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Abstract: Canal surfaces are defined and divided into nine types in Minkowski 3-space E3
1, which are

obtained as the envelope of a family of pseudospheres S2
1, pseudohyperbolic spheres H2

0, or lightlike
cones Q2, whose centers lie on a space curve (resp. spacelike curve, timelike curve, or null curve).
This paper focuses on canal surfaces foliated by pseudohyperbolic spheres H2

0 along three kinds of
space curves in E3

1. The geometric properties of such surfaces are presented by classifying the linear
Weingarten canal surfaces, especially the relationship between the Gaussian curvature and the mean
curvature of canal surfaces. Last but not least, two examples are shown to illustrate the construction
of such surfaces.
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1. Introduction

The concept of canal surface is the envelope of a moving sphere whose centers lie on a space
curve, and their radius varies depending on this curve in Euclidean 3-space E3. Canal surfaces
are useful for representing long thin objects, e.g., pipes, ropes, 3D fonts, or internal body organs in
solid/surface modeling. Tori and tubes are the special types of the canal surfaces. Apart from being
used in pure mathematics, canal surfaces are a kind of blending surface that plays an important role
in computer aided geometric design, i.e., CAGD. Most studies on canal surfaces within the CAGD
context is related to such surfaces with a rational spine curve and rational radius function. For example,
the authors presented that each canal surface with a rational spine curve and rational radius function
is a rational Pythagorean hodograph curve in Minkowski space [1,2].

The Lorentz–Minkowski space is the basic space model of quantum physics that plays
an important role in general relativity. In recent years, with the development of the theory of relativity,
physicians and geometers extended the topics in classical differential geometry of Riemannian
manifolds to that of Lorentzian manifolds. It is clearly demonstrated by the fact that many works in
Euclidean space have found their counterparts in Minkowski space [3]. At present, the properties
of canal surfaces have been researched in E3 [4,5]. As a natural idea, we can extend canal surfaces
into spaces with an indefinite metric, such as Minkowski space. Similar to the generating process
of canal surfaces in E3, a canal surface in Minkowski 3-space E3

1 can be obtained as the envelope
of a family of pseudospheres S2

1, pseudohyperbolic spheres H2
0, or lightlike cones Q2 whose centers

lie on a space curve (resp. spacelike curve, timelike curve, or null curve). The classification of canal
surfaces was obtained by Ucum and Ilarslan in [6]. For convenience, the authors of this paper denoted
the notations for all kinds of canal surfaces in E3

1. At the same time, the authors discussed canal
surfaces foliated by pseudospheres along three kinds of space curves in E3

1 [7]. The relationship
between Gaussian curvature and mean curvature is revealed, which is an important tool for future
research, such as the Weingarten canal surfaces or linear Weingarten canal surfaces. Weingarten
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surfaces (resp. linear Weingarten surfaces) are attractive for use in CAGD, particularly in surface
design due to the advantages of using these surfaces that can mitigate curvature computations and
also admit simpler, more direct shape control procedures [8].

As a follow-up work of [7], in this paper we focus on the geometric properties of canal surfaces
foliated by pseudohyperbolic spheres H2

0 along three kinds of space curves in E3
1. We discuss canal

surfaces purely by geometric arguments, thereby avoiding a cumbersome algorithmic procedure.
The paper is organized as follows. In Section 2, we review the Frenet formulas of space curves
and the definitions of canal surfaces in E3

1. We recall definitions of Weingarten surface and linear
Weingarten surface in E3

1. In Section 3, the geometric properties of three types of canal surfaces are
discussed, respectively. For each type of canal surface, the relationships between Gaussian curvature
and mean curvature are presented (Theorems 1, 5, and 9). Different kinds of linear Weingarten canal
surfaces are explored, the developable, minimal and umbilical canal surfaces are discussed at the same
time. The applications of these surfaces in shape control are important hopefully motivated. Finally,
some common results for canal surfaces are shown (Theorems 13 and 14).

2. Preliminaries

Let E3
1 be a Minkowski 3-space with natural Lorentzian metric

〈·, ·〉 = dx2
1 + dx2

2 − dx2
3

in terms of the natural coordinate system (x1, x2, x3). It is well known that a vector υ∈E3
1 is said to

be spacelike if 〈υ, υ〉 > 0 or υ = 0; timelike if 〈υ, υ〉 < 0; null (lightlike) if 〈υ, υ〉 = 0, respectively.
The norm of vector v is given by ‖v‖ =

√
|〈v, v〉|. Due to the causal character of the tangent vector

of a space curve, curves in Minkowski space can be divided into a spacelike curve, timelike curve,
or null curve. At the same time, a surface is called a timelike surface, spacelike surface, or lightlike
surface if its normal vector is spacelike, timelike, or lightlike. In E3

1, there exist three space forms,
i.e., pseudosphere S2

1, pseudohyperbolic sphere H2
0, and lightlike cones Q2, which are complete

semi-Riemannian manifolds with index 1.
Let a = (a1, a2, a3), b = (b1, b2, b3) be vectors in E3

1. Then, their scalar product is given by

〈a, b〉 = a1b1 + a2b2 − a3b3

and the exterior product by

a× b =

∣∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣ =
(∣∣∣∣∣a2 a3

b2 b3

∣∣∣∣∣ ,

∣∣∣∣∣a3 a1

b3 b1

∣∣∣∣∣ ,−
∣∣∣∣∣a1 a2

b1 b2

∣∣∣∣∣
)

,

where {e1, e2, e3} is an orthonormal basis in E3
1.

Let c(s) : I → E3
1 be a space curve with a moving Frenet frame {T(s), N(s), B(s)} consisting of

tangent vector T, principal normal vector N, and binormal vector B, respectively.
Case 1. Let c = c(s) be a spacelike curve parameterized by arc length s. Due to the causal character

of the normal vector, it can be divided into the following two cases:
Case 1.1. Let 〈c′′(s), c′′(s)〉 6= 0, then the following Frenet equations are satisfied

c′(s) = T(s), T′(s) = κ(s)N(s), N′(s) = −εκ(s)T(s) + τ(s)B(s), B′(s) = τ(s)N(s),

where 〈T, T〉 = 1, 〈N, N〉 = ε = ±1, 〈B, B〉 = −ε, 〈T, N〉 = 〈T, B〉 = 〈B, N〉 = 0. Functions κ(s) and
τ(s) are called the curvature and torsion of c(s), respectively. When ε = 1, c(s) is called the first-kind
spacelike curve, and the second-kind spacelike curve when ε = −1.
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Case 1.2. Let 〈c′′(s), c′′(s)〉 = 0, the Frenet equations are given by

c′(s) = T(s), T′(s) = N(s), N′(s) = κ(s)N(s), B′(s) = −T(s)− κ(s)B(s),

where 〈T, T〉 = 〈N, B〉 = 1, 〈N, N〉 = 〈B, B〉 = 〈T, N〉 = 〈T, B〉 = 0. Function κ(s) is also called the
curvature function. Such kind of spacelike curve is said to be null-type spacelike.

Case 2. Let c = c(s) be a timelike curve parameterized by arc length s; then, the following Frenet
equations are satisfied:

c′(s) = T(s), T′(s) = κ(s)N(s), N′(s) = κ(s)T(s) + τ(s)B(s), B′(s) = −τ(s)N(s),

where 〈T, T〉 = −1, 〈N, N〉 = 〈B, B〉 = 1, 〈T, N〉 = 〈T, B〉 = 〈B, N〉 = 0. The functions κ(s) and τ(s)
are called the curvature and the torsion of c(s), respectively.

Case 3. Let c = c(s) be a null curve with null arc-length parameter s, i.e., 〈c′′(s), c′′(s)〉 = 1. Then,
we have

c′(s) = T(s), T′(s) = N(s), N′(s) = κ(s)T(s)− B(s), B′(s) = −κ(s)N(s),

where 〈T, T〉 = 〈B, B〉 = 〈T, N〉 = 〈B, N〉 = 0, 〈T, B〉 = 〈N, N〉 = 1. Function κ(s) is called the null
curvature of c(s).

Remark 1. For null curves, there exist a variety of concepts where not all authors’ terminologies coincide.
The null curvature here expresses the same meaning as the pseudo torsion or the pseudo curvature in articles
related to null curves.

Next, we recall the definition of canal surfaces in E3
1 as the following:

Definition 1. [7] Surface M in E3
1 is called a canal surface that is formed as the envelope of a family of

pseudohyperbolic spheres H2
0 (resp. pseudospheres S2

1 or lightlike cones Q2) whose centers lie on a space curve
c(s) framed by {T, N, B}. Then, M can be parametrized by

x(s, θ) = c(s) + λ(s, θ)T(s) + µ(s, θ)N(s) + ω(s, θ)B(s), (1)

where λ, µ and ω are differential functions of s and θ, ‖x(s, θ)− c(s)‖2 = εr2(s), (ε = ±1 or 0). Curve c(s)
is called the center curve (or spine curve), and r(s) is the radius function of M.

Explicitly, if M is foliated by pseudohyperbolic spheres H2
0 (resp. pseudospheres S2

1 or lightlike
conesQ2), then ε = −1 (resp. 1 or 0) andM is said to be of the typeM− (resp.M+ orM0). Canal surfaces
of type M− can be divided into three types. In the case that c(s) is spacelike (resp. timelike or null),
it is said to be of type M1

− (resp. M2
− or M3

−). Furthermore, M1
− can be divided into M11

− , M12
− and

M13
− when c(s) is the first-kind spacelike curve, the second-kind spacelike curve, and the null-type

spacelike curve, respectively. Similar to M−, canal surfaces M+ (resp. M0) can be divided into M1
+,

M2
+ and M3

+ (resp. M1
0, M2

0 or M3
0). Naturally, M1

+ (resp. M1
0) can be divided into M11

+ , M12
+ and M13

+

(resp. M11
0 , M12

0 or M13
0 ).

Remark 2. [9] In particular, if center curve c(s) is a straight line, then Frenet frame {T, N, B} of c(s) can be
regarded as a trivial orthogonal frame, and the canal surface is nothing but a surface of revolution. If the radius
function is constant, then M is a tube (or pipe) surface.

Definition 2. [10] For curvatures K and H of a surface M in E3
1, if M satisfies

W(K, H) = 0,

where W is the Jacobian determinant, then that is said to be a Weingarten surface.
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Definition 3. [10] For curvatures K and H of a surface M in E3
1, if M satisfies

2aH + bK = c (a, b, c ∈ R and (a, b, c) 6= (0, 0, 0)), (2)

then that is said to be a linear Weingarten surface.

Remark 3. When a = 0 or b = 0 in (2), surface M has a constant Gaussian curvature or constant mean
curvature. Without loss of generality, we always assume c = 1 in (2).

All surfaces we are dealing with are smooth, regular, and topologically connected unless
otherwise stated.

3. Main Results

In this part, we focus on the geometric properties of different types of canal surfaces formed by
the movement of pseudohyperbolic spheres H2

0 along a space curve in E3
1.

3.1. Canal Surfaces of Type M11
− and M12

−

First, we assume M is a canal surface formed by the movement of H2
0 along a first kind spacelike

curve c(s) in E3
1. i.e., M11

− . According to the definition of M11
− , through detailed calculation, we get

λ(s) = r(s)r′(s),
µ(s, θ) = r(s)

√
1 + r′2(s) sinh θ,

ω(s, θ) = r(s)
√

1 + r′2(s) cosh θ

in Equation (1). Then, M11
− can be parameterized by

x(s, θ) = c(s) + r(s)(r′(s)T +
√

1 + r′2(s) sinh θN +
√

1 + r′2(s) cosh θB),

where c(s) is parameterized by arc length s. For convenience, we may assume r′(s) = sinh ϕ for some
smooth function ϕ = ϕ(s). Then, canal surface M11

− can be rewritten by

x(s, θ) = c(s) + r(s)(sinh ϕT + cosh ϕ sinh θN + cosh ϕ cosh θB). (3)

Initially, we have

xs = x1
s T + x2

s N + x3
s B, xθ = r cosh ϕ cosh θN + r cosh ϕ sinh θB,

where

x1
s = rr′′ + cosh2 ϕ− rκ cosh ϕ sinh θ,

x2
s = r′ cosh ϕ sinh θ + rr′κ + rr′ϕ′ sinh θ + rτ cosh ϕ cosh θ,

x3
s = r′ cosh ϕ cosh θ + rτ cosh ϕ sinh θ + rr′ϕ′ cosh θ.

Then, quantities of the first fundamental form are given by

E =〈xs, xs〉 = r2(κ2 cosh2 ϕ sinh2 θ + r′2κ2 + ϕ′2 + τ2 cosh2 ϕ− 2ϕ′κ sinh θ

+ 2r′κτ cosh ϕ cosh θ) + cosh2 ϕ + 2(rr′′ − rκ cosh ϕ sinh θ),

F =〈xs, xθ〉 = r2r′κ cosh ϕ cosh θ + r2τ cosh2 ϕ,

G =〈xθ , xθ〉 = r2 cosh2 ϕ.

(4)
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and

EG− F2 = r2(rr′′ − rκ cosh ϕ sinh θ + cosh2 ϕ)2. (5)

Unit normal vector field n to M11
− is given by

n =
xs × xθ

‖xs × xθ‖
= sinh ϕT + cosh ϕ sinh θN + cosh ϕ cosh θB, (6)

which point canal surface M11
− and 〈n, n〉 = −1 outwards.

Furthermore, by Equation (6), we have

ns =(r′′ − κ cosh ϕ sinh θ)T + (r′κ + r′ϕ′ sinh θ + τ cosh ϕ cosh θ)N

+ (τ cosh ϕ sinh θ + r′ϕ′ cosh θ)B,

nθ = cosh ϕ cosh θN + cosh ϕ sinh θ B.

Quantities of the second fundamental form are obtained by

L =− 〈xs, ns〉 = −r(κ2 cosh2 ϕ sinh2 θ + r′2κ2 + ϕ′2 + τ2 cosh2 ϕ− 2ϕ′κ sinh θ

+ 2r′κτ cosh ϕ cosh θ)− (r′′ − κ cosh ϕ sinh θ),

M =− 〈xθ , ns〉 = −rr′κ cosh ϕ cosh θ − rτ cosh2 ϕ,

N =− 〈xθ , nθ〉 = −r cosh2 ϕ.

(7)

From Equations (6) and (7), we have

Proposition 1. The quantities of the first and second fundamental forms of canal surface M11
− satisfy

L =
E− P1

−r
, M =

F
−r

, N =
G
−r

and

EG− F2 = r2P2
1 , LN −M2 = rP1Q1, (8)

where

P1 = rr′′ − rκ cosh ϕ sinh θ + cosh2 ϕ = rQ1 + cosh2 ϕ,

Q1 = r′′ − κ cosh ϕ sinh θ.
(9)

Remark 4. Due to regularity, we see that P1 6= 0 everywhere by Equation (8).

By Proposition 1, Gaussian curvature K and mean curvature H of M11
− are given by, respectively,

K = − LN −M2

EG− F2 = −Q1

rP1
, (10)

H = −EN − 2FM + GL
2(EG− F2)

=
2P1 − cosh2 ϕ

2rP1
. (11)
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Second, for canal surface M12
− , according to the definition of M12

− , we get
λ(s) = r(s)r′(s),
µ(s, θ) = r(s)

√
1 + r′2(s) cosh θ,

ω(s, θ) = r(s)
√

1 + r′2(s) sinh θ

in Equation (1). Then, M12
− can be parameterized by

x(s, θ) = c(s) + r(s)(r′(s)T +
√

1 + r′2(s) cosh θN +
√

1 + r′2(s) sinh θB),

where c(s) is parameterized by arc length s. Here, we may assume that r′(s) = sinh ϕ for smooth
function ϕ = ϕ(s). So, canal surface M12

− can be written by

x(s, θ) = c(s) + r(s)(sinh ϕT + cosh ϕ cosh θN + cosh ϕ sinh θB). (12)

With similar calculations to those of M11
− , we have the following conclusions.

Proposition 2. The quantities of the first and second fundamental forms of canal surface M12
− satisfy

L =
E− P2

−r
, M =

F
−r

, N =
G
−r

and

EG− F2 = r2P2
2 , LN −M2 = rP2Q2, (13)

where

P2 = rr′′ + rκ cosh ϕ cosh θ + cosh2 ϕ = rQ2 + cosh2 ϕ,

Q2 = r′′ + κ cosh ϕ cosh θ.
(14)

Remark 5. Due to regularity, we see P2 6= 0 everywhere by Equation (13).

By Proposition 2, Gaussian curvature K and mean curvature H of M12
− are given by, respectively,

K = − LN −M2

EG− F2 = −Q2

rP2
, (15)

H = −EN − 2FM + GL
2(EG− F2)

=
2P2 − cosh2 ϕ

2rP2
. (16)

Based on the Gaussian curvature and mean curvature of M11
− and M12

− , it is obvious to obtain the
following results.

Theorem 1. Gaussian curvature K and mean curvature H of canal surface M11
− (M12

− ) are related by

H = −1
2
(Kr− 1

r
). (17)

Proof of Theorem 1. For M11
− , from Equations (10) and (11), we can easily obtain the conclusion.

For M12
− , we can refer to Equations (15) and (16).

Next, we study canal surface M11
− (M12

− ) whose Gaussian curvature and mean curvature satisfy
some particular conditions.
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Remark 6. In the following, we just prove the results for M11
− and omit the proof for M12

− since it can be
similarly done to those of M11

− , and the results are same.

Theorem 2. Let M11
− (M12

− ) be a linear Weingarten canal surface; then, it is an open part of the
following surfaces:

1. a surface of revolution such as

x(s, θ) = (r(s) sinh ϕ(s) + s, r(s) cosh ϕ(s) sinh θ, r(s) cosh ϕ(s) cosh θ),

where r(s) is given by (19);
2. a tube with radius r = a (a > 0).

Proof of Theorem 2. From Equation (2) with c = 1 and Equation (17), we obtain

(br− ar2)K = r− a.

By Equation (10), we get

− (br− ar2)(r′′ − κ cosh ϕ sinh θ)

r(rr′′ − rκ cosh ϕ sinh θ + cosh2 ϕ)
= r− a, (18)

i.e.,
κ(r2 − 2ar + b) cosh ϕ sinh θ − (r− a)(1 + r′2)− (r2 − 2ar + b)r′′ = 0.

Therefore, we get

κ(r2 − 2ar + b) cosh ϕ = 0 and (r− a)(1 + r′2) + (r2 − 2ar + b)r′′ = 0.

Case 1: If r2 − 2ar + b 6= 0, i.e., a2 − b < 0, then κ = 0. Thus, M11
− is a surface of revolution and its

radial function satisfies
(r2 − 2ar + b)r′′ + (r− a)(1 + r′2) = 0.

Solving the above equation, we get

s = c2 ±
∫ √ r2 − 2ar + b

c1 − r2 + 2ar− b
dr, (19)

where c1 > r2 − 2ar + b, c2 ∈ R.
Since κ = 0, without loss of generality, we may assume the center curve is c(s) = (s, 0, 0) and

T = (1, 0, 0), N = (0, 1, 0), B = (0, 0, 1), respectively. Then, by Equation (3), M11
− can be expressed by

x(s, θ) = (r(s) sinh ϕ(s) + s, r(s) cosh ϕ(s) sinh θ, r(s) cosh ϕ(s) cosh θ), (20)

where r(s) is given by Equation (19).
Case 2: If κ 6= 0, then r2 − 2ar + b = 0. Hence, r = a is a nonzero constant. M11

− is a tube and a, b
satisfy a2 − b = 0.

Note that M11
− is a circular cylinder if κ = r2 − 2ar + b ≡ 0.

Corollary 1. Let M11
− (M12

− ) be a canal surface with nonzero constant Gaussian curvature. Then, it is a surface
of revolution with positive constant Gaussian curvature, such as

x(s, θ) = (r(s) sinh ϕ(s) + s, r(s) cosh ϕ(s) sinh θ, r(s) cosh ϕ(s) cosh θ),

where r(s) is given by Equation (21).
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Proof of Corollary 1. By Theorem 2 with a = 0, when M11
− has nonzero constant Gaussian curvature

K = 1
b , from a2 − b < 0, then it is nothing but a surface of revolution with positive constant

Gaussian curvature. It can be expressed by

x(s, θ) = (r(s) sinh ϕ(s) + s, r(s) cosh ϕ(s) sinh θ, r(s) cosh ϕ(s) cosh θ),

where r(s) satisfies

s = c2 ±
∫ √ r2 + b

c1 − r2 − b
dr, (c1 > r2 + b, c2 ∈ R). (21)

Corollary 2. Canal surface M11
− (M12

− ) with nonzero constant mean curvature does not exist.

Proof of Corollary 2. By Theorem 2 with b = 0, it must be a surface of revolution. However,
from a2 − b < 0, then a2 < 0, it is a contradiction.

Theorem 3. A canal surface M11
− (M12

− ) is developable iff it is congruent to a part of a circular cylinder or
a circular cone.

Proof of Theorem 3. M11
− is developable iff K ≡ 0. By (10), we have Q1 ≡ 0. Then, we get

r′′ − κ cosh ϕ sinh θ = 0.

It follows that r′′ = 0 and κ = 0 (if cosh ϕ = 0, by (5), M11
− is degenerate). Then, r(s) = c1s + c2,

where c1, c2 are constants. Therefore, M11
− is a circular cylinder (c1 = 0) or a circular cone (c1 6= 0) in

E3
1, respectively. The converse is obvious.

Theorem 4. Canal surface M11
− (M12

− ) is minimal iff it is a part of a surface of revolution, such as

x(s, θ) = (r(s) sinh ϕ(s) + s, r(s) cosh ϕ(s) sinh θ, r(s) cosh ϕ(s) cosh θ),

where r(s) satisfies (22).

Proof of Theorem 4. M11
− is minimal iff H ≡ 0. From (11), H ≡ 0 implies

2P1 − cosh2 ϕ = 0.

By Equation (9), we get

2rr′′ − 2rκ cosh ϕ sinh θ + cosh2 ϕ = 0.

Therefore, one can obtain rκ cosh ϕ = 0 and 2rr′′ + cosh2 ϕ = 0. Since r 6= 0, cosh ϕ 6= 0,
then κ = 0 and M11

− is a surface of revolution. Solving 2rr′′ + cosh2 ϕ = 0, we get

s = c2 ±
∫ √ r

c1 − r
dr, (c1 > r, c2 ∈ R). (22)

The converse is obvious through direct calculations.
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3.2. Canal Surfaces M2
−

Let M be a canal surface formed by the movement of H2
0 along a timelike curve c(s) in E3

1, i.e., M2
−.

Then, by the definition of M2
− and Frenet equations, we obtain

λ(s) = −r(s)r′(s),
µ(s, θ) = r(s)

√
r′2(s)− 1 cos θ,

ω(s, θ) = r(s)
√

r′2(s)− 1 sin θ

in Equation (1). Then, M2
− can be parameterized by

x(s, θ) = c(s) + r(s)(−r′(s)T +
√

r′2(s)− 1 cos θN +
√

r′2(s)− 1 sin θB), (23)

where c(s) is parameterized by arc length s. Without loss of generality, we assume −r′(s) = cosh ϕ for
some smooth function ϕ = ϕ(s). Then, M2

− can be written by

x(s, θ) = c(s) + r(s)(cosh ϕT + sinh ϕ cos θN + sinh ϕ sin θB). (24)

Remark 7. From Equation (23), tube M2
− does not exist.

Proposition 3. The quantities of the first and second fundamental forms of canal surface M2
− satisfy

L =
E− P3

−r
, M =

F
−r

, N =
G
−r

and

EG− F2 = r2P2
3 , LN −M2 = rP3Q3, (25)

where

P3 = rr′′ − rκ sinh ϕ cos θ + sinh2 ϕ = rQ3 + sinh2 ϕ,

Q3 = r′′ − κ sinh ϕ cos θ.
(26)

Remark 8. Due to regularity, we see P3 6= 0 everywhere by Equation (25).

By Proposition 3, Gaussian curvature K and mean curvature H of M2
− are given by, respectively,

K = − LN −M2

EG− F2 = −Q3

rP3
, (27)

H = −EN − 2FM + GL
2(EG− F2)

=
2P3 − sinh2 ϕ

2rP3
. (28)

Theorem 5. Gaussian curvature K and mean curvature H of canal surface M2
− are related by

H = −1
2
(Kr− 1

r
). (29)

Next, we study canal surface M2
− whose Gaussian curvature and mean curvature satisfy some

particular conditions. We omitted the proofs for M2
− since they are similar to M11

− , M12
− .
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Theorem 6. Let M2
− be a linear Weingarten canal surface; then, it is a surface of revolution, such as

x(s, θ) = (r(s) sinh ϕ(s) sin θ, r(s) sinh ϕ(s) cos θ, r(s) cosh ϕ(s) + s), (30)

where r(s) is given by

s = c2 ±
∫ √ r2 − 2ar + b

r2 − 2ar + b + c1
dr, (c1 > −r2 + 2ar− b, c2 ∈ R).

Corollary 3. Let M2
− be a canal surface with nonzero constant Gaussian curvature. Then, it is a surface of

revolution with positive constant Gaussian curvature, such as

x(s, θ) = (r(s) sinh ϕ(s) sin θ, r(s) sinh ϕ(s) cos θ, r(s) cosh ϕ(s) + s),

where r(s) is given by

s = c2 ±
∫ √ r2 + b

r2 + b + c1
dr, (c1 > −r2 − b, c2 ∈ R).

Corollary 4. Canal surface M2
− with nonzero constant mean curvature does not exist.

Theorem 7. A canal surface M2
− is developable iff it is a circular cone.

Proof of Theorem 7. M2
− is developable iff K ≡ 0. By Equation (27), we have Q3 ≡ 0. Then, we get

r′′ − κ sinh ϕ cos θ = 0.

It follows that r′′ = 0 and κ = 0 (if sinh ϕ = 0, by Equation (25), M2
− is degenerate). Then,

r(s) = c1s + c2, where c1, c2 are constants, and |c1| > 1. If |c1| ≤ 1, by (23), it is a contradiction.
Therefore, M2

− is a circular cone (|c1| > 1) in E3
1. The converse is obvious.

Theorem 8. A canal surface M2
− is minimal iff it is a part of a surface of revolution such as

x(s, θ) = (r(s) sinh ϕ(s) sin θ, r(s) sinh ϕ(s) cos θ, r(s) cosh ϕ(s) + s),

where r(s) satisfies

s = c2 ±
∫ √ r

r + c1
dr, (c1 > −r, c2 ∈ R).

3.3. Canal Surfaces of Type M13
− and M3

−

Let M be a canal surface formed by the movement of H2
0 along a null type spacelike curve c(s),

i.e., M13
− . By the definition of M13

− and Frenet equations, we obtain{
λ(s) = r(s)r′(s),
2µ(s, θ)ω(s, θ) = −r2(s)(1 + r′2(s))

(31)

in Equation (1). Then, M13
− can be parameterized by

x(s, θ) = c(s) + r(s)r′(s)T + µ(s, θ)N + ω(s, θ)B, (32)

where c(s) is parameterized by arc length s.
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Initially, we have

xs = U1(s, θ)T + V1(s, θ)N + W1(s, θ)B, xθ = µθ N + ωθ B,

where
U1(s, θ) = 1 + r′2 + rr′′ −ω, V1(s, θ) = rr′ + µ + µκ, W1(s, θ) = ωs −ωκ.

From Equation (31), we can get

µθ = −µωθ

ω
, µs =

−rr′(U1 + ω)− µωs

ω
.

Then, the quantities of the first fundamental form are given by

E = U2
1 + 2V1W1, F = µθW1 + ωθV1, G = 2µθωθ . (33)

EG− F2 =
r2ω2

θU2
1

ω2 .

Unit normal vector field n to M13
− is given by

n =
xs × xθ

‖xs × xθ‖
= −1

r
(rr′T + µN + ωB), (34)

which point canal surface M13
− and 〈n, n〉 = −1 outwards.

Furthermore, by Equation (34) we have

ns =
1
r2 {(rr′2 − rU1 + r)T + (r′µ− rV1)N + (r′ω− rW1)B},

nθ = −1
r
(µθ N + ωθ B).

Then, the quantities of the second fundamental form are obtained by

L =
1
r
(U2

1 −U1 + 2V1W1), M =
ωθ

ωr
(ωV1 − µW1), N =

2µθωθ

r
. (35)

From Equations (34) and (35), we have

Proposition 4. The quantities of the first and second fundamental forms of canal surfaces M13
− satisfy

L =
E−U1

r
, M =

F
r

, N =
G
r

and

EG− F2 =
r2ω2

θU2
1

ω2 , LN −M2 = −
ω2

θU1Y1

ω2 , (36)

where Y1 = 1 + r′2 −U1 = ω− rr′′.

Remark 9. Due to regularity, we see U1 6= 0 everywhere by Equation (36).

By Proposition 4, Gaussian curvature K and mean curvature H of M13
− are given by, respectively,

K = − LN −M2

EG− F2 =
Y1

r2U1
, (37)
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H = −EN − 2FM + GL
2(EG− F2)

=
Y1 −U1

2rU1
. (38)

Second, we study canal surface M3
−. By the definition of M3

− and the Frenet equations, we obtain{
ω(s) = r(s)r′(s),
2λ(s, θ)r(s)r′(s) + µ2(s, θ) = −r2(s)

(39)

in Equation (1). Then, M3
− can be parameterized by

x(s, θ) = c(s) + λ(s, θ)T + µ(s, θ)N + r(s)r′(s)B (40)

where c(s) is parameterized by null arc length s.

Remark 10. According to Equation (39), tube M3
− does not exist.

Proposition 5. The quantities of the first and second fundamental forms of canal surfaces M3
− satisfy

L =
E−W2

r
, M =

F
r

, N =
G
r

and

EG− F2 =
r2λ2

θW2
2

µ2 , LN −M2 =
λ2

θW2Y2

µ2 , (41)

where W2 = rr′′ − r′2 − µ, Y2 = W2 − r′2 = rr′′ − µ.

By Proposition 5, Gaussian curvature K and mean curvature H of M3
− are given by, respectively,

K = − LN −M2

EG− F2 = − Y2

r2W2
, (42)

H = −EN − 2FM + GL
2(EG− F2)

= −W2 + Y2

2rW2
. (43)

Based on the Gaussian curvature and mean curvature of M13
− and M3

−, it is easy to get the
following results.

Theorem 9. Gaussian curvature K and mean curvature H of canal surface M13
− (M3

−) can be related by

H =
1
2
(Kr− 1

r
). (44)

Proof of Theorem 9. For M13
− , from Equations (37) and (38), we can easily obtain the conclusion.

For M3
−, we can refer to Equations (42) and (43).

Next, we study canal surface M13
− (M3

−) whose Gaussian curvature and mean curvature satisfy
some particular conditions.

Remark 11. In the following, we just prove the results for M13
− and omit the proofs for M3

−, since they can be
similarly done to those of M13

− and the results are similar.

Theorem 10. Let M13
− be a linear Weingarten canal surface; then, it is a tube with radius r = −a (a < 0).
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Proof of Theorem 10. From Equation (2) with c = 1 and Equation (44), we obtain

(ar2 + br)K = r + a.

By Equation (37), we get
(ar2 + br)(ω− rr′′)

r2(1 + r′2 + rr′′ −ω)
= r + a, (45)

i.e.,
ω(r2 + 2ar + b)− rr′′(r2 + 2ar + b)− (r2 + ar)(1 + r′2) = 0.

Therefore, we get

ω(r2 + 2ar + b) = 0 and rr′′(r2 + 2ar + b) + (r2 + ar)(1 + r′2) = 0.

Assume r2 + 2ar + b 6= 0, then ω = 0. By (36), M13
− is degenerate. Thus, r2 − 2ar + b = 0. Hence,

r = −a (a < 0) is a nonzero constant. M13
− is a tube and a, b satisfy a2 − b = 0.

Theorem 11. Linear Weingarten canal surface M3
− does not exist.

Proof of Theorem 11. Similar to the proof of Theorem 10, through calculation, we obtain that r = −a
(a < 0) is a nonzero constant. This contradicts the result of Remark 10. Thus it is completed.

Corollary 5. Canal surface M13
− (M3

−) with nonzero constant Gaussian curvature or nonzero constant mean
curvature does not exist.

Proof of Corollary 5. If M13
− has nonzero constant Gaussian curvature or nonzero constant mean

curvature, by Equations (37) and (38), the functions ω = ω(s) and µ = µ(s), obviously. It is impossible.
The proof is completed.

Similar to Corollary 5, when the Gaussian curvature or mean curvature equal to zero, by (37) and
(38), the functions ω = ω(s) and µ = µ(s), obviously. Then, we have

Theorem 12. Canal surface M13
− (M3

−) is nondevelopable and nonminimal.

From the calculations above, we have the following common conclusions.

Theorem 13. Umbilical canal surface M− does not exist.

Proof of Theorem 13. Canal surface M− is umbilical; this means

E : F : G = L : M : N,

from Propositions 1–5, we obtain P1 = P2 = P3 = U1 = W2 = 0. It is impossible by the regularity of
those canal surfaces.

Theorem 14. Canal surfaces M− are spacelike surfaces in E3
1.

Proof of Theorem 14. The normal vector of M− satisfies 〈n, n〉 = −1; it is obtained easily.

Remark 12. The canal surfaces obtained by pseudo spheres S2
1 along a space curve, i.e., M+ are discussed in [7].

The canal surfaces foliated by lightcones Q2 along a space curve, i.e., M0 are degenerate surfaces by simple
calculation. Here, the proof is omitted.
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4. Examples

Canal surfaces are very popular in CAGD. In this section, we want to show a method to
characterize M− geometrically via Mathematica Programme.

Example 1. Let the timelike curve c(s) = (sin s
2 , cos s

2 ,
√

5s
2 ), then the Frenet frame are

T(s) = ( 1
2 cos s

2 ,− 1
2 sin s

2 ,
√

5
2 ),

N(s) = (− sin s
2 ,− cos s

2 , 0),

B(s) = (
√

5
2 cos s

2 ,−
√

5
2 sin s

2 , 1
2 ).

Denoting radius function r(s) = 2s, then the canal surface of type M2
− (see Figure 1) can be written by

x(s, θ) =(sin
s
2
− 2s cos

s
2
− 2
√

3s sin
s
2

cos θ +
√

15s cos
s
2

sin θ,

cos
s
2
+ 2s sin

s
2
− 2
√

3s cos
s
2

cos θ −
√

15s sin
s
2

sin θ,−3
√

5s
2

+
√

3s sin θ).

Example 2. Let null curve c(s) = (cos s, sin s, s); then, the Frenet frame can be given by
T(s) = (− sin s, cos s, 1),
N(s) = (− cos s,− sin s, 0),
B(s) = (− 1

2 sin s, 1
2 cos s,− 1

2 ).

Here, we denote radius function r(s) = s2 and λ(s, θ) = −eθ in (39), the canal surface of type M3
−

(see Figure 2) as

x(s, θ) =(cos s + eθ sin s− s
√
(4eθ − s)s cos s− s3 sin s,

sin s− eθ cos s− s
√
(4eθ − s)s sin s + s3 cos s, s− eθ − s3).

Figure 1. M2
− with r(s) = 2s.
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Figure 2. M3
− with r(s) = s2.
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