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Abstract: In this paper, the Cauchy problem of the modified Helmholtz equation (CPMHE) with
perturbed wave number is considered. In the sense of Hadamard, this problem is severely ill-posed.
The Fourier truncation regularization method is used to solve this Cauchy problem. Meanwhile,
the corresponding error estimate between the exact solution and the regularized solution is obtained.
A numerical example is presented to illustrate the validity and effectiveness of our methods.
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1. Introduction

Modified Helmholtz equation which is pointed out in [1] usually occurs in applications of
physics and engineering, such as wave propagation and scattering [2], structural vibration [3], implicit
marching schemes for the heat equation [1], the Navier-Stokes equations [4], etc. Regarding the inverse
problem for the modified Helmholtz equation, there are a lot of research results. In [5,6] the authors
used the simplified Tikhonov regularization method and the quasi-reversibility regularization method
to identify the unknown source of the modified Helmholtz equation. The Cauchy problems for
the modified Helmholtz equation is typical ill-posed problem according to the sense of Hadamard.
Many researchers have used lots of regularization solutions to solve it, such as the Landweber
method [7], the method of fundamental solutions (MFS) [8-10], the plane wave method [11],
the Tikhonov type regularization method [12], a fourth-order modified method [13] and the
quasi-boundary value method [14,15]. From these references, there are two defects: one is that
the equation is homogeneous; the other is that the measurable data is only one. In [16], the authors
used the truncation method for the cauchy problem of Helmholtz equation. In [17], the authors used
the truncation method for the cauchy problem of Helmholtz equation using three measurable data.
However, in [16,17], the authors considered the Cauchy problem of the Helmholtz equation.

In this work, we consider a three-dimensional Cauchy problem of the modified Helmholtz
equation with perturbed wave number as follows:

Au(x,y,z) — k*u(x,y,z) = S(x,y,z), (x,y) €R%z¢€(0,1),
uz(x,y,0) = f(x,y), (x,y) €R?, €
u(x,y,0) = 8(x,y), (x,y) € R?,
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where A is the Laplace operator, (f,g,k) € L?>(R?) x L2(R?) x R* and S € L*(R? x (0,1)) are
given data. However, ¢(x,y), f(x,y) and k can be measured, there exists measured value with
error. The measure data are g, f. and k., and satisfy

lge = 8lli2me) <& [Ife = flliame) <& ke —k| < 2)

where || - || denotes L?(R?) norm and & > 0 is a noise level.
We solve the ill-posed problem (1) by using the Fourier truncation regularization method in the

o~

Fourier domain. Let f({) denote the Fourier transform of the function f(x, y) which is defined by

o) = L [ emil@r+aw) _ 2
F@) = == [ @B f(x y)dxdy, € = (@1,22) € B2 ©

We assume the exact data ( fex, gex, kex) has the following priori bound:
Assume five positive numbers A, B, C, D, E satisfy

~ 1
A<ka<B, [ 1§ufdg <C° [ |feuPdg <02, [ ([ S(e,2)d2)% < E2 )

Recently, Fourier regularization method has been effectively applied to solve different inverse
problem: The sideways heat equation [18,19], a more general sideways parabolic equation [20],
numerical differentiation [21], a posteriori Fourier method for solving ill-posed problems [22],
the unknown source in the Poisson equation [23], the time-dependent heat source for heat equation [24],
the heat source problem for time fractional diffusion equation [25,26], the semi-linear backward
parabolic problems [27], the unknown source for time-fractional diffusion equation in bounded
domain [28], the Cauchy problem for the Helmholtz equation [29], the a posteriori truncation method
for some Cauchy problems associated with Helmholtz-type equations [30], the Cauchy problem of the
inhomogeneous Helmholtz equation [31].

This paper is organized as follows. Some auxiliary results are given in Section 2. In Section 3,
the Fourier truncation regularization method is used to solve this problem and the Holder error
estimate between the exact solution and the regularized solution are obtained. An example is given in
Section 4 which is used to show our method effective. There is a brief conclusion in Section 5.

2. Some Auxiliary Results

In this section, we give some lemmas that are essential to prove our main conclusion.
Lemma1l. Fora € (0,1), b >1and0 < x < %lnia, there holds:
. z=b & pxy—1 _z
(i) 0 < coshzx <475 (1— yid ) 6(b,a,z)a”5,

(i) 0 < sinhzx

< 4Zl;vb(1 - %ebx)*lé(b, w,z)a" b,

b—z

where §(b,w,z) = (4—a) 7, Vz €[0,1].

Proof. For 0 < x < %, we can get 1 — §x > 0. For all m,n > 0, using the inequality mn < (%3%)2,
we obtain

o o fx+1-—5%x
—x(1— = < 4 4 2
4x( 4x) — ( 2 ) 4
then we can get
4
x(1— %x) <alL0<x< - )
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For0 < x < 1ln\fandoc € (0,1), we obtain 1 — 4e"* > 0.

Using inequalities coshzx < e*, SZ”hZ‘ < ¢, we obtain (1 — %e%)coshzx < (1 — %e%¥)e?* and
(1 _ Z hx)szn)l:zx < (1 _ zx bx)
According to (5), we obtain

(1 — =eP*)coshzx < (1 %ebx)ezx
[14 bz 14 z
— (1 Zeb;vc) b [ebx(l _ Zebx)] i

Then, we get
coshzx < 45 (1— %eb")*lé(b, n,z)a s,

smizzx < 4%(1 _ %ehx)A(;(b,a,Z)Mg,

where 6(b,a,z) = (4 — DC) 5, Yz e [0,1].
O

Lemma 2 ([21]). Let b > a > 0, ¢1(x) = coshzx and ¢, (x) = %, z € [0,1]. The following
inequalities hold:

|cosh(zb) — cosh(za)| < (b — a)cosh(zcy),

sinh(zb)  sinh(za sinh(zc

| b( )_ a( )| (b—a) C( 2),
2

IN

in which c1, ¢y € [a,b).

3. Fourier Truncation Regularization Method and Error Estimate

Using the Fourier transform, we obtain the solution of problem (1) according to ( fex, gex, kex) and
(fex, Qex, ke ), respectively, in L2(R?) x L?(R?) x R as follows:

T gk (67) = B @)c0h(2ren) + n(§) ) . [° S(E sinhl(z —Ore) gy - (q)

Tex Tex
N ~ sinh(zr z§ ,)sinh((z — t)r
U(E gooke) (6/2) = &ex(§)cosh(zre) + fex(C) (zre) +/ (¢, t)sinh((z — t) S)dt, @
exsyexse re O re
We get the regularization solution of (1) by using the Fourier truncation regularization method
as follows:
~ ~ sinh(zr z§ ,B)sinh((z — t)r

T iy (©2) = (Gex(@cosh(zre) 4 for() )y [ SEDMEZ0TE) ) )

exrssexys S rs O rs

T i (62 = (Ee@eosh(zre) + @ TETe) | [* SEOSINE ) gy )

Te Te

where X},5x denotes the norm in domain [—&muax, Emax] defined by

X = {1" € 1= Enax (10)
0/‘ C |Z gmax~

Now we give the error estimate between the regularization solution and the exact solution.
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Theorem 1. Let % u(f okor (éf z) be given by (6), let % (f genke) (&,z) be given by (7). The corresponding

reqularization solutions are gwen by (8) and (9). Let (fex, Sex, Cx) satisfy (4). Choosing

(:mux = (l”%)z - k%/ (11)

we will obtain the following error estimate:
175, gk (2) = 4 gk (2 < V2672 4 FE, (12)
where F = (2v/6 +2/3 +6)5(b,a,z)a " 5+/C2 + D2 + E2.

Proof. By the triangle inequality and Parseval formula, we obtain

1%, geke) (0 2) = U(E v (2]
=%, gk (0 2) = U ey (D]
<[5, g ) Cr2) = W5 gk G NG g k) (r2) = U(E gk (2]
G genke) (1 2) = Wiy o) (D) - (13)

We firstly give an estimate for the first term. Due to (8) and (9) and Lemma 1, we have

1755, o) (+2) = 85, gy (DI

= [ Gecl@eosh(zre) + (@) TETeS) | [7 SE AN 1)

ex Tex

~@@osern) + @M [ S~ 0re) g

Tex Tex

~ ~ inh(zre 2
= [ Teoshar) §E) = G0 + T ) — (e Pl
. - smh(zrgx) S(&,t)sinh((z — t)rex)
- /|ér\>§max (gex(§>C05h(ZT’ex) +fex(‘:> Vex +/O Tex dt) 4
] "Cmax ~

<max{ sup {cosh(zr))?, sup (T y2y [ (. (6) - gu(@)] + (@) ~ Fer(@)] e

18] <Cmax 181 <Cmax Te ~Gmax
+2max{ sup (cosh(zrex))?, sup (M)Z} |§ex(§)+ﬁx(é)+/Z§(§,t)dt|2d6

|G1>Cmax |E[>Gmax Tex 11> Cmax 0
< \é\sugp 7218 = Zexl® + 1 fe = fex1?)

6 22550 (1 — % phreny 252 ba,z)a 2% . (8)12d £.(2)12d

! (|§f;1§§av ( 4e ) ( IXZ)IX (/|§|>§max |g (§)| et 21> Cmax |f (€)| ¢

+/ /\S{;’tdtzdgf)
§‘>Cmax
2022V [maxPHkE g2 4 040~ 20V [Emax Pk 52, o, 2) w25 (C2 4 D? + E2)

<22V Ieman P4 2 4 040 =20V 1omaxP+KE 52 (5, 0, 2)0 =25 (C2 + D? + E2).
Hence, we get

| i (z) - UG aok) (7 2)|| < V26Vl 4k g2 4 9\ /6e=0V Emax P+RE 5 (b, o, z)a~§+/C2 + D2 + EZ. (14)

fe e, ks
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Then, we will give an estimate for the second term. Combining (7) and (8), Lemma 1 and using
the inequalities coshzx < ¢**, Sl”hz" < e#, (a+b)? <2(a®+ %), (a+b+c)? < 3(a® + b* + c?) where
x>0,0<z<1,wehave

| AE?EX 8exs ke)( ) Afz}('ex Sex, ks ( ) H

= [ I @e@)coshare) + (@ ) . [ SEDSMEZIN oy — 01

Te Te

R e

Te Te
sinh(zr R ~ z
<max{ sup {eosh(ar), sup (IEy2y [ g (@) 4 fulg) + [ S naa
G1>Cmax |&]>Cmax |€]>Cmax 0
z—b 14 _ _nz N -~
<3 sup (427 (1- 7o) 252<b,a,z>a ([ g @R+ [ Fe(@)Pde
|&]>Enax 4 “:|>§max |§|>§max

( —t)Tex
t) dt2d
/¢\>¢m/' (&) —andg)

<12e" VG, 52 (0, 7)a =25 (C? + D? + E2).
Hence

1B gy (2) = B oy (5 2) | < V1260V Eml 4K 5, 0, 2)a~ 8 /C2 + D2+ 2. (15)

Now we estimate the third term. By using (6) and (7), Lemma 2, (a + b)? < 2(a? + b?) and
(a+b+c)? < 3(a® +b* +c?), we have

”ﬁ?,);engex,ks)(" ) Afjcrev /exs ktx)(.’z)”z
= /oo |(Sex (&) (cosh(zre) — cosh(zrex)) +ﬁx(§)(5inhr(zrg) _ Si”hr(zrex)
+/ (&) sinh((z — t)re) sinh((z — 1)Fex) )dt\de

Te Vex

)

sinh(zcy)

< [ 1§eal@) (e = ren)coshi(ze) + or @) 1 — )
+ ["8@ 0. =) SE 1) 24

€3

<(re — rex)( / " G (E)cosh (zr) + Fou(e) ST sinh((zre)

- Te Te

| st narpaz

<362V [bmax P+ 52 (p, o, 2)a =25 (C2 + D? + E2).
Hence, according to va? + b?> < a + b, we obtain

T, g (7 2) = W o k) (o2 12(R2) (16)
<6e PV IemaxPHKE Y 5(p, 0, z)a~ 5 \/C2 + D2 + E2.

Using (14)—(16), we can obtain

2112
1 g0 (2) = 0 g (2| < V2V IR - om0V lonmn P
where F = (2v/6 4 2v/3 4 6)6(b, &, z)a~5+/C2 + D2 + E2.
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Using (11), we obtain
15, g0 () = ¥ o) (2 < V22 4 FEE (17)
O

4. Numerical Implementation

In this section, we give an example to show our method'’s effectiveness. We consider the following
three-dimensional Cauchy problem of the modified Helmholtz equation:

Au(x,y,z) — ku(x,y,z) = S(x,y,2z), (x,y) €R%ze(0,1),
uz(%,,0) = fex(x,y), (x,y) € R?, (18)
u(x,y,0) = gex(x,y), (x,y) € R?,

where A denotes the Laplace operator, fox(x,y) = gex(%,y) = e~ 1+ and S(x,y,z) = ze*i(xzﬂz),
then we have

g 3
L€ T D) — o3P 5z, 2) = ze P, (19)
2.

e

J?BX(@ = §eX(C) -

1 1
23 2

where |¢]? = (fz + (’,‘2, ZeR?and k,y =1, z € (0,1). The measured data (fe, g, k¢ ) is given by

_e-rand(-)
fs(x/y) _< \/277_[

_e-rand(-) .
ge(x,y) = (7\/2—71 + 1)gex(x,y),

+ 1) fex(x,y),

ke = kex + € rand(-), (20)

where ¢ € (0,1), rand(-) is determined on [—1, 1].
According to (19) and (20) we obtain

[l fe — f€X||L2(R)2 =[|ge — SEXHLZ(R)Z
= |Ife = fexll 2wy

[e9) ) . d(- 2
_ [/700 /700 W(f@%*@d@ld@]% <e

|ke — kex| < e

From (19), the exact solution of problem (1) is given as follows:

(62) = e (cosh(zroe) + sinh(zrey) N /Oz t-sinh((z — t)rgx)dt]'

(fex gex Ll Tex Tex

Let « = ¢, b = 2, we obtain the regularized solution as follows:

sinh(zrey) +/Z t-sinh((z — )rex)dt])cmax
0 ex

Tex

075, o) (6,2) = 257 [cosh(zres) +

Choose ¢ = 0.01,0.001, 0.0001, respectively and z = 0. The graphs of the exact solution uﬁjﬁ” enker)

and the regularized solution u? Fogoke) ATe showed in Figure 1.
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(a) (b) (0 (d)

re

. . ex . .
Figure 1. The exact solution u (o gener) and the regularized solutions u (Fogoke

(b) & = 0.01; (c) € = 0.001; (d) & = 0.0001.

) (a) Exact solution;

5. Conclusions

In this paper, we solved the Cauchy problem of the three-dimensional modified Helmholtz
equation with perturbed wave number k at z = 0. The Fourier truncation regularization method is
proposed to obtain a regularization solution. The error estimate is obtained between the exact solution
and the regularized solution. In future work, we will continue to study some source terms for the
modified Helmholtz equation.
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