn
)Axn‖2, g(xn) = A∗(I − JB2

βn
)Axn. (19)

Proof. Let z ∈ Ω. Then, z ∈ B−1
1 (0) and Az ∈ B−1

2 (0). Thus, we have JB2
βn

Az = Az. Using Lemma 4 (i),
we have

〈xn − z, g(xn)〉 = 〈xn − z, g(xn)− g(z)〉
= 〈xn − z, A∗(I − JB2

βn
)Axn − A∗(I − JB2

βn
)Az〉

= 〈Axn − Az, (I − JB2
βn
)Axn − (I − JB2

βn
)Az〉

≥ ‖(I − JB2
βn
)Axn‖2

= 2 f (xn). (20)

From Equation (20), Lemma 2 (iv) and the defining formulas for Algorithm 2

‖xn+1 − z‖2 = ‖JB1
βn
(xn − γng(xn))− z‖2

≤ ‖xn − γng(xn)− z‖2 − ‖xn+1 − xn + γng(xn)‖2

= ‖xn − z‖2 + γ2
n‖g(xn)‖2 − 2γn〈xn − z, g(xn)〉 − ‖xn+1 − xn + γng(xn)‖2

≤ ‖xn − z‖2 + γ2
n‖g(xn)‖2 − 4γn f (xn)− ‖xn+1 − xn + γng(xn)‖2

= ‖xn − z‖2 +
ρ2

n f 2(xn)

(‖g(xn)‖2 + θn)2 ‖g(xn)‖2 − 4ρn f 2(xn)

‖g(xn)‖2 + θn

−‖xn+1 − xn + γng(xn)‖2

≤ ‖xn − z‖2 +
ρ2

n f 2(xn)

‖g(xn)‖2 + θn
− 4ρn f 2(xn)

‖g(xn)‖2 + θn
− ‖xn+1 − xn + γng(xn)‖2

= ‖xn − z‖2 − ρn(4− ρn)
f 2(xn)

‖g(xn)‖2 + θn
− ‖xn+1 − xn + γng(xn)‖2. (21)

This implies that, since 0 < ρn < 4,

‖xn+1 − z‖ ≤ ‖xn − z‖. (22)

Thus, lim
n→∞

‖xn − z‖ exists. It follows that {xn} is bounded. Again, by Equation (21), we get

ρn(4− ρn)
f 2(xn)

‖g(xn)‖2 + θn
≤ ‖xn − z‖2 − ‖xn+1 − z‖2, (23)
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which yields by our assumptions that

lim
n→∞

f 2(xn)

‖g(xn)‖2 = 0. (24)

By Lemma 3 (ii), it can be checked that g is a Lipschitzian mapping and thus {‖g(xn)‖} is bounded.
Hence, we get lim

n→∞
f (xn) = 0. This means

lim
n→∞

‖(I − JB2
βn
)Axn‖ = 0. (25)

Furthermore, by Equation (21), we also have

lim
n→∞

‖xn+1 − xn + γng(xn)‖ = 0. (26)

We note that

γn‖g(xn)‖ =
ρn f (xn)

‖g(xn)‖2 + θn
‖g(xn)‖ → 0, as n→ ∞. (27)

Hence, by Equations (26) and (27), we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (28)

From Equation (25) and Lemma 2 (iii), we get

lim
n→∞

‖Axn − JB2
β Axn‖ ≤ lim

n→∞
‖Axn − JB2

βn
Axn‖ = 0, (29)

for some β > 0 such that βn ≥ β > 0 for all n ∈ N. From Equation (27), we see that

‖xn+1 − JB2
βn

xn‖ = ‖JB1
βn
(xn − γng(xn))− JB1

βn
xn‖

≤ ‖xn − γng(xn)− xn‖
= γn‖g(xn)‖
→ 0 as n→ ∞. (30)

From Equations (28) and (30), we have

‖xn − JB1
βn

xn‖ = ‖xn − xn+1 + xn+1 − JB1
βn

xn‖

≤ ‖xn − xn+1‖+ ‖xn+1 − JB1
βn

xn‖
→ 0 as n→ ∞. (31)

Lemma 2 (iii) gives

lim
n→∞

‖xn − JB1
β xn‖ ≤ lim

n→∞
‖xn − JB1

βn
xn‖ = 0. (32)

Since {xn} is bounded, there is a subsequence {xnk} of {xn} and x∗ ∈ H1 with xnk ⇀ x∗. We also
have Axnk ⇀ Ax∗. By Equations (29) and (32), Lemmas 1 and 2 (ii), we obtain x∗ ∈ Ω. Using Lemma 5,
we obtain that {xn} converges weakly to a solution in Ω.

4. Strong Convergence Result

Theorem 6. Assume that {αn}, {ρn} and {θn} satisfy the assumptions:

(a1) lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞;
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(a2) inf
n

ρn(4− ρn) > 0;

(a3) lim
n→∞

θn = 0;

(a4) lim inf
n→∞

βn > 0.

Then, {xn} defined by Algorithm 3 converges strongly to z = PΩu and PΩu is closest to u.

Algorithm 3:
Choose x1 ∈ H1 and let u ∈ H1. Let {αn} be a real sequence in (0, 1). Let {xn} be iteratively
generated by

xn+1 = αnu + (1− αn)JB1
βn
(xn − γng(xn)), (33)

where

γn =
ρn f (xn)

‖g(xn)‖2 + θn
, 0 < ρn < 4, 0 < θn < 1, βn > 0 (34)

and
f (xn) =

1
2
‖(I − JB2

βn
)Axn‖2, g(xn) = A∗(I − JB2

βn
)Axn. (35)

Proof. Set z = PΩu ∈ Ω. Using the line of proof as for Theorem 5, we have

‖JB1
βn
(xn − γng(xn))− z‖2 ≤ ‖xn − z‖2 − ρn(4− ρn)

f 2(xn)

‖g(xn)‖2 + θn

−‖JB1
βn
(xn − γng(xn))− xn + γng(xn)‖2. (36)

Then,

‖xn+1 − z‖2 = ‖αn(u− z) + (1− αn)(JB1
βn
(xn − γng(xn))− z)‖2

≤ (1− αn)‖JB1
βn
(xn − γng(xn))− z‖2 + 2αn〈u− z, xn+1 − z〉. (37)

Combining Equations (36) and (37), we get

‖xn+1 − z‖2 ≤ (1− αn)‖xn − z‖2 − (1− αn)ρn(4− ρn)
f 2(xn)

‖g(xn)‖2 + θn

−(1− αn)‖JB1
βn
(xn − γng(xn))− xn + γng(xn)‖2

+2αn〈u− z, xn+1 − z〉. (38)

Next, we will show that {xn} is bounded. Again, using Equation (36),

‖xn+1 − z‖ = ‖αnu + (1− αn)JB1
βn
(xn − γng(xn))− z‖

≤ αn‖u− z‖+ (1− αn)‖xn − z‖. (39)

Thus, {xn} is bounded. Employing Lemma 6, from Equation (38), we set

sn = ‖xn − z‖2;

ϕn = 2αn〈u− z, xn+1 − z〉;
δn = 2〈u− z, xn+1 − z〉;

λn = (1− αn)ρn(4− ρn)
f 2(xn)

‖g(xn)‖2 + θn

+(1− αn)‖JB1
βn
(xn − γng(xn))− xn + γng(xn)‖2. (40)
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Thus, Equation (38) reduces to the inequalities

sn+1 ≤ (1− αn)sn + αnδn, n ≥ 1, (41)

sn+1 ≤ sn − λn + ϕn. (42)

Let {nk} ⊆ {n} be such that
lim
k→∞

λnk = 0. (43)

Then, we have

lim
k→∞

(
(1− αnk )ρnk (4− ρnk )

f 2(xnk )

‖g(xnk )‖2 + θnk

+ (1− αnk )‖JB1
βnk

(xnk − γnk g(xnk ))− xnk + γnk g(xnk )‖
2) = 0, (44)

which, by using our assumptions, implies

f 2
nk
(xnk )

‖gnk (xnk )‖2 → 0 as k→ ∞, (45)

and
‖JB1

βnk
(xnk − γnk g(xnk ))− xnk + γnk g(xnk )‖ → 0 as k→ ∞. (46)

Since {‖gnk (xnk )‖} is bounded, it follows that fnk (xnk )→ 0 as k→ ∞. Thus, we get

lim
k→∞
‖(I − JB1

βnk
)Axnk‖ = 0. (47)

As the same proof in Theorem 5, we can show that there is {xnki
} of {xnk} such that xnki

⇀ x∗ ∈ Ω.
From Lemma 2 (v), we obtain

lim sup
k→∞

〈u− z, xnk − z〉 = lim
i→∞
〈u− z, xnki

− z〉

= 〈u− z, x∗ − z〉
≤ 0. (48)

We see that

‖xnk+1 − xnk‖ = ‖αnk u + (1− αnk )JB1
βnk

(xnk − γnk g(xnk ))− xnk‖

≤ αnk‖u− xnk‖+ (1− αnk )‖JB1
βnk

(xnk − γnk g(xnk ))− xnk‖

≤ αnk‖u− xnk‖+ (1− αnk )‖JB1
βnk

(xnk − γnk g(xnk ))− xnk + γnk g(xnk )‖

+(1− αnk )γnk‖g(xnk )‖
→ 0 as k→ ∞. (49)

From Equations (48) and (49), it follows that

lim sup
k→∞

〈u− z, xnk+1 − z〉 ≤ 0. (50)

Hence, we get
lim sup

k→∞
δnk ≤ 0. (51)

Thus, {xn} converges strongly to z = PΩu by Lemma 6.



Mathematics 2019, 7, 708 9 of 17

5. Numerical Experiments

We present numerical experiments for our main results.
First, we give a comparison among Theorems 1–3 and 5 for a weak convergence theorem.
The following example is introduced in [10].

Example 1. Let B1 : R2 → R2 and B2 : R3 → R3 be

A =

2 1
1 2
2 2

 , B1

[
x
y

]
=

[
2 2
2 2

] [
x
y

]
+

[
−2
−2

]
, B2

x
y
z

 =

 2 −2 −2
−2 2 2
−2 2 2


x

y
z

 . (52)

We aim to find x∗ = (x∗1 , x∗2)
T ∈ R2 such that B1(x∗) = (0, 0)T and B2(Ax∗) = (0, 0, 0)T . In this case,

we know that x∗1 = 1.5 and x∗2 = −0.5.

We set γn = 0.001 in Theorem 1, γn = 1
2n‖A‖2 in Theorem 2, γn = δ

2‖A‖2 in Theorem 3 and

γn = ρn f (xn)
‖g(xn)‖2+θn

, θn = 1
n5 in Theorem 5. The stopping criterion is given by ‖xn − x∗‖2 < ε.

We test by the following cases:

Case 1: x1 = [1, 1], βn = 1, ρn = 1.5n
n+1 , and δ = 1

3 ,
Case 2: x1 = [4,−2], βn = 2, ρn = 3.5n

n+1 , and δ = 1
2 ,

Case 3: x1 = [−5,−3], βn = 3, ρn = 2.8, and δ = 1
4 ,

Case 4: x1 = [−2,−7], βn = 4, ρn = 3.9, and δ = 1
5 .

From Table 1, we see that Theorem 5 using Algorithm 2 has a better convergence rate than
other algorithms.

Table 1. Comparison for Theorems 1–3 and 5 for each case.

Method ε = 10−4 ε = 10−5

CPU Iter CPU Iter

Case 1 Theorem 1 0.1091 3657 0.2763 7688
Theorem 2 0.0078 131 0.0778 1272
Theorem 3 0.0452 777 0.0699 1186
Theorem 5 0.0017 66 0.0023 86

Case 2 Theorem 1 0.1565 4645 0.5374 8388
Theorem 2 0.0276 454 0.3143 4357
Theorem 3 0.0368 609 0.0487 860
Theorem 5 0.0011 39 0.0028 48

Case 3 Theorem 1 0.1390 4572 0.3172 8219
Theorem 2 0.0280 471 0.2936 4510
Theorem 3 0.0635 1048 0.0905 1541
Theorem 5 0.0014 45 0.0016 55

Case 4 Theorem 1 0.1189 4069 0.2849 7668
Theorem 2 0.0213 345 0.2092 3307
Theorem 3 0.0686 1159 0.1046 1768
Theorem 5 0.0011 34 0.0011 43

Second, we give a comparison between Theorems 4 and 6 for a strong convergence theorem by
using Example 1.

Choose an = 1
n+1 , bn = 1

5 , cn = 1− an − bn, dn = 0 and γn = 1
‖A‖2+1 in Theorem 4 and set

θn = 1
n5 , αn = 1

n+1 and γn = ρn f (xn)
‖g(xn)‖2+θn

in Theorem 6. In this case, we let u = [2, 2].
We test by the following cases:

Case 1: x1 = [1, 1], βn = 1 and ρn = 1.5n
n+1 ,
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Case 2: x1 = [4,−2], βn = 2 and ρn = 3.5n
n+1 ,

Case 3: x1 = [−5,−3], βn = 3 and ρn = 2.8,
Case 4: x1 = [−2,−7], βn = 4 and ρn = 3.9.

From Table 2, we observe that, in each case, the convergence behavior of Theorem 4 is worse than
that Theorem 6.

Table 2. Comparing results for Theorems 4 and 6 for each case.

Method ε = 10−4 ε = 10−5

CPU Iter CPU Iter

Case 1 Theorem 4 0.0310 714 0.0871 2256
Theorem 6 0.0068 273 0.0240 860

Case 2 Theorem 4 0.0225 685 0.0790 2166
Theorem 6 0.0038 142 0.0117 448

Case 3 Theorem 4 0.0204 675 0.0727 2135
Theorem 6 0.0043 156 0.0132 492

Case 4 Theorem 4 0.0241 671 0.0677 2120
Theorem 6 0.0038 140 0.0156 441

6. Split Feasibility Problem

Let H1 and H2 be real Hilbert spaces. We next study the split feasibility problem (SFP) that is to
seek x∗ ∈ H1 such that

x∗ ∈ C and Ax∗ ∈ Q, (53)

where C and Q are nonempty closed convex subsets of H1 and H2, respectively, and A : H1 → H2 is
a bounded linear operator with the adjoint operator A∗. Many authors introduced various algorithms
for solving the SFP [16–19].

Let H be a Hilbert space and let g : H → (−∞, ∞] be a proper, lower semicontinuous and convex
function. The subdifferential ∂g of g is defined by

∂g(x) = {z ∈ H : g(x) + 〈z, y− x〉 ≤ g(y), ∀y ∈ H} (54)

for all x ∈ H. Let C be a nonempty closed convex subset of H, and ιC be the indicator function of C
defined by

ιCx =

{
0 x ∈ C,

∞ x /∈ C.
(55)

The normal cone NCu of C at u is defined by

NCu = {z ∈ H : 〈z, v− u〉 ≤ 0, ∀v ∈ C}. (56)

Then, ιC is a proper, lower semicontinuous and convex function on H. See [20,21]. Moreover,
the subdifferential ∂ιC of ιC is a maximal monotone mapping. In this connection, we can define the
resolvent J∂ιC

λ of ∂ιC for λ > 0 by

J∂ιC
λ x = (I + λ∂ιC)

−1x (57)

for all x ∈ H. Hence, we see that

∂ιCx = {z ∈ H : ιCx + 〈z, y− x〉 ≤ ιCy, ∀y ∈ H}
= {z ∈ H : 〈z, y− x〉 ≤ 0, ∀y ∈ C}
= NCx (58)
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for all x ∈ C. Hence, for each β > 0, we obtain the following relation:

u = J∂ιC
β x ⇔ x ∈ u + β∂ιCu

⇔ x− u ∈ βNCu

⇔ 〈x− u, y− u〉 ≤ 0, ∀y ∈ C

⇔ u = PCx. (59)

Consequently, we obtain the following results which are deduced from Algorithm 2.

Theorem 7. Assume that inf
n

ρn(4− ρn) > 0 and lim
n→∞

θn = 0. Choose x1 ∈ H1 and let {xn} be defined by

xn+1 = PC(xn − γng(xn)), (60)

where

γn =
ρn f (xn)

‖g(xn)‖2 + θn
, 0 < ρn < 4, 0 < θn < 1 (61)

and
f (xn) =

1
2
‖(I − PQ)Axn‖2, g(xn) = A∗(I − PQ)Axn. (62)

Then, {xn} converges weakly to a solution in Ω.

By Theorem 1, we obtain the result of Byrne et al. [6].

Theorem 8. Let {xn} be generated by

xn+1 = PC(xn − γA∗(I − PQ)Axn), n ∈ N, (63)

where H1 and H2 are Hilbert spaces, A : H1 → H2 be a bounded and linear operator and γ ∈ (0, 2
‖A‖2 ).

Then, {xn} converges weakly to x∗ ∈ Ω.

Using Chuang’s results in Algorithm 1, we have

Theorem 9. Let H1 and H2 be infinite dimensional Hilbert spaces, A : H1 → H2 be a bounded and linear
operator. Choose δ ∈ (0, 1) and {γn} ⊆ (0, δ

‖A‖2 ) with infn∈N γn > 0. Choose x1 ∈ H1. For n ∈ N, set yn as

yn = PC(xn − γn A∗(I − PQ)Axn), (64)

where γn > 0 satisfies

γn‖A∗(I − PQ)Axn − A∗(I − PQ)Ayn‖ ≤ δ‖xn − yn‖, 0 < δ < 1. (65)

Construct xn+1 by
xn+1 = PC(xn − αnD(xn, γn)), (66)

where
D(xn, γn) = xn − yn + γn(A∗(I − PQ)Ayn − A∗(I − PQ)Axn) (67)

and

αn =
〈xn − yn, D(xn, γn)〉
‖D(xn, γn)‖2 . (68)

Then, the sequence {xn} converges weakly to x∗ ∈ Ω.

From Algorithm 3 and Theorem 6, we have
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Theorem 10. Assume that {αn}, {ρn} and {θn} satisfy the assumptions:

(a1) lim
n→∞

αn = 0 and
∞

∑
n=1

αn = ∞;

(a2) inf
n

ρn(4− ρn) > 0;

(a3) lim
n→∞

θn = 0.

Choose x1 ∈ H1 and define {xn} by

xn+1 = αnu + (1− αn)PC(xn − γng(xn)), (69)

where

γn =
ρn f (xn)

‖g(xn)‖2 + θn
, 0 < ρn < 4, 0 < θn < 1, 0 < αn < 1, (70)

and
f (xn) =

1
2
‖(I − PQ)Axn‖2, g(xn) = A∗(I − PQ)Axn. (71)

Then, {xn} converges strongly to z = PΩu.

We also have the following result.

Theorem 11. Let {an}, {bn}, {cn}, and {dn} be sequences of real numbers in [0, 1] with
an + bn + cn + dn = 1 and 0 < an < 1 for each n ∈ N. Let {vn} be a bounded sequence in H1. Let u ∈ H1 be
fixed and {γn} ⊆ (0, 2

‖A‖2+1 ). Let {xn} be defined by

xn+1 = anu + bnxn + cnPC(xn − γn A∗(I − PQ)Axn) + dnvn (72)

for each n ∈ N. Suppose that

(i) limn→∞ an = limn→∞
dn
an

= 0; ∑∞
n=1 an = ∞; ∑∞

n=1 dn < ∞;
(ii) lim infn→∞ cnγn > 0 and lim infn→∞ bncn > 0.

Then, limn→∞ xn = x∗, where x∗ = PΩu, A : H1 → H2 be a bounded and linear operator. Then, {xn}
converges strongly to a point in Ω.

7. Applications to Compressed Sensing

In signal processing, we consider the following linear equation:

y = Ax + ε, (73)

where x ∈ RN is a sparse vector that has m nonzero components, y ∈ RM is the observed data
with noisy ε, and A : RN → RM (M < N). It can be seen that Equation (73) relates to the LASSO
problem [22]

min
x∈RN

1
2
‖y− Ax‖2

2 subject to ‖x‖1 ≤ t, (74)

where t > 0. In particular, if C = {x ∈ RN : ‖x‖1 ≤ t} and Q = {y}, then the LASSO problem can be
considered as the SFP Equation (53).

The vector x ∈ RN is generated by the uniform distribution in [−2, 2] with m nonzero components.
Let A be an M×N matrix that is generated by the normal distribution with mean zero and the variance
one. The observed data y is generated by white Gaussian noise with signal-to-noise ratio (SNR)40.
The process is started with t = m and initial point x1 = 0.
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The stopping error is defined by

En =
1
N
‖xn − x‖2

2 < κ, (75)

where xn is an estimated signal of x.
We give some numerical results of Theorems 7–9. Choose γn = ρn f (xn)

‖g(xn)‖2+θn
, ρn = 3, θn = 1

n5 in

Theorem 7 and γn = δ
2‖A‖2 in Theorem 8 and δ = 0.8, γn = δ

2‖A‖2 in Theorem 9.
Tables 3 and 4 show that both the number of iterations and the CPU time in our algorithm

in Theorem 7 are less than algorithms in Theorems 8 and 9 have in their computations. Next,
we test numerical experiments in signal recovery in the case N = 512, M = 256 and N = 2048,
M = 1024, respectively.

Table 3. Numerical results for the LASSO problem in case M = 256, N = 512.

m-Sparse Method κ = 10−3 κ = 10−4

CPU Iter CPU Iter

m = 10 Theorem 8 0.9662 44 3.6208 132
Theorem 9 1.3204 58 4.2151 170
Theorem 7 0.0054 26 0.0111 63

m = 15 Theorem 8 1.3082 57 2.8470 124
Theorem 9 1.8984 84 3.7938 170
Theorem 7 0.0058 36 0.0099 72

m = 20 Theorem 8 1.4928 65 3.5994 161
Theorem 9 2.7294 122 5.7801 251
Theorem 7 0.0070 42 0.0143 99

m = 25 Theorem 8 2.2008 98 6.0600 275
Theorem 9 4.1730 183 18.6269 824
Theorem 7 0.0107 67 0.0323 227

Table 4. Numerical results for the LASSO problem in case M = 2048, N = 1024.

m-Sparse Method κ = 10−3 κ = 10−4

CPU Iter CPU Iter

m = 30 Theorem 8 47.6530 41 119.9776 101
Theorem 9 67.6869 57 157.1087 134
Theorem 7 0.0807 25 0.1899 58

m = 40 Theorem 8 47.7347 41 151.0891 117
Theorem 9 93.1898 79 306.8623 240
Theorem 7 0.1007 31 0.2880 82

m = 50 Theorem 8 65.1771 55 136.1508 115
Theorem 9 99.0021 83 188.9366 158
Theorem 7 0.1227 35 0.2203 67

m = 60 Theorem 8 76.7457 64 163.8805 138
Theorem 9 127.5520 106 209.5990 177
Theorem 7 0.1401 43 0.2449 75

Finally, we discuss the strong convergence of Theorems 10 and 11. We set an = 1
n+1 , bn = 1

5 ,
cn = 1− an − bn, dn = 0 and γn = 1

‖A‖2+1 in Theorem 11 and set ρn = 2, θn = 1
n5 , αn = 1

n+1 and
u = [1, 1, . . . , 1] in Theorem 10.

Tables 5 and 6 show that our proposed algorithm in Theorem 10 has a better convergence behavior
than the algorithm defined in Theorem 11 in iterations and CPU time.
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Table 5. Numerical results for the LASSO problem in case M = 512, N = 256.

m-Sparse Method κ = 10−3 κ = 10−4

CPU Iter CPU Iter

m = 10 Theorem 11 5.8869 237 28.2850 863
Theorem 10 0.0296 157 0.1232 551

m = 15 Theorem 11 6.1204 245 38.9049 1561
Theorem 10 0.0260 155 0.1550 950

m = 20 Theorem 11 9.3238 376 116.7590 4613
Theorem 10 0.0377 233 0.4484 2730

m = 25 Theorem 11 9.3206 379 32.8208 1255
Theorem 10 0.0420 252 0.1578 858

Table 6. Numerical results for the LASSO problem in case M = 2048, N = 1024.

m-Sparse Method κ = 10−3 κ = 10−4

CPU Iter CPU Iter

m = 10 Theorem 11 131.3365 111 578.6894 490
Theorem 10 0.2419 74 0.9969 305

m = 20 Theorem 11 184.8031 157 616.7051 526
Theorem 10 0.3274 101 1.0929 339

m = 30 Theorem 11 262.3976 224 1.3220×103 503
Theorem 10 0.4633 141 1.4516 339

m = 40 Theorem 11 282.6013 237 1.6136×103 1326
Theorem 10 0.5393 158 2.6758 791

We next provide some experiments in recovering the signal.
From Figures 1–4, we observe that our algorithms can be applied to solve the LASSO problem.

Moreover, the proposed algorithms have a better convergence behavior than other methods.

50 100 150 200 250 300 350 400 450 500
−1

0

1
Original signal (N = 512, M = 256, 10 spikes)

50 100 150 200 250
−10

0

10
Measured values with SNR=40

50 100 150 200 250 300 350 400 450 500
−1

0

1
Recovered signal by Theorem 8 (132 iterations, CPU = 3.6208)

50 100 150 200 250 300 350 400 450 500
−1

0

1
Recovered signal by Theorem 9 (170 iterations, CPU = 4.2151)

50 100 150 200 250 300 350 400 450 500
−1

0

1
Recovered signal by Theorem 7 (63 iterations, CPU = 0.0111)

Figure 1. From top to bottom: original signal, measured values, recovered signal by Theorem 8,
Theorem 9 and Theorem 7 with N = 512, M = 256 and m = 10.



Mathematics 2019, 7, 708 15 of 17

200 400 600 800 1000 1200 1400 1600 1800 2000
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Original signal (N = 2048, M = 1024, 40 spikes)

100 200 300 400 500 600 700 800 900 1000

−20

0
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Measured values with SNR=40

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1
Recovered signal by Theorem 8 (117 iterations, CPU = 151.0891)

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1
Recovered signal by Theorem 9 (240 iterations, CPU = 306.8623

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1
Recovered signal by Theorem 7 (82 iterations, CPU = 0.2880)

Figure 2. From top to bottom: original signal, measured values, recovered signal by Theorem 8,
Theorem 9 and Theorem 7 with N = 2048, M = 1024 and m = 40.
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Original signal (N = 512, M = 256, 10 spikes)
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1
Recovered signal by Theorem 11 (863 iterations, CPU = 28.2850)

50 100 150 200 250 300 350 400 450 500
−1

0

1
Recovered signal by Theorem 10 (551 iterations, CPU = 0.1232)

Figure 3. From top to bottom: original signal, measured values, recovered signal by Theorem 11 and
Theorem 10 with N = 512, M = 256 and m = 10.
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200 400 600 800 1000 1200 1400 1600 1800 2000
−1
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1
Original signal (N = 2048, M = 1024, 30 spikes)

100 200 300 400 500 600 700 800 900 1000
−20
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20

Measured values with SNR=40

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1

Recovered signal by Theorem 11 (503 iterations, CPU = 1.3220 × 10
3
)

200 400 600 800 1000 1200 1400 1600 1800 2000
−1

0

1
Recovered signal by Theorem 10 (339 iterations, CPU = 1.4516)

Figure 4. From top to bottom: original signal, measured values, recovered signal by Theorem 11 and
Theorem 10 with N = 2048, M = 1024 and m = 30.

8. Conclusions

In the present work, we introduce a new approximation algorithm with a new stepsize that
involves the self adaptive method for SVIP. The stepsize does not use the Lipschitz constant and
the norm of operators in computing. We show its convergence analysis, which was proved under
some suitable assumptions. The numerical results showed the efficiency of our algorithms. It is
reported that the performance of our algorithms outruns those of Byrne et al. [6] and Chuang [10,11]
through experiments.
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