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Abstract: A new numerical method for tackling the three-dimensional Heston–Hull–White partial
differential equation (PDE) is proposed. This PDE has an application in pricing options when not
only the asset price and the volatility but also the risk-free rate of interest are coming from stochastic
nature. To solve this time-dependent three-dimensional PDE as efficiently as possible, high order
adaptive finite difference (FD) methods are applied for the application of method of lines. It is derived
that the new estimates have fourth order of convergence on non-uniform grids. In addition, it is
proved that the overall procedure is conditionally time-stable. The results are upheld via several
numerical tests.
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1. Introduction

To model different types of derivatives in finance, a common approach is to investigate
the connections of these factors to each other, formulated as a stochastic differential equation (SDEs).
The factors could be the underlying asset, the volatility, domestic and foreign interest rates, etc., [1,2].
As such, the important action of pricing option under different payoffs can be modeled and simulated
via the SDEs or their corresponding partial differential equation (PDE) formulation.

However, a frequently occurring issue is that whatever the model becomes complicated and more
realistic, the procedure of having and representing its exact solution becomes harder, see, e.g., [3–5].

To discuss more and from the beginning, the classical model of Black–Scholes in pricing contracts
does not cover and illustrate all the aspects of an option in a complete market, such as market risks,
stochastic volatility (SV), and asymmetries seen in data of market, [6]. Some remedies to this well-known
model are via non-lognormal hypothesis for a SDE, that indicates some modifications of the volatility
and the underlying asset. We recall that Heston in [7] extended and improved the behavior of the
Black–Scholes model by involving more risky factor into the model, i.e., by considering the volatility to
be stochastic as well. Further discussions can be found at [6,8].

On the other hand, as long as the foreign exchange (FX) products are involved and a trader
encounters a situation in which the interest rate is not anymore constant during the lifetime
of an option, then investigating and proposing an improved model, having stochastic rates of interest,
such as the power-reverse dual-currency and the Heston–Cox–Ingersoll–Ross (HCIR) problems
(refer to [9] and the references therein for more background).
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1.1. Problem Formulation

The option pricing problem under the 3D Heston–Hull–White (HHW) model as a PDE model
is defined by [10]:
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Here κ > 0 shows the volatility adjustment speed to the analytical mean η > 0, while σ1, σ2, a are
some parameters. In addition, the correlation parameters are ρ12, ρ13, ρ23 ∈ [−1, 1], b is a time function.

In pricing under call options, the (terminal/)initial condition is given by [11,12]:

u(s, v, r, 0) = (s− E)+ , (2)

where the strike price is E. In a similar way, for a put option, it is given as follows:

u(s, v, r, 0) = (E− s)+ . (3)

As discussed in [13,14], the fair pricing procedure should be carried out by computational
schemes since the corresponding high-dimensional PDEs, constructed for such options, do not admit
any analytical or semi-analytical solutions, see [15,16] for further background.

1.2. Novelties and Motivation

The contribution of this article reads in proposing a solution method via an un-equally spaced grid
having a focus on the hot area in option pricing under the HHW PDE problem. Studying and coding
multi dimensional problems with discretization methods while the grid of points are non-uniform
is a challenging and intensive task, but could clearly increase the accuracy of the approximate solution
by applying fewer numbers of grid nodes in contrasts to the uniform discretization. This reduces
the size of the discretized problem and is useful in practice.

To this aim, (1) is tackled by employing high order fourth-order finite difference approximations.
We apply fourth order discretizations on a stencil having five and six non-equidistant nodes.
Derivation and construction of fourth-order compact FD method for HHW PDE is new and useful
in practice.

In fact, the method-of-lines technique is considered to build a set of ODEs with time-varying
system matrix. All the side conditions are imposed therein as well. Thence, a method to march along
time for the set of ODEs is provided in Section 3 and it is analytically illustrated that the presented
numerical procedure is conditionally time-stable when b is not changing by time.

Recalling that here adaptive FD formulas are constructed to hit some features simultaneously,
viz., to be effective, results in sparse operators and being able to handling non-uniform grids.

Motivated by recent works in this field (see e.g., [17]), we aim at proposing higher order schemes
for the HHW equation on non-uniform meshes so as to increase the accuracy of obtained option prices
without increasing the computational load so much. The novelties and contributions of our work are
given below:
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• We propose fourth-order adaptive discretizations for the spatial variables.
• The beauty of our scheme is the use of non-uniform grid of nodes with an adaptation

on the hotzone.
• We provide a new stability bound for the resulting fully discretized set of equations when

pricing under HHW PDE using high order discretization methods along the spatial as well as
the temporal variables.

1.3. Grid Generation

The option pricing problem (1) is considered in the unbounded area

(s, v, r, t) ∈ Ω× (0, T], (4)

wherein Ω = [0,+∞) ×[0,+∞)× [0,+∞). For tackling the financial model numerically, one can take
into account the following domain [18]:

Ω = [0, smax]× [0, vmax]× [−rmax, rmax], (5)

wherein smax, vmax, rmax are three positive real constants and assumed to be large enough.
Since the PDE model is coercive (sometimes called degenerate) at v = 0, its payoff is non-smooth

at s = E, and the working domain has large width, thus it is requisite to use non-uniform meshes,
at which the location of the nodes are not equally-spaced. This helps in producing results of higher
accuracy with adapting to the hotzone of the problem.

Let {si}m
i=1 be a set of non-uniform nodes along s as follows [13,19]:

si = ϕ(ξi), 1 ≤ i ≤ m, (6)

where m > 1 and ξmin = ξ1 < ξ2 < · · · < ξm = ξmax are m equi–distant points with the following
characteristics: ξmin = sinh−1

(
smin−sleft

d1

)
, ξint =

sright−sleft
d1

, ξmax = ξint + sinh−1
( smax−sright

d1

)
,

wherein smin = 0. Here d1 > 0 controls the density of the nodes around s = E. We also have:

ϕ(ξ) =


sleft + d1 sinh(ξ), ξmin ≤ ξ < 0,
sleft + d1ξ, 0 ≤ ξ ≤ ξint,
sright + d1 sinh(ξ − ξint), ξint < ξ ≤ ξmax.

(7)

Throughout this work, we used the same value for d1 = E
20 while sleft = max{0.5, exp{−0.25T}} × E,

[sleft, sright] ⊂ [0, smax], sright = E and smax = 14E.
The nodes along v, i.e., {vj}n

j=1 are defined by:

vj = d2 sinh(ς j), 1 ≤ j ≤ n, (8)

where d2 > 0 gives the concentration around v = 0. In this work, we used d2 = vmax
500 , where vmax = 10.

In addition, ς j are equally spaced points given by:

ς j = (j− 1)∆ς, ∆ς =
1

n− 1
sinh−1

(
vmax

d2

)
, (9)

for any 1 ≤ j ≤ n. The non-uniform nodes along r are defined as follows:

rk = d3 sinh(ζk), 1 ≤ k ≤ o, (10)

whereas d3 = rmax
500 is a positive parameter and rmax = 1. We also have ζk = (k− 1)∆ζ,

∆ζ = 1
o−1 sinh−1

(
rmax

d3

)
. Note that denser mesh points in the important area could circumvent
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the problems happening in solving (1), like non-smoothness of payoffs (2) and (3) at s = E,
and the degeneracy at v = r = 0.

We state that a detailed study into possibly better choices for the involved parameters in mesh
generating may be interesting, but this is beyond the scope of the current research. Furthermore,
the non-smoothness arising in the payoff would ruin the convergence rate of most derivative
approximation particularly on uniform meshes and due to this, the application of non-uniform
nodes is indispensable for efficient numerical solution of (1).

1.4. Manuscript Organization

The remaining parts of this work are organized as follows. In Section 2, the weights of the FD
scheme over non-uniform grids (here we also call adaptive grids with special emphasis on the hot zone)
are derived to attain the higher rate of convergence four.

Section 3 is devoted to the application of a sixth order Runge–Kutta time stepping method
to advance along time when semi-discretize the HHW PDE. We prove that the new procedure
is time-stable conditionally based on the largest eigenvalue of the system matrix. Section 4 shows that
numerical performances are more useful than the earlier schemes with quicker convergence behavior.
Finally, some conclusions are drawn in Section 5.

2. Calculating the Weights of the High Order FD Scheme

In this section, by applying a methodology as in ([20], Chapters 3–4) or [21], but with more Taylor
expansion terms, we can construct fourth-order FD approximations on (non-uniform) grids.

Five points are required in estimating the first derivative as well as six points in approximating
the second derivative in order to obtain a consistent fourth-order scheme throughout the discretized
mesh of points.

Without losing the generality, let us construct the weights in the one dimensional case.
Then, the concept of tensors using Kronecker product may be applied easily to transfer the weights
to the appropriate dimensions. To this objective, consider a sufficiently smooth function g(s)
and a grid as follows:

{s1, s2, · · · , sm−1, sm}. (11)

Consider the following five adjacent nodes:

{{si−2, g(si−2)}, {si−1, g(si−1)}, {si, g(si)}, {si+1, g(si+1)}, {si+2, g(si+2)}}, (12)

and calculate the interpolation polynomial p(z) going via the nodes and then its first derivative p′(z).
At this moment, by employing a computer algebra system to do some symbolic computations

and setting z = si, we attain the FD estimate for the first derivative as follows:

g′(si) = αi−2g (si−2) + αi−1g (si−1) + αig (si) + αi+1g (si+1) + αi+2g (si+2) +O
(

h4
)

, (13)
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where the maximum local grid spacing is h and we have

αi−2 = − Γi−1,iΓi,i+1Γi,i+2

Γi−2,i−1Γi−2,iΓi−2,i+1Γi−2,i+2
,

αi−1 =
Γi−2,iΓi,i+1Γi,i+2

Γi−2,i−1Γi−1,iΓi−1,i+1Γi−1,i+2
,

αi =
1

Γi−2,iΓi,i−1Γi,i+1Γi,i+2
Ξ1,

αi+1 =
Γi−2,iΓi,i−1Γi,i+2

Γi−2,i+1Γi+1,i−1Γi+1,iΓi+1,i+2
,

αi+2 =
Γi−2,iΓi,i−1Γi,i+1

Γi−2,i+2Γi+2,i−1Γi+2,iΓi+2,i+1
,

(14)

using Γl,q = sl − sq and

Ξ1 =si−2(si−1(Γi+1,i + Γi+2,i)

+ 3s2
i − 2(si+1 + si+2)si + si+1si+2) + si(−4s2

i + 3(si+1 + si+2)si

− 2si+1si+2) + si−1(3s2
i − 2(si+1 + si+2)si + si+1si+2).

(15)

Recalling that the above procedure should be similarly done for the nodes {s1, s2, sm−1, sm},
viz, to find the weighting coefficients with fourth order of convergence for such nodes, we should
consider the five adjacent points and then calculate the interpolating polynomial at that specific point.
In this way, the sided FD formulas are constructed and used.

Similarly, FD estimates for the second derivative terms can be obtained applying a similar
methodology as above. To this objective, we consider a set of points as follows:

{{si−3, g(si−3)}, {si−2, g(si−2)}, {si−1, g(si−1)},
{si, g(si)}, {si+1, g(si+1)}, {si+2, g(si+2)}},

(16)

and compute the second-derivative interpolating polynomial p′′(z) based on z. Now by taking into
account z = si in Mathematica [22], one obtains that:

g′′(si) =βi−3g (si−3) + βi−2g (si−2) + βi−1g (si−1)

+ βig (si) + βi+1g (si+1) + βi+2g (si+2) +O
(

h4
)

,
(17)

where

βi−3 =
Ξ2

Γi−3,i−2Γi−3,i−1Γi−3,iΓi−3,i+1Γi−3,i+2
,

βi−2 =
Ξ3

Γi−3,i−2Γi−2,i−1Γi−2,iΓi−2,i+1Γi−2,i+2
,

βi−1 =
Ξ4

Γi−2,i−1Γi−1,i−3Γi−1,iΓi−1,i+1Γi−1,i+2
,

(18)

βi =
Ξ5

Γi−3,iΓi,i−2Γi,i−1Γi,i+1Γi,i+2
,

βi+1 =
Ξ6

Γi−3,i+1Γi+1,i−2Γi+1,i−1Γi+1,iΓi+1,i+2
,

βi+2 =
Ξ7

Γi−3,i+2Γi+2,i−2Γi+2,i−1Γi+2,iΓi+2,i+1
.
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Here, we have

Ξ2 =si−1(−6s2
i + 4(si+1 + si+2)si − 2si+1si+2) + 2si(4s2

i

− 3(si+1 + si+2)si + 2si+1si+2) + si−2(−6s2
i

+ 4(si+1 + si+2)si − 2si+1si+2 + si−1(4si − 2(si+1 + si+2))),

Ξ3 =2(si−3(si−1(Γi+1,i + Γi+2,i) + 3s2
i − 2(si+1

+ si+2)si + si+1si+2) + si(−4s2
i + 3(si+1 + si+2)si − 2si+1si+2)

+ si−1(3s2
i − 2(si+1 + si+2)si + si+1si+2)),

Ξ4 =2(si−3(si−2(Γi+1,i + Γi+2,i) + 3s2
i − 2(si+1

+ si+2)si + si+1si+2) + si(−4s2
i + 3(si+1 + si+2)si − 2si+1si+2)

+ si−2(3s2
i − 2(si+1 + si+2)si + si+1si+2)),

(19)

Ξ5 =2(si−2(si−1(Γi+1,i + Γi+2,i − si) + 6s2
i − 3(si+1 + si+2)si + si+1si+2) + si−3(si−1(Γi+1,i

+ Γi+2,i − si) + si−2(Γi+1,i + Γi+2,i + si−1 − si) + 6s2
i − 3si+1si − 3si+2si + si+1si+2)

+ si(2si(3si+1 − 5si) + si−1(6si − 3si+1)) + (3si(2si − si+1) + si−1(si+1 − 3si))si+2),

Ξ6 =2(si(si−1(2Γi,i+2 + si) + si(3si+2 − 4si)) + si−2(si(2Γi,i+2 + si)

+ si−1(Γi+2,i − si)) + si−3(2siΓi,i+2

+ si−1(Γi+2,i − si) + si−2(Γi−1,i + Γi+2,i) + s2
i )),

Ξ7 =2(si(si−1(2Γi,i+1 + si) + si(3si+1 − 4si)) + si−2(si(2Γi,i+1

+ si) + si−1(Γi+1,i − si)) + si−3(2siΓi,i+1

+ si−1(Γi+1,i − si) + si−2(Γi−1,i + Γi+1,i) + s2
i )).

Summarizing the following theorem has been established.

Theorem 1. As long as the function g is sufficiently smooth, the first and second derivative of the this
function can be approximated by five and six adjacent points respectively on non-uniform meshes,
via the formulas (13) and (17).

Proof. The proof can be investigated by Taylor expansions as in the derivation in this section.
It is hence omitted.

The procedure for obtaining the weights for the points {s1, s2, s3, sm−1, sm} to keep the fourth
convergence order should be investigated by the six adjacent points as described above but for that
specific node.

It is noted that the formulations derived in (13) and (17) can be used for both uniform
and nonuniform distribution of the discretization nodes, and can be simplified to more simpler
formulations if the nodes are equidistant.

3. Application to Option Pricing under 3D HHW PDE

Considering the non-uniform nodes discussed in Section 1 along with the high order FD
formulations calculated in Section 2, one is able to derive the differentiation matrices corresponding
to the first and second derivatives of the function. These derivative matrices contains the weights
of the fourth order approximations and are sparse in general since they are banded matrices whose
zero elements are much more than their non-zero elements. These feature would help us in solving
the financial model (1) as would be observed later.

For multi-dimensional derivatives, a matrix is constructed such that this is done on the flattened
data, and subsequently the Kronecker product of the matrices for the derivatives (in one-dimension)
are being considered.
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One way for imposing the impact of (13)–(17) is with matrices including the weights of (13)–(17),
i.e., the non-equidistant second-order FD weights, as their elements. A matrix which shows an estimation
to the differential operator is called as a matrix of differentiation [20]. Forming and implementing
the proposed scheme based on these matrices are invaluable aids for analysis.

Taking all the weights into consideration, the PDE (1) can be semi discretized to obtain:

∂U(t)
∂t

= A(t)U(t), 0 ≤ t ≤ T, (20)

at which U(t) = (u1,1,1(t), u1,1,2(t), . . . , um,n,o−1(t), um,n,o(t)︸ ︷︷ ︸
N elements

)∗, is the unknowns vector

and N = m× n× o. Noting that AN×N(t) is the coefficient of the problem (1) at which the boundaries
have not yet been imposed inside.

Here the boundaries along s are defined as follows [13]:

u(s, v, r, t) = 0, s = 0, (21)

us(s, v, r, t) = 1, s = smax. (22)

For v = vmax, the following Dirichlet condition is prescribed:

u(s, v, r, t) = s, v = vmax. (23)

Remarking that the nodes which are located on the boundary v = 0 are considered as interior
nodes and we take a fact into consideration that they must read the PDE model. That is to say,
we incorporate the semi-discretized equations at this boundary.

At last, for r = ±rmax, we impose:

ur(s, v, r, t) = 0, r = rmax, (24)

ur(s, v, r, t) = 0, r = −rmax. (25)

By incorporating the above mentioned conditions, we obtain the following system
of semi-discretized ODEs as follows:

U̇(t) = Ā(t)U(t), (26)

where Ā(t) is the coefficient matrix including the boundaries.

Integrator

For discretizing in temporal variable t, many schemes are existing, for example refer to [23].
Explicit methods are basically straightforward to implement, but suffer from stability problems.
Implicit schemes are unconditionally stable, but only exhibit low convergence or very time-consuming
because of solving nonlinear system of algebraic equations per step.

Consider uι to be the computational solution for the exact solution U(tι) and choose k+ 1 temporal
nodes with the step size ∆t = T

k .
At the moment, we use the δ–stage Runge–Kutta scheme [23] at tι+1 = tι + ∆t, (0 ≤ ι ≤ k) by:

gi = uι + ∆t
δ

∑
j=1

k jai,j,

ki = f (∆tci + tι, gi) ,

uι+1 = uι + ∆t
δ

∑
i=1

biki,

(27)
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wherein f is defined based on the right hand side of (26). It is generally assumed that the row-sum
conditions hold:

ci =
δ

∑
j=1

ai,j, i = 1, 2, . . . , δ. (28)

Now we consider a sixth-order explicit Runge–Kutta scheme (RK6) below [24]:

Λ =



0 0 0 0 0 0 0
1 0 0 0 0 0 0
3
8

1
8 0 0 0 0 0

8
27

2
27

8
27 0 0 0 0

3(3p1−7)
392

(p1−7)
49

−6(p1−7)
49

3(p1−21)
392 0 0 0

−3(17p1+77)
392

(−p1−7)
49 − (8p1)

49
3(121p1+21)

1960
(p1+6)

5 0 0
(7p1+22)

12
2
3

2(7p1−5)
9

−7(3p1−2)
20

−7(9p1+49)
90

−7(p1−7)
18 0


, (29)

with b = (9/180, 0, 64/180, 0, 49/180, 49/180, 9/180), C = (1, 1/2, 2/3, (7− p1)/14, (7 + p1)/14, 1),
and p1 = 211/2.

Notice that a consequence of explicitness is c1 = 0 in (28), so that the function is sampled
at the beginning of the current integration step. Here, the sixth-order time-stepping solver consists
of seven stages and reaches sixth order of convergence. The sixth order says that the error of local
truncation is on the order of O(∆t7), while the total accumulated error is on the order of O(∆t6).

In the sequel, we study that under what criteria the numerical discretized solution does
not blow up. The following theorem is one of the contributions of this work. This is given
for the time-independent case, i.e., when Ā(t) = Ā.

Theorem 2. If the system of ODEs (26) reads the condition of Lipschitz, then the time-stepping method (27)–(29)
has conditional stability.

Proof. To find a stability conditions, we proceed as follows. Incorporating the time-stepping solver (27)
on the system of ODEs (26) yields:

uι+1 =

(
I + ∆tĀ +

(∆tĀ)2

2!

+
(∆tĀ)3

3!
+

(∆tĀ)4

4!

+
(∆tĀ)5

5!
+

(∆tĀ)6

6!

− (∆tĀ)7

2160

)
uι.

(30)

Thus, the numerical stability is reduced to:∣∣∣∣1 + ∆tωi +
(∆tωi)

2

2
+

(∆tωi)
3

6
+

(∆tωi)
4

24

+
(∆tωi)

5

120
+

(∆tωi)
6

720
− (∆tωi)

7

2126

∣∣∣∣ ≤ 1,
(31)
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which is due to (30) for any ωi as the eigenvalue of Ā. Now by considering: ωmax (Ā) , the stability
condition can now be represented as follows:∣∣∣∣1 + ∆tωmax +

(∆tωmax)2

2
+

(∆tωmax)3

6
+

(∆tωmax)4

24

+
(∆tωmax)5

120
+

(∆tωmax)6

720
− (∆tωmax)7

2126

∣∣∣∣ ≤ 1.
(32)

Noting that the negative semi-definiteness of Ā makes all its eigenvalues to have negative real
parts. Thus, the proposed scheme has numerical stability if the temporal step size ∆t satisfy (32).
Noting that this can be computed in the language Mathematica [22] via the command

Eigenvalues[matrix, 1]. (33)

The proof is ended.

4. Experiments

In this section, some tests were given for our proposed method showed via Adaptive Finite
Difference Method (AFDM) to price at the money call options, when T = 1 year and E = 100$.
A comparison was done by the standard uniform FD scheme [4], which by second order FD
approximations and the Euler’s scheme as a temporal solver shown by FDM. We also compare
with the method provided in [13] shown by Haentjens-In’t Method (HIM).

Mathematica 11.0 is used for the simulations [25]. Time is also reported in second while we employ
the following stopping condition:

Error =
∣∣∣∣uapprox(s, v, r, t)− uref(s, v, r, t)

uref(s, v, r, t)

∣∣∣∣ , (34)

wherein uref and uapprox are the exact and numerical results.
To increase the computational efficiency for very large scale semi-discrete systems that we are

dealing with, here we set AccuracyGoal→ 5, PrecisionGoal→ 5.
Here, we consider more number of discretization nodes along s rather than v and r,

since its working interval is larger than the others and the non-smoothness of the initial condition
occurs along this spatial variable.

The non-constant b is defined as follows:

b(τ) = c1 − c2 exp (−c3τ), τ ≥ 0, (35)

where c1, c2, c3 are constants, and τ = T − t. The following two test cases are considered:

1. κ = 3.0, η = 0.12, a = 0.20, σ1 = 0.80, σ2 = 0.03, ρ12 = 0.6, ρ13 = 0.2, ρ23 = 0.4, c1 = 0.05, c2 = 0,
c3 = 0, where the reference value is uref(100, 0.04, 0.1, 1) ' 16.176.

2. κ = 0.5, η = 0.8, a = 0.16, σ1 = 0.90, σ2 = 0.03, ρ12 = −0.5, ρ13 = 0.2, ρ23 = 0.1, c1 = 0.055,
c2 = 0, c3 = 0, where the reference value is uref(100, 0.04, 0.1, 1) ' 20.994.

The results are brought forward in Tables 1 and 2 showing the stable and efficient valuations
of options under HHW PDE via the new high-order procedure. Furthermore, to reveal the positivity
and stability of the numerical results, in Experiment 2, and by considering m = 30, n = 18 and o = 18
discretization nodes, the results based on AFDM are plotted in Figures 1 and 2.
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Table 1. Error results in Heston–Hull–White (HHW) Option 1.

Procedure m n o Size ∆t Price Error CPU Timing

FDM

10 8 6 480 0.002 25.492 5.7× 10−1 0.39
14 10 10 1400 0.001 11.098 3.1× 10−1 0.62
18 12 12 2592 0.0005 17.203 6.3× 10−2 1.22
24 14 14 4704 0.00025 18.731 1.5× 10−1 3.39
28 16 16 7168 0.0002 13.329 1.7× 10−1 6.07
45 22 22 21,780 0.00005 14.636 9.4× 10−2 70.54

HIM

10 8 6 480 0.001 14.472 1.0× 10−1 0.44
14 10 10 1400 0.0005 15.300 5.3× 10−2 0.85
18 12 12 2592 0.00025 15.615 3.4× 10−2 2.09
24 14 14 4704 0.0001 15.806 2.2× 10−2 8.04
28 16 16 7168 0.0001 15.871 1.8× 10−2 11.84
50 22 22 24,200 0.000025 16.006 5.9× 10−3 186.77

AFDM

10 8 6 480 0.005 15.123 6.5× 10−2 0.41
14 10 10 1400 0.002 15.986 1.1× 10−2 0.82
18 12 12 2592 0.001 16.059 7.2× 10−3 1.99
24 14 14 4704 0.000625 16.136 2.4× 10−3 5.56
28 16 16 7168 0.0005 16.160 9.8× 10−4 9.02
50 22 22 24,200 0.0001 16.179 1.8× 10−4 103.26

Table 2. Error results in HHW option 2.

Procedure m n o Size ∆t Price Error CPU Timing

FDM

20 10 10 2000 0.00025 22.022 4.9× 10−2 1.77
24 12 12 3456 0.0002 21.436 2.1× 10−2 3.14
26 14 14 5096 0.0001 19.678 6.1× 10−2 8.67
28 16 16 7168 0.0001 17.376 1.7× 10−1 11.72
30 18 18 9720 0.00005 17.404 1.7× 10−1 35.50
36 20 20 14,400 0.000025 20.510 2.2× 10−2 107.89
38 22 22 18,392 0.000025 20.275 3.3× 10−2 161.16
42 22 22 20,328 0.00002 18.370 1.2× 10−1 244.32

HIM

20 10 10 2000 0.00025 20.631 1.6× 10−2 1.69
24 12 12 3456 0.0002 20.709 1.2× 10−2 3.40
26 14 14 5096 0.0001 20.729 1.1× 10−2 8.64
28 16 16 7168 0.0001 20.748 1.0× 10−2 12.36
30 18 18 9720 0.00005 20.767 9.9× 10−3 36.54
36 20 20 14,400 0.000025 20.810 7.8× 10−3 108.92
38 22 22 18,392 0.000025 20.818 7.5× 10−3 166.08
42 22 22 20,328 0.00002 20.833 6.7× 10−3 250.67

AFDM

20 10 10 2000 0.0005 20.832 7.7× 10−3 0.89
24 12 12 3456 0.0004 20.899 4.5× 10−3 3.36
26 14 14 5096 0.00025 20.910 4.0× 10−3 6.62
28 16 16 7168 0.0002 20.926 3.2× 10−3 11.27
30 18 18 9720 0.0001 20.951 2.0× 10−3 34.55
36 20 20 14,400 0.0000625 20.972 1.0× 10−3 98.22
38 22 22 18,392 0.00005 20.980 6.6× 10−4 165.27
42 22 22 20,328 0.00004 20.999 2.3× 10−4 240.25



Mathematics 2019, 7, 704 11 of 13

Figure 1. A numerical solution based on AFDM in Heston–Hull–White (HHW) option 2.

Figure 2. A numerical solution based on AFDM in HHW option 2.

5. Ending Comments

In financial engineering, it is famous that the Black–Scholes PDE could not be useful in real
application due to several restrictions. Several ideas to observe the market’s reality are models based
upon the stochastic volatility and interest rate models. The resulted PDE problem in this way is hard
to be solved theoretically due to higher involved dimensions and so numerical methods are required.

In this paper, we have proposed a new discretized numerical method based on adaptive FD
methodology on non-uniform grids in order to tackle an important problem in computational finance
known as HHW PDE (1). It was proved that the new procedure has conditional stability and shown
to be efficient in practice.
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Further discussions can be investigated to extend the results of this work for other types of options
defined on HHW model such as digital (binary) options, at which the initial condition is not only
non-smooth at the strike but also discontinues.
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