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Abstract: The theory of the continuous two-dimensional (2D) Fourier transform in polar coordinates
has been recently developed but no discrete counterpart exists to date. In this paper, we propose and
evaluate the theory of the 2D discrete Fourier transform (DFT) in polar coordinates. This discrete
theory is shown to arise from discretization schemes that have been previously employed with the
1D DFT and the discrete Hankel transform (DHT). The proposed transform possesses orthogonality
properties, which leads to invertibility of the transform. In the first part of this two-part paper, the
theory of the actual manipulated quantities is shown, including the standard set of shift, modulation,
multiplication, and convolution rules. Parseval and modified Parseval relationships are shown,
depending on which choice of kernel is used. Similar to its continuous counterpart, the 2D DFT in
polar coordinates is shown to consist of a 1D DFT, DHT and 1D inverse DFT.

Keywords: Fourier Theory; DFT in polar coordinates; polar coordinates; multidimensional DFT;
discrete Hankel Transform; discrete Fourier Transform; Orthogonality

1. Introduction

The Fourier transform (FT) in continuous and discrete forms has seen much application in various
disciplines [1]. It easily expands to multiple dimensions, with all the same rules of the one-dimensional
(1D) case carrying into the multiple dimensions. Recent work has developed the complete toolkit for
working with the continuous multidimensional Fourier transform in two-dimensional (2D) polar and
three-dimensional (3D) spherical polar coordinates [2–4]. However, to date no discrete version of the
2D Fourier transform exists in polar coordinates. Hence, the aim of this paper is to develop the discrete
version of the 2D Fourier transform in polar coordinates.

For the discrete version of the transform, the values of the transform will be available only at
discrete points. To quote Bracewell [5], “we often think of this as though an underlying function
of a continuous variable really exists and we are approximating it. From an operational viewpoint,
however, it is irrelevant to talk about the existence of values other than those given and those
computed (the input and output). Therefore, it is desirable to have a mathematical theory of the actual
quantities manipulated”. This paper thus aims to develop the mathematical theory of the discrete
two-dimensional Fourier transform in polar coordinates. Standard ‘operational rules’ associated with
any Fourier transform (shift, modulation, multiplication, and convolution) will be developed. Parseval
and modified Parseval relationships will also be shown, depending on the choice of kernel used.

To the best of the author’s knowledge, there is no discrete version of the 2D Fourier transform in
polar coordinates. It was shown in [2,4] that the 2D continuous Fourier transform in polar coordinates
is actually a combination of a single dimensional Fourier transform, a Hankel transform, followed by
an inverse Fourier transform. Of course, the discrete version of the 1D standard Fourier transform
is very well known and the literature on this subject alone is vast. Recently, a discrete version of the
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Hankel transform has been proposed [6,7], yet this discrete transform is still in one dimension. We will
show further on that the 2D Fourier transform in polar coordinates requires this transform.

Other researchers have defined the idea of a polar Fourier transform (polar FT), in which the
original function in the spatial domain is in Cartesian coordinates but its FT is computed in polar
coordinates, meaning discrete polar Fourier data and Cartesian spatial data [8–10]. Fast Fourier
transforms (FFT) have also been developed for non-equispaced data, referred to as a unequally spaced
FFT (USFFT) or non-uniform FFT (NUFFT) [11–15]. Using this approach, frequencies in a polar
frequency domain can be considered to be unequally spaced and hence the problem of evaluating
a polar FT can be considered as a special case of the USFFT. Averbuch et al. [8] compared the
accuracy results of their proposed approach which used a pseudo-polar grid to those obtained by
an USFFT approach and demonstrated that their approach show marked advantage over the USFFT.
Fenn et al. [10] examined computing the FT on a polar, modified and pseudo-polar grid using the
NUFFT, for both forward and backwards transforms. They demonstrated that the NUFFT was effective
at this computation. Although the above demonstrate that the computation of a discrete 2D FT on a
polar grid has previously been considered in the literature, there is, to date, no discrete 2D Fourier
transform in polar coordinates that exists as a transform in its own right, with its own set of rules of
the actual manipulated quantities.

The outline of the paper is as follows. Section 2 presents some of the necessary background
material. Section 3 introduces an intuitive ‘motivation’ for the definition of the 2D Discrete Fourier
Transform (DFT) in polar coordinates that will be introduced by considering space and band-limited
functions. This leads to an intuitive discretization scheme and an intuitive kernel for the proposed 2D
DFT, which is introduced in Section 4. Section 5 introduces the proposed transform while Section 6
derives the transform properties including modulation, shift, multiplication and convolution rules.
Section 7 discusses Parseval relations while Section 8 demonstrates that the proposed transform can
indeed be decomposed a sequence of DFT, Discrete Hankel Transform (DHT) and inverse DFT (IDFT),
in keeping with the approach of the continuous version of the transform. Finally, Section 8 concludes
the paper.

2. Background: Continuous 2D Fourier Transforms in Polar Coordinates

The 2D Fourier transform of a function f (
→
r ) = f (x, y) expressed in 2D Cartesian coordinates is

defined as [4]:

F
(
→
ω
)
= F(ωx,ωy) =

∞∫
−∞

∞∫
−∞

f (x, y) e−i
→
ω·
→
r dx dy (1)

The inverse Fourier transform is given by:

f
(
→
r
)
= f (x, y) =

1

(2π)2

∞∫
−∞

∞∫
−∞

F(ωx,ωy)ei
→
ω·
→
r dωx dωy (2)

where the shorthand notation of
→
ω =

(
ωx,ωy

)
,
→
r = (x, y) has been used. For functions with cylindrical

or circular symmetry, it is often more convenient to express both the original function f (
→
r ) and

its 2D Fourier transform F
(
→
ω
)

in polar coordinates. If so, polar coordinates can be introduced as
x = r cosθ, y = r sinθ and similarly in the spatial frequency domain asωx = ρ cosψ andωy = ρ sinψ,
otherwise written as, r2 = x2 + y2, θ = arctan(y/x) and ρ2 = ω2

x +ω2
y, ψ = arctan

(
ωy/ωx

)
.

Given a function in polar coordinates f (r,θ), where θ is the angular variable and r is the radial
variable, the function can be expanded into a Fourier series as:

f
(
→
r
)
= f (r,θ) =

∞∑
n=−∞

fn(r) einθ (3)
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where the Fourier coefficients are given by:

fn(r) =
1

2π

π∫
−π

f (r,θ) e−inθdθ (4)

Similarly, the 2D Fourier transform of f (r,θ) is given by F(ρ,ψ). The function F(ρ,ψ), where ψ
is the angular frequency variable and ρ is the radial frequency variable, can also be expanded into a
Fourier series as:

F
(
→
ω
)
= F(ρ,ψ) =

∞∑
n=−∞

Fn(ρ) einψ (5)

where:

Fn(ρ) =
1

2π

π∫
−π

F(ρ,ψ)e−inψdψ (6)

We note that Fn(ρ) is NOT the Fourier transform of fn(r). The development details can be found
in [4], where it is demonstrated that the relationship is given by:

Fn(ρ) = 2π i−n
∞∫
0

fn(r)Jn(ρr) rdr

= 2π i−nHn
{
fn(r)

}
,

(7)

where Hn{·} denotes an nth order Hankel transform [3], see Appendix A.1 [3]. The inverse relationship
is given by:

fn(r) = in
2π

∞∫
0

Fn(ρ)Jn(ρr) ρdρ

= in
2π Hn

{
Fn(ρ)

}
.

(8)

Thus, the nth term in the Fourier series of the original function will Hankel transform into the
nth term of the Fourier series of the Fourier transform function via an nth order Hankel transform for
the nth term. Therefore, the steps for finding the 2D Fourier transform F(ρ,ψ) of a function f (r,θ)
are (i) finding its Fourier series coefficients in the angular variable fn(r), Equation (4), (ii) finding the
Fourier series coefficient of the Fourier transform, Fn(ρ) via Fn(ρ) = 2π i−nHn

{
fn(r)

}
, then (iii) taking

the inverse Fourier series transform (summing the series) with respect to the frequency angular variable,
Equation (5).

The discrete equivalent to the relationships given by Equations (3) to (8) have not been developed
and it is the goal of this paper to develop the discrete counterparts of these equations.

3. Motivation for the Discrete 2D Fourier Transform in Polar Coordinates

3.1. Space-Limited Functions

To motivate the discrete version of a 2D Fourier transform in polar coordinates, we follow the
same path used to derive the classical discrete Fourier transform (DFT) and also the recently-proposed
discrete Hankel transform (DHT) [6]. This approach starts with a space (or time for the traditional
FT) limited function in one domain and then makes the assumption that the transform of the function
is also limited in the corresponding frequency domain. While strictly speaking, functions cannot be
limited in both space and spatial frequency domains, in practice, they can be made ‘effectively’ limited
in the domain where they are not exactly limited by suitable truncation of an appropriate series. This is
how the DFT and DHT were both motivated. The discrete transforms derived in this manner then have
properties that exist in their own right, independent of their ability to approximate their continuous
transform counterpart.
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The same path is followed here. A function f (r,θ) in polar coordinates, where θ is the angular
variable and r is the radial variable, is expanded into a Fourier series given by Equation (3) where
fn (r) is given by Equation (4). It is now supposed that the function f (r,θ) is space-limited, meaning
that f (r,θ) and, by virtue of Equation (4), all the Fourier coefficients fn (r) are zero for r ≥ R. Then,
it follows that each of the Fourier coefficients fn (r) can be written in terms of a Fourier Bessel series
(see [6] and Appendix A.2) as:

fn(r) =


∞∑

k=1
C f

nk Jn
( jnkr

R

)
r < R

0 r ≥ R
(9)

where the order, n, of the Bessel function in (9) matches the order fn of the Fourier coefficient, C f
nk

denotes the kth coefficient of the Fourier–Bessel expansion of fn(r) and denotes the kth zero of the nth
Bessel function. The C f

nk can be found from [16]:

C f
nk =

2
R2 J2

n+1( jnk)

R∫
0

fn(r)Jn

(
jnkr
R

)
r dr (10)

Equation (7) gives the relationship between the Fourier coefficients of the function itself and
its 2D Fourier transform. Using Equation (7) and making use of the space limited nature of fn(r),
Equation (10) can be written as:

C f
nk =

2
R2 J2

n+1( jnk)

∞∫
0

fn(r)Jn

(
jnkr
R

)
r dr =

in

πR2 J2
n+1( jnk)

Fn

(
jnk

R

)
(11)

Therefore, for r < R, Equation (9) becomes:

fn(r) =
in

πR2

∞∑
m=1

Fn

(
jnm

R

)
1

J2
n+1( jnm)

Jn

(
jnmr
R

)
(12)

Equation (12) with its infinite summation is exact. Now, evaluating Equation (12) at r = rnk =
jnkR
jnN1

for any N1 and where k < N1 gives:

fn

(
jnkR
jnN1

)
=

in

πR2

∞∑
m=1

Fn

(
jnm

R

)
1

J2
n+1( jnm)

Jn

(
jnm jnk

jnN1

)
k < N1 (13)

For k < N1, then rnk =
jnkR
jnN1

< R, and Equation (13), summing over infinite m, is still exact. For k ≥ N1,

then rnk =
jnkR
jnN1
≥ R and by the assumption of the space-limited nature of the function, f (rnk) = 0 for

k ≥ N1.
We now assume that the function is also effectively band limited, in addition to being space-limited.

Now, a function cannot be finite in both space and spatial frequency (equivalently if using a standard
Fourier transform it cannot be finite in both time and frequency). However, if a function is effectively
band-limited, then there exists an integer N1 for which Fn

( jnm
R

)
≈ 0 for m > N1. In other words, an

interval can be found beyond which the Fourier transform coefficients Fn(ρ) become very small. Since
the convergence of the Fourier–Bessel series in (13) is known, then lim

m→∞
Fn

( jnm
R

)
= 0. In other words,

for any arbitrarily small ρ, there exists an integer N1 for which Fn
( jnm

R

)
< ρ for m > N1.

Hence, using notion of an effective band-limit as stated in the preceding paragraph, the series in
Equation (13) can be terminated at a suitably chosen N1, thus giving an effective band limit. Termination
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of the series at m = N1 is equivalent to assuming that Fn(ρ) ≈ 0 for ρ > Wρ =
jnN1

R . It is noted that at

m = N1, the last term in Equation (13) is Jn

(
jnN1 jnk

jnN1

)
= Jn( jnk) = 0, so that termination of the series at

N1 implies that Equation (13) becomes

fn

(
jnkR
jnN1

)
=

in

πR2

N1−1∑
m=1

1
J2
n+1( jnm)

Jn

(
jnm jnk

jnN1

)
Fn

(
jnm

R

)
k = 1..N1 − 1 (14)

Equation (14) is the discrete equivalent of Equation (8) in that it demonstrates that the relationship
between discrete samples of fn(r) and Fn(r) is given by a discrete Hankel transform type of relationship,
whereas the continuous relationship involved a continuous Hankel transform. The termination of the
series at N1 is equivalent to assuming an “effective” band-limit on the function. In other words, it states
that for m > N1, the values of Fn

( jnm
R

)
, which from Equation (11) are proportional to the Fourier–Bessel

coefficients, are negligibly small. Of course, this is never exactly true, however, since the Fourier–Bessel
series converges, it is always possible to choose N1 so that the approximation introduced by truncating
the series at N1 is good [16].

The truncation of the series at N1 also permits Equation (14) to be easily inverted. Multiplying

both sides of (14) by
4Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnk)

and summing over k gives:

N1−1∑
k=1

fn

(
jnkR
jnN1

) 4Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnk)

=

N1−1∑
m=1

in

πR2

N1−1∑
k=1

4Jn

(
jnm jnk
jnN1

)
Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnm)J2

n+1( jnk)︸                               ︷︷                               ︸
=δmp

Fn

(
jnm

R

)
(15)

where we have used the discrete orthogonality of the Bessel functions as given in Appendix A.4. Hence,

Fn

(
jnp

R

)
= i−nπR2

N1−1∑
k=1

fn

(
jnkR
jnN1

) 4Jn

(
jnk jnp
jnN1

)
j2nN1

J2
n+1( jnk)

(16)

Equations (14) and (16) offer the basic structure on which to base the discrete transform formulation.
Equation (16) is the basic structure to define the forward transform and Equation (14) offers the basic
structure to define the inverse transform.

To proceed further, we need ways to compute fn
(

jnkR
jnN1

)
and Fn

( jnm
R

)
. Here, the theory of discrete

Fourier transforms can be used. For n ∈ [−M, M] where N2 = 2M+ 1, it is shown in [17] that the Fourier
coefficients fn(r) and Fn(ρ) can be well approximated with expressions given by (see Appendix A.5):

Fn(ρ) ≈
1

N2

M∑
p=−M

F
(
ρ, 2πp

N2

)
e−i 2πnp

N2

fn(r) ≈
1

N2

M∑
p=−M

f
(
r, 2πp

N2

)
e−i 2πnp

N2

(17)

Hence, we will use Equation (17) to write:

Fn

( jnm
R

)
= 1

N2

M∑
p=−M

F
(

jpm
R , 2πp

N2

)
e−i 2πnp

N2

fn
(

jnkR
jnN1

)
= 1

N2

M∑
p=−M

f
(

jpkR
jpN1

, 2πp
N2

)
e−i 2πnp

N2

(18)
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Equation (18) is a key assumption of the development. Note that in both cases, the function is

sampled in the summation over p at the radial variable
(

jpk,m
R

)
, that is, it is included in the summation

index. However, the function on the left hand side of Equation (18) is sampled at
( jnm

R

)
We show in

Appendix A.6 that this assumption is valid. This assumption is what also permits the invertibility
of the discrete transforms, since without this assumption it would not be possible to propose an
invertible, orthogonal discrete transform. Equation (18) will be used to derive the forward and inverse
discrete transforms.

3.1.1. Forward Transform

For the forward transform, we can start with Equation (16), and use the key relationships given
by Equation (18). Under these conditions, Equation (16) becomes:

1
N2

M∑
l=−M

F
(

jlm
R

,
2πl
N2

)
e−i 2πnl

N2

︸                            ︷︷                            ︸
Fn(

jnm
R )

= i−nπR2
N1−1∑
k=1

4Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

 1
N2

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

)
e−i 2πnp

N2

︸                                    ︷︷                                    ︸
fn(

jnkR
jnN1

)

(19)

Equation (19) is the discrete equivalent of Equation (7). From Equation (19), multiply both sides

by e+i 2πnq
N2 and sum from n = −M..M gives:

M∑
n=−M

M∑
l=−M

F
( jlm

R , 2πl
N2

)
e−i 2πnl

N2 e+i 2πnq
N2 =

M∑
n=−M

i−nπR2
N1−1∑
k=1

4Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

M∑
p=−M

f
(

jpkR
jpN1

, 2πp
N2

)
e−i 2πnp

N2 e+i 2πnq
N2 (20)

Interchanging the order of summation on the left hand side of (20) and using the orthogonality
relationship of the complex exponential (Appendix A.3) gives:

F
(

jqm

R
,

2πq
N2

)
=

2πR2

N2

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

) 2i−n Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (21)

3.1.2. Inverse Transform

For the inverse transform, we start with the structure of Equation (14) and then use the key
approximations given in Equation (18) to obtain:

1
N2

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

)
e−i 2πnp

N2

︸                                ︷︷                                ︸
fn(

jnkR
jnN1

)

=
in

πR2

N1−1∑
m=1

Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

 1
N2

M∑
q=−M

F
(

jqm

R
,

2πq
N2

)
e−i 2πnq

N2

︸                                  ︷︷                                  ︸
Fn(

jnm
R )

(22)

Multiplying both sides of Equation (22) by e+i 2πnp
N2 , summing from n = −M..M, interchanging

the order of summation on the left hand side and using the orthogonality relationship of the discrete
complex exponential gives:

f
( jpkR

jpN1

,
2πp
N2

)
=

1
2πR2N2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqm

R
,

2πq
N2

) 2in Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2 (23)
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3.2. Band-Limited Functions

The process in the previous section can be repeated by starting with the assumption that the
function is band-limited. That is, we suppose that the 2D Fourier transform F(ρ,ψ) of f (r,θ) is
band-limited, meaning that F(ρ,ψ) itself and therefore by virtue of the equivalent of Equation (9), all
of its Fourier coefficients Fn(ρ) are zero for ρ ≥Wρ = 2πW. Typically, W would be given in units of
Hz (cycles per second) if using temporal units, or cycles per meter if using spatial units. Hence, the
definition of Wρ (with a multiplication by 2π) ensures that the final units are given in s−1 or m−1. The
details of this development follow the same steps as for the space-limited function but start with the
assumption of a band-limited function and then impose a space-limit (i.e., truncation of the series).
The results of this are summarized below.

3.3. Summary of Above Relationships

From the above, we summarize the derived relationships. In the case of a space-limited function,
it is found that the forward transform is given by:

F
(

jqm

R
,

2πq
N2

)
=

2πR2

N2

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

) 2i−n Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (24)

and the inverse transform is given by:

f
( jpkR

jpN1

,
2πp
N2

)
=

1
2πR2N2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqm

R
,

2πq
N2

) 2in Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2 (25)

Similarly, starting from the assumption of a bandlimited function, the forward transform is
given by:

F
(

jqmWρ

jqN1

,
2πq
N2

)
=

2π
W2
ρN2

M∑
n=−M

N1∑
k=1

M∑
p=−M

f
( jpk

Wρ
,

2πp
N2

)2 i−n Jn

(
jnk jnm
jnN1

)
J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (26)

and the inverse transform is given by:

f
( jpk

Wρ
,

2πp
N2

)
=

W2
ρ

2πN2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqmWρ

jqN1

,
2πq
N2

) 2in Jn

(
jnm jnk
jnN1

)
j2nN1

J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2 (27)

It is noted that the forward-inverse transform pair defined by Equations (24) and (25) is similar to
the transform pair defined by (26) and (27), with a few differences. First, the sampling points appear to
be slightly different, depending on whether we started with the assumption of a space-limited function
or a bandlimited function. The second observation is that the form of the transform itself might appear
to be slightly different, depending on whether a space-limited or a band-limited function was assumed
as a starting point. However, it was shown in [6] that for a nth order discrete Hankel transform,
the required relationship between the band limit and space limit is given by WρR = jnN1 . If the
substitution WρR = jnN1 is used in Equations (24) and (25), then it yields the same discrete transform
as the transform pair defined by (26) and (27). Also, the relationship WρR = jnN1 arose naturally in the
development above when the truncation of the Fourier–Bessel series at N1 was implemented, meaning
that the truncation of the series at N1 is the same as assuming WρR = jnN1 .
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Formally using the relationship WρR = jnN1 , the expressions in Equations (24) and (25) can also
be written using a symmetric forward/inverse transform pair, where the forward transform is given by:

F
(

jqm

R
,

2πq
N2

)
=

2πR
N2Wρ

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

f
( jpkR

jpN1

,
2πp
N2

) 2i−n Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2 (28)

For the inverse transform, we can similarly write:

f
( jpkR

jpN1

,
2πp
N2

)
=

Wρ

2πRN2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

F
(

jqm

R
,

2πq
N2

) 2in Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)
e−i 2πnq

N2 e+i 2πnp
N2 (29)

The advantage of the formulation in Equations (28) and (29) shall be noted in the next section in
that it suggests a symmetric form of the kernel for the 2D discrete transform in polar coordinates.

The above demonstrates that a natural, (N1 − 1) ×N2 dimensional discretization scheme in finite
space and finite frequency space is given by:

rpk =
jpkR

jpN1

or rpk =
jpk

Wρ
, and θp =

p2π
N2

(30)

and:

ρqm =
jqm

R
or ρqm =

jqmWρ

jqN1

, and ψq =
q2π
N2

(31)

where p, k, q, m, n, N1, and N2 are integers such that −M ≤ n ≤M, where 2M+ 1 = N2, 1 ≤ m, k,≤ N1 − 1

and −M ≤ p, q ≤M. The relationship Wρ =
jnN1

R can be used to formally switch from a finite frequency
domain to a finite space domain. This is a ‘formal’ approach because in making this substitution, the
index of the Bessel function is not fixed whereas Wρ and R are assumed fixed values. Nevertheless,
it demonstrates the approach to switching from a space-limited based discretization scheme to a
band-limited discretization scheme.

4. Proposed Kernel for the Discrete Transform

4.1. Proposed Kernel for 2D Polar Discrete Fourier Transform

To work with the polar 2D DFT, a kernel for the transformation is required. Inspired by the
formulations shown in Equations (24) and (25), we propose the following kernels:

E−qm;pk =
1

N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

2i−ne−in 2πp
N2 e+in 2πq

N2

E+
qm;pk =

1
N2

M∑
n=−M

Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

2ine+i 2πnp
N2 e−i 2πnq

N2

(32)

where p, k, q, m, n, N1, and N2 are integers such that −M ≤ n ≤M, where 2M+ 1 = N2, 1 ≤ m, k,≤ N1 − 1
and −M ≤ p, q ≤M. It is noted that the proposed kernels in Equation (32) are almost complex conjugates
of each other save for a factor of j2nN1

in the denominator of E−qm;pk. The formulation in Equation (32) is
proposed in order to emulate Equations (24) and (25). A symmetric formulation of the kernels, with
one jnN1

in the denominator of each of E−(qm; pk) and E+(qm; pk) would also be possible and would
make E±qm;pk complex conjugates of each other; however, such a kernel would be more of a departure
from a discretization of the continuous transform. The integers N1, and N2 denote the size of the
working spaces, with N2 giving the size in the angular direction and N1 giving the size in the radial
direction. Since N2 = 2M + 1, it follows that N2 must be an odd integer. The notation for E−(qm; pk)



Mathematics 2019, 7, 698 9 of 28

and E+(qm; pk) are chosen deliberately. The subscript (+ or -) indicate the sign on the i± and on the
exponent containing the p variable; the q variable exponent then takes the opposite sign.

4.2. Another Choice of Kernel

A second, more symmetric choice of kernel is also possible. We will see that this choice of kernel
will allow for a more traditional version of Parseval’s theorem. All the following expressions will hold
with either form of kernel. Using as inspiration the forms written in Equations (28) and (29), then we
suggest for a kernel the following expression:

E(s)−
qm;pk =

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

2i−ne−in 2πp
N2 e+in 2πq

N2

E(s)+
qm;pk =

1
N2

M∑
n=−M

Jn

(
jnm jnk
jnN1

)
jnN1

J2
n+1( jnm)

2ine+i 2πnp
N2 e−i 2πnq

N2

(33)

As before, p, k, q, m, n, N1, and N2 are integers such that −M ≤ n ≤ M, where 2M + 1 = N2

1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤M. In Equation (33), E(s)+
qm;pk is now the complex conjugate of E(s)−

qm;pk,
as mentioned above.

4.3. Orthogonality of the Proposed Kernel

In what follows, we assume the ranges of the variables are such that p, k, q, m, n, N1, and N2 are
integers such that −M ≤ n ≤ M, where 2M + 1 = N2, 1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤ M. We state
and prove that the following relationship is true:

N1−1∑
m=1

M∑
q=−M

E−qm;pkE+
qm;p′k′ = δpp′δkk′ (34)

where δpp′ is the Kronecker-delta function, defined as δpp′ = 1 if p = p′ and δpp′ = 0 otherwise. It is
known that the continuous complex exponential expression can be written as:

ei
→
ω·
→
r =

∞∑
n=−∞

in Jn(ρr) einθe−inψ (35)

Hence, the form of the discrete kernel as proposed in (32) or (33) resembles discrete samples of
the right hand side of Equation (35). It then follows that our proposed kernels in (32) or (33) can be
considered to be the (discrete) corresponding form of the complex exponential kernel for the proposed
discrete transform. The orthogonality relationship in (34) can then be considered to be the discrete
version of:

∞∫
0

2π∫
0

e−i
→
ω·
→
r ei
→
ω·
→
r
′

d
→
ω = δ

(
→
r −

→
r
′
)

(36)

where the integration over the frequency vector
→
ω has been replaced with a discrete sum over the

frequency vector indices (q,m). The proof of Equation (34) uses the orthogonality of the discrete
complex exponential and the discrete Hankel transform and can be found in Appendix A.7.

It can be similarly shown that the following orthogonality relationship is also true:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk = δqq′δmm′ (37)
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which is similarly to be considered to be the discrete version of:

∞∫
0

2π∫
0

e−i
→
ω·
→
r ei
→
ω
′

·
→
r d
→
r = δ

(
→
ω −

→
ω
′
)

(38)

Once again, the integration over the vector
→
r has been replaced with a discrete sum over the

→
r

vector indices (p,k). The proof of Equation (37) can also be found in Appendix A.7. The orthogonality
expressions in Equations (34) and (37) still hold if E±qm;pk is replaced with the symmetric E(s)±

qm;pk since the

only difference between the E±qm;pk and E(s)±
qm;pk is the attribution of a jnN1 term in the denominator and

this makes no difference when the two kernels are multiplied.

5. Proposed Transform

In this section, we propose a definition of the 2D discrete Fourier transform (DFT) in polar
coordinates which is motivated by the results of the 2D Fourier transform applied to space-limited and
band-limited functions and also by the proposed kernel. The 2D DFT in polar coordinates will be a
transform that transforms a 2-subscript set of numbers (ie matrix) fpk to another set of values, matrix
Fqm where p, k, q, m, are integers such that 1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤M where N2 = 2M + 1 for
integers N1, and N2.

Forward and Inverse Transform

The proposed forward transform, fpk → Fqm is given by:

Fqm = 1
N2

M∑
n=−M

N1−1∑
k=1

M∑
p=−M

2i−n fpk

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−i 2πnp
N2 e+i 2πnq

N2

=
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk

(39)

where N2 = 2M + 1 for some integer M. Similarly, for the inverse transform we propose:

fpk = 1
N2

M∑
n=−M

N1−1∑
m=1

M∑
q=−M

2inFqm

Jn

(
jnm jnk
jnN1

)
J2
n+1( jnm)

e−i 2πnq
N2 e+i 2πnp

N2

=
N1−1∑
m=1

M∑
q=−M

FqmE+
qm;pk

(40)

In the proposed transform, E(s)±
qm;pk could easily be used in placed of E±qm;pk and all the following

expressions will still be valid.

Proof. Substituting Equation (39) into the right-hand side of (40), interchanging the order of summation
and using the orthogonality relationships of the kernel given in Equation (34) gives:

N1−1∑
m=1

M∑
q=−M


N1−1∑
l=1

M∑
s=−M

fslE−qm;sl

︸                    ︷︷                    ︸
Fqm

E+
qm;pk =

N1−1∑
l=1

M∑
s=−M

fslδspδlk = fpk (41)
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Similarly, substituting Equation (40) into the right-hand side of (39), interchanging the order of
summation and using the orthogonality of the kernel given in Equation (37) gives:

N1−1∑
k=1

M∑
p=−M


N1−1∑
l=1

M∑
s=−M

FslE+
sl;pk

︸                    ︷︷                    ︸
fpk

E−qm;pk =

N1−1∑
l=1

M∑
s=−M

Fslδsqδlm = Fqm (42)

Hence, Equation (39) and (40) are inverses of each other. These expressions would also hold if
E(s)±

qm;pk were used instead of E±qm;pk.

6. Properties of the Transform—Transform Rules

6.1. The Complex Exponential

For the discrete case, the functions E−qm;pk and E+
qm;pk as introduced above are the complex

exponentials for this space, satisfying the required orthogonality condition and functioning as the

kernel for the 2D-DFT in polar coordinates. These kernels are not e±i
→
ω·
→
r evaluated at particular points

because the evaluation of the discrete radial variables in regular and frequency space varies with the
order of the Bessel function. Nevertheless, these functions are the ‘effective’ complex exponentials for
the space under consideration. From the orthogonality condition of the 2D polar DFT kernel, it can
be shown that the expected Fourier rule of a complex exponential transforming to a delta function
applies. Specifically, the 2D DFT of fpk = E+

q0m0;pk for some fixed, given values (q0, m0) is given by:

Fqm =
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =
N1−1∑
k=1

M∑
p=−M

E+
q0m0;pkE−qm;pk

= δqq0δmm0

(43)

Hence, fpk = E+
q0m0;pk transforms to δqq0δmm0 or in compact notation, E+

q0m0;pk ⇔ δqq0δmm0 . This is

the discrete version of the transform of exp
(
→
ω0 ·

→
r
)
.

6.2. The Delta Function

Clearly, the discrete equivalent of the Dirac-delta function is the Kronecker-delta function and
in 2D, this needs to be a 2-subscript function. Thus, the discrete function whose 2D DFT is sought
is given by fpk = δpp0δkk0 , which defines a matrix indexed by (p, k) where all the entries are zero
except for the index where p = p0 and k = k0. The dimensions of this matrix are in keeping with
all the dimensions assumed for the space which are p, k, q, m, n, N1, and N2 are integers such that
−M ≤ n ≤ M, 1 ≤ m, k,≤ N1 − 1 and −M ≤ p, q ≤ M and where 2M + 1 = N2. Finding the 2D DFT of
this function gives:

Fqm =
N1−1∑
k=1

N2−1∑
p=0

fpkE−qm;pk =
N1−1∑
k=1

N2−1∑
p=0

δpp0δkk0E−qm;pk

= E−qm;p0k0

(44)

Hence, as in the continuous case, the delta function transforms to the complex exponential (with a
negative sign in the exponent). Hence we have another the Fourier pair δpp0δkk0 ⇔ E−qm;p0k0

.
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6.3. The Generalized Shift Operator

For a one dimensional Fourier transform, the shift rule is one of the known transform rules. This
rule says that a shift in time is equivalent to a modulation in frequency. Mathematically, this is stated as:

f (t− a) = F−1
{
e−iaω f̂ (ω)

}
=

1
2π

∞∫
−∞

{
e−iaω f̂ (ω)

}
eiωtdω (45)

Using this result as motivation, a generalized-shift operator is defined by finding the inverse DFT
of the DFT of the function multiplied by the DFT kernel (modulation). A generalized shift operator
was first proposed by Levitan [18], and our definition is a discretized version of this definition. Levitan
suggested the complex conjugate of the Fourier operator as a generalized shift operator, which for
Fourier transforms is the inverse transform operator. This approach to a generalized shift operator
has previously been used with the Hankel transform itself [6,19]. Thus, we define the definition of a
generalized-shifted function f p0k0

pk as the inverse Fourier transform of the function multiplied by the
inverse transform operator. That is, it is defined as:

f p0k0
pk :=

M∑
q=−M

N1−1∑
m=1

{
FqmE−qm;p0k0

}
E+

qm;pk (46)

Here, fpk is the original (unshifted) function with 2D DFT Fqm such that fpk → Fqm. f p0k0
pk is the

shifted function where p0k0 denotes the amount of the shift (the equivalent of a in Equation (45)).
The shifted function f p0k0

pk can also be expressed in terms of the unshifted function fpk by writing
Fqm in terms of fpk such as:

f p0k0
pk =

M∑
q=−M

N1−1∑
m=1

FqmE−qm;p0k0
E+

qm;pk

=
M∑

q=−M

N1−1∑
m=1

 M∑
p′=−M

N1−1∑
k′=1

fp′k′E−qm;p′k′

E−qm;p0k0
E+

qm;pk

(47)

By interchanging the order of summation, this can be rewritten as:

f p0k0
pk =

M∑
p′=−M

N1−1∑
k′=1

fp′k′
M∑

q=−M

N1−1∑
m=1

E−qm;p′k′E
+
qm;pkE−qm;p0k0︸                                  ︷︷                                  ︸

shift operator in space domain
= Sp0k0

p′k′,pk

(48)

Equation (48) permits the definition of a shift operator so that the shift operator in the spatial
domain is defined as:

Sp0k0
p′k′,pk =

M∑
q=−M

N1−1∑
m=1

E−qm;p′k′E
+
qm;pkE−qm;p0k0

(49)

This triple-product shift operator resembles previous definitions of shift operators for
multidimensional Fourier transforms [2,3], generalized Hankel convolutions [20–22] and also discrete
Hankel transforms [6].
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6.4. Forward Transform of the Generalized Shift

We now consider the forward 2D Fourier transform of the generalized shifted function f p0k0
pk . From

the definition of the shifted function given in Equation (46), it is obvious that the forward transform of
the shifted function is given by:

F2D
(

f p0k0
pk

)
= FqmE−qm;p0k0

(50)

The above can also be verified directly. The 2D Fourier transform of the shifted function can be
found from:

F2D
(

f p0k0
pk

)
=

M∑
p=−M

N1−1∑
k=1

f p0k0
pk E−qm;pk

=
M∑

p=−M

N1−1∑
k=1

 M∑
q′=−M

N1−1∑
m′=1

Fq′m′E−q′m′;p0k0
E+

q′m′;pk

E−qm;pk

(51)

where the definition in (46) was used. Interchanging the order of summation and using the orthogonality
result in (37) gives:

F2D
(

f p0k0
pk

)
=

M∑
q′=−M

N1−1∑
m′=1

Fq′m′E−q′m′;p0k0

M∑
p=−M

N1−1∑
k=1

E+
q′m′;pkE−qm;pk︸                        ︷︷                        ︸

=δqq′δmm′

= FqmE−qm;p0k0
(52)

This gives another transform pair and also defines the shift-modulation rule. This rule is in
analogy with the shift-modulation rule for regular Fourier transforms that states that a shift in the
spatial/time domain is equivalent to modulation in the frequency domain:

f p0k0
pk ⇔ FqmE−qm;p0k0

(53)

Equation (53) is equivalent to the standard 1D continuous transform rule of:

F
{
f (t− a)

}
= e−iaω f̂ (ω) (54)

6.5. Modulation

We suppose that the forward 2D-DHT of a function gpk is ‘modulated’ in the space domain so that
the function whose transform we seek is fpk = E+

q0m0;pkgpk. This is the discrete equivalent of a function

g(t) modulated as eiatg(t) Here, the interpretation of fpk = E+
q0m0;pkgpk is as follows:

fpk = E+
q0m0;pkgpk

fpk = gpk
2

N2

M∑
n=−M

Jn

(
jnm0 jnk

jnN1

)
Jn+1( jnm0)

ine+i 2πnp
N2 e−i

2πnq0
N2

(55)

Again, we implement the definition of the forward transform on the modulated function
fpk = E+

q0m0;pkgpk so that:

Fqm =

N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =

N1−1∑
k=1

M∑
p=−M

E+
q0m0;pkgpkE−qm;pk (56)
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and write gpk in terms of its inverse transform:

gpk =

N1−1∑
m=1

M∑
q=−M

GqmE+
qm;pk (57)

So that Equation (56) becomes:

Fqm =

N1−1∑
k=1

M∑
p=−M

E+
q0m0;pk

N1−1∑
m′=1

M∑
q′=−M

Gq′m′E+
q′m′;pkE−qm;pk (58)

Interchanging the order of summation gives:

Fqm =

N1−1∑
m′=1

M∑
q′=−M

Gq′m′

N1−1∑
k=1

M∑
p=−M

E+
q′m′;pkE−qm;pkE+

q0m0;pk︸                                  ︷︷                                  ︸
shift operator in the frequency domain

= Gq0m0
qm (59)

By comparing Equation (59) with Equation (49), we recognize the shift operator as shown in (59).
This follows from a shift over the (q,m) variables and defines a shift operator in the frequency domain as:

Sq0m0
q′m′,qm =

N1−1∑
k=1

M∑
p=−M

E+
q′m′;pkE−qm;pkE+

q0m0;pk (60)

Hence, Equation (59) can be written as:

Fqm =

N1−1∑
m′=1

M∑
q′=−M

Gq′m′S
q0m0
q′m′,qm = Gq0m0

qm (61)

The shift operator in the frequency domain over the (q,m) variables as given by Equation (60) can
be compared to the shift operator over the (p,k) variables in the space domain as shown in (49). We
note that operations in the spatial domains are operations that involve the (p,k) variables or the second
group of variables in E±qm;pk. Similarly, operations in the frequency domain involve operations over the
(q,m) variables or the first set of variables in E±qm;pk.

Hence, the above development shows the derivation of a modulation-shift rule, where the forward
2D-DHT of a modulated function is equivalent to a generalized shift in the frequency domain. This
gives the following transform pair:

E+
q0m0;pkgpk ⇔ Gq0m0

qm (62)

Otherwise stated, Equation (62) shows that modulation in the space domain is equivalent to shift
in the frequency domain, in keeping with expectations for a (generalized) Fourier transform.

6.6. Convolution–Multiplication

For a 2D convolution/multiplication rule, we consider a 2D convolution in the space domain. The
convolution is defined in the traditional manner as the product of a shifted function with another
unshifted function, and then the summation over all possible shifts. Specifically, we write it as:
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fpk = hpk ∗ ∗gpk =
M∑

p0=−M

N1−1∑
k0=1︸       ︷︷       ︸

summation over
all possible shifts

hp0k0
pk︸︷︷︸

shifted
function

gp0k0︸︷︷︸
unshifted
function

(63)

where hp0k0
pk is the hpk shifted by p0k0 given by:

hp0k0
pk =

M∑
q=−M

N1−1∑
m=1

HqmE−qm;p0k0
E+

qm;pk (64)

The summation in Equation (63) is then over all the possible shifts. Taking the forward transform
of fpk as defined in (63) gives:

Fqm =
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =
N1−1∑
k=1

M∑
p=−M

 M∑
p0=−M

N1−1∑
k0=1

hp0k0
pk gp0k0

E−qm;pk

=
N1−1∑
k=1

M∑
p=−M

M∑
p0=−M

N1−1∑
k0=1

M∑
q′=−M

N1−1∑
m′=1

Hq′m′E−q′m′;p0k0
E+

q′m′;pk︸                                    ︷︷                                    ︸
h

p0k0
pk

M∑
q′′=−M

N1−1∑
m′′=1

Gq′′m′′ E+
q′′m′′ ;p0k0︸                                ︷︷                                ︸

gp0k0

E−qm;pk
(65)

Interchanging the order of summation so that the summation over p,k is performed first and using
the orthogonality of the kernel gives:

Fqm =
M∑

p0=−M

N1−1∑
k0=1

M∑
q′=−M

N1−1∑
m′=1

M∑
q′′=−M

N1−1∑
m′′=1

Hq′m′E−q′m′;p0k0
Gq′′m′′ E+

q′′m′′ ;p0k0
δqq′δmm′

=
M∑

p0=−M

N1−1∑
k0=1

M∑
q′′=−M

N1−1∑
m′′=1

HqmE−qm;p0k0
Gq′′m′′ E+

q′′m′′ ;p0k0

(66)

Now summing over p0, k0 and again using the orthogonality of the kernel gives:

Fqm =
M∑

q′′=−M

N1−1∑
m′′=1

HqmGq′′m′′ δqq′′ δmm′′ = HqmGqm (67)

In other words, we have the result that:

hpk ∗ ∗gpk ⇔ HqmGqm (68)

Equation (68) is, of course, the expected convolution–multiplication rule where convolution in the
space domain is equivalent to multiplication in the frequency domain.

6.7. Multiplication–Convolution Rule

We now consider the forward 2D FT of a term-by-term product in the space domain so that
fpk = hpkgpk. Then, the forward transform of the term-by-term product is given by:

Fqm =

N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =

N1−1∑
k=1

M∑
p=−M

{
hpkgpk

}
E−qm;pk (69)
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Using the definitions of the inverse 2D FT to write hpk and gpk then:

Fqm =
N1−1∑
k=1

M∑
p=−M

fpkE−qm;pk =
N1−1∑
k=1

M∑
p=−M

M∑
q′=−M

N1−1∑
m′=1

Hq′m′E+
q′m′;pk︸                        ︷︷                        ︸

hpk

gpkE−qm;pk

=
M∑

q′=−M

N1−1∑
m′=1

Hq′m′

N1−1∑
k=1

M∑
p=−M

gpkE+
q′m′;pkE−qm;pk︸                            ︷︷                            ︸

=Gq′m′
qm

(70)

In Equation (70), we have used the modulation rule E+
q0m0;pkgpk ⇔ Gq0m0

qm . In other words,
Equation (70) states that:

Fqm =
M∑

q′=−M

N1−1∑
m′=1

Hq′m′G
q′m′
qm = Hqm ∗ ∗Gqm (71)

Hence, hpkgpk ⇔ Hqm ∗ ∗Gqm which is the multiplication-convolution rule where multiplication in
the space domain is equivalent to convolution in the frequency domain.

6.8. Rotation

It is generally known that rotating a function in 2D space also rotates its 2D Fourier transform.
We demonstrate that this is still true with our definition of the discrete 2D DFT in polar coordinates.
To see this, we consider a shift of the function in frequency space, meaning consider F(q−q0)m where a
shift by q0 in the angular coordinate has been implemented. In this case, since the circular direction is
circularly periodic, we interpret q− q0 in the sense of modulo N2. So consider the inverse discrete 2D
DFT of F(q−q0)m, that is from the definition in Equation (40)

F−1
2D

{
F(q−q0)m

}
=

1
N2

M∑
n=−M

jnN1
ine+i 2πnp

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)


M∑

q=−M

F(q−q0)me−i 2πnq
N2

 (72)

Now suppose that q′ = q − q0 so that q = q′ + q0 and q = −M implies q′ = −q0 −M and also
q = +M implies q′ = −q0 + M. Hence, Equation (72) becomes:

1
N2

M∑
n=−M

jnN1
ine+i 2πnp

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)


q′=−q0+M∑
q′=−q0−M

Fq′me−i
2πn(q′+q0)

N2

 (73)

But because of the circular (N2) periodicity of the function, then:

q′=−q0+M∑
q′=−q0−M

Fq′me−i
2πn(q′+q0)

N2 = e−i
2πnq0

N2

q′=−q0+M∑
q′=−q0−M

Fq′me−i 2πnq′
N2 = e−i

2πnq0
N2

q′=+M∑
q′=−M

Fq′me−i 2πnq′
N2 (74)

Hence, Equation (72) becomes:

1
N2

M∑
n=−M

jnN1
ine+i 2πnp

N2 e−i
2πnq0

N2︸           ︷︷           ︸
=e

+i
2πn(p−q0)

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)


M∑

q=−M

Fqme−i 2πnq
N2

 = f(p−q0)k (75)



Mathematics 2019, 7, 698 17 of 28

As above, f(p−q0)k is to be interpreted in the sense of modulo N2. However, what this clearly
demonstrates is that rotating the Fourier transform by q0 is equivalent to rotating the original function
by q0, as is expected of a 2D Fourier transform.

7. Generalized Parseval Theorem

Under the proposed transform, inner products are preserved and, therefore, energies are
preserved with the symmetric version of the transform. With the non-symmetric version of the
transform, a modified version of Parseval’s theorem is possible. This will be demonstrated in the
following subsections.

7.1. Parseval’s Theorem with the Symmetric Kernel

Consider the total energy of the term-by-term product (Hadamard product) of two matrices in the
spatial domain fpk = hpkgpk. We use the overbar notation to denote the complex conjugate, so that gpk
denotes the complex conjugate of gpk. We recall that in the case of the symmetric kernel, the complex

conjugate of E(s)+
qm;pk is E(s)−

qm;pk, which is what will enable the Parseval relationship to exist in its expected
form, as will be shown. More specifically, it is noted that:

N1−1∑
k=1

M∑
p=−M

hpkgpk =
N1−1∑
k=1

M∑
p=−M

N1−1∑
m′=1

M∑
q′=−M

Hq′m′E
(s)+
q′m′;pk


 N1−1∑

m′′=1

M∑
q′′=−M

Gq′′m′′ E
(s)−
q′′m′′ ;pk


=

N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′
N1−1∑
k=1

M∑
p=−M

E(s)+
q′m′;pkE(s)−

q′′ q′′ ;pk

(76)

However,
N1−1∑
k=1

M∑
p=−M

E(s)+
q′m′;pkE(s)−

q′′m′′ ;pk = δq′q′′ δm′m′′ (77)

Hence, Equation (76) becomes:

N1−1∑
k=1

M∑
p=−M

hpkgpk =
N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ δq′q′′ δm′m′′

=
N1−1∑
m′=1

M∑
q′=−M

Hq′m′Gq′m′

(78)

For the special case that gpk = hpk then Equation (78) yields:

N1−1∑
k=1

M∑
p=−M

∣∣∣hpk
∣∣∣2 =

N1−1∑
m=1

M∑
q=−M

∣∣∣Hqm
∣∣∣2 (79)

Equations (78) and (79) are the expected for of the Parseval relationship, which essentially states
that the energy computed in one domain is equivalent to the energy computed in the other domain.
The reader is reminded that the symmetric kernel was used for the derivation in (79).

7.2. Parseval’s Theorem with the Non-Symmetric Kernel

For the non-symmetric kernel, some modifications to the above Parseval relationship are necessary.
Again, we consider the total energy of a Hadamard product of two matrices in the spatial domain.
However, now we need to define a more ‘general’ version of a complex conjugate expression in order
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for the Parseval relationship to exist. We denote this more general version as gpk
∗(over bar and star)

and define this expression as:

gpk
∗ :=

N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ E−q′′m′′ ;pk (definition) (80)

We note in Equation (80) that gpk
∗ uses E−q′′m′′ ;pk instead of E+

q′′m′′ ;pk (where the latter would
normally be used for the complex conjugate). The reason for this is that with the non-symmetric

kernel, using E+
q′′m′′ ;pk will not lead to the required orthogonality condition. However, with our

‘modified’ version of the complex conjugate as denoted by the gpk
∗ and defined in Equation (80), it then

follows that:

N1−1∑
k=1

M∑
p=−M

hpkgpk
∗ =

N1−1∑
k=1

M∑
p=−M

N1−1∑
m′=1

M∑
q′=−M

Hq′m′E+
q′m′;pk


 N1−1∑

m′′=1

M∑
q′′=−M

Gq′′m′′ E−q′′m′′ ;pk


=

N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′

N1−1∑
k=1

M∑
p=−M

E+
q′m′;pkE−q′′m′′ ;pk︸                            ︷︷                            ︸

δq′q′′ δm′m′′

(81)

Using the orthogonality of the kernel, Equation (81) becomes:

N1−1∑
k=1

M∑
p=−M

hpkgpk
∗ =

N1−1∑
m′=1

M∑
q′=−M

Hq′m′
N1−1∑
m′′=1

M∑
q′′=−M

Gq′′m′′ δq′q′′ δm′m′′

=
N1−1∑
m′=1

M∑
q′=−M

Hq′m′Gq′m′

(82)

Similarly, we can consider the special product in the frequency domain Fqm = HqmGqm
∗

where
again the special expression Gqm

∗

needs to be defined as follows:

Gqm
∗

:=
N1−1∑
k′′=1

M∑
p′′=−M

gp′′ k′′ E+
qm;p′′ k′′ (definition) (83)

Consider:

N1−1∑
m=1

M∑
q=−M

HqmGqm
∗

=

N1−1∑
m=1

M∑
q=−M


N1−1∑
k′=1

M∑
p′=−M

hp′k′E−qm;p′k′

 ·


N1−1∑
k′′=1

M∑
p′′=−M

gp′′ k′′ E+
qm;p′′ k′′

 (84)

Interchanging the order of summation and summing over the (q,m) variables first gives:

N1−1∑
m=1

M∑
q=−M

HqmGqm
∗

=

N1−1∑
k′=1

M∑
p′=−M

hp′k′

N1−1∑
k′′=1

M∑
p′′=−M

gp′′ k′′

N1−1∑
m=1

M∑
q=−M

E−qm;p′k′E
+
qm;p′′ k′′ (85)

Using the orthogonality of the kernel, the last line can be rewritten as:

N1−1∑
m=1

M∑
q=−M

HqmGqm
∗

=
N1−1∑
k′=1

M∑
p′=−M

hp′k′
N1−1∑
k′=1

M∑
p′′=−M

gp′′ p′′ δp′p′′ δk′k′′

=
N1−1∑
k′=1

M∑
p′=−M

hp′k′gp′k′

(86)
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In summary, Equation (82) shows how to interpret
N1−1∑
m′=1

M∑
q′=−M

Hq′m′Gq′m′ and Equation (86) shows

how to interpret
N1−1∑
k′=1

M∑
p′=−M

hp′k′gp′k′ and also shows that they are not quite equivalent as was the case

for the symmetric kernel. In summary,

N1−1∑
m=1

M∑
q=−M

HqmGqm =
N1−1∑
k=1

M∑
p=−M

hpkgpk
∗

N1−1∑
k=1

M∑
p=−M

hpkgpk =
N1−1∑
m=1

M∑
q=−M

HqmGqm
∗

(87)

In the special case that h = g, then Equation (87) becomes:

N1−1∑
m=1

M∑
q=−M

∣∣∣Hqm
∣∣∣2 =

N1−1∑
k=1

M∑
p=−M

hpkhpk
∗

N1−1∑
k=1

M∑
p=−M

∣∣∣hpk
∣∣∣2 =

N1−1∑
m=1

M∑
q=−M

HqmHqm
∗

(88)

8. Discussion: Interpretation of the Transform

In the previous sections, we demonstrated that the 2D DFT in polar coordinates is most conveniently
defined in terms of the kernels E±qm;pk or E(s)±

qm;pk, and indeed this definition allows many of the proofs
of the DFT properties to assume a straightforward form that exploits the properties of the kernel. In
this section, we demonstrate that the proposed forms of the 2D DFT can be interpreted in terms of a
sequence of 1D DFT, DHT and IDFT discrete transforms, thereby demonstrating that the proposed
transform follows the same path as the continuous 2D transform in that it can be decomposed into a
sequence of Fourier, Hankel and inverse Fourier transforms [2].

8.1. Interpretation of the 2D Forward DFT in Polar Coordinates

Let us reconsider the definition of the forward 2D DFT, Equation (39), and rewrite it as:

Fqm =
1

N2

M∑
n=−M

e+in 2πq
N2

i−n

jnN1

N1−1∑
k=1

2Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)


M∑

p=−M

fpke−in 2πp
N2

 (89)

We can consider these as a sequence of 1D discrete Fourier transforms, with a discrete Hankel
transform, as explained in the following. The first step is a forward 1D DFT transforming fpk → f̃nk
where the p subscript is transformed to the n subscript as:

f̃nk =
M∑

p=−M

fpke−in 2πp
N2 for n = −M..M, k = 1..N1 − 1 (90)

The tilde is used to indicate a standard 1D DFT. In matrix terms, this says that each column of fpk

is DFT’ed to yield f̃nk. The second step of Equation (89) is a discrete Hankel transform of order n that

transforms f̃nk →
ˆ̃f nm, where the k subscript is Hankel transformed to the m subscript via:

ˆ̃f nm =

N1−1∑
k=1

2Jn

(
jnk jnm
jnN1

)
jnN1

J2
n+1( jnk)

f̃nk for n = −M..M, m = 1..N1 − 1 (91)
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The overhat denotes a DHT, as defined in [6]. Using the transformation matrix notation defined
in [6], we define:

YnN1
m,k =

2
jnN1 J2

n+1( jnk)
Jn

(
jnm jnk

jnN1

)
1 ≤ m, k ≤ N1 − 1 (92)

Hence Equation (91) can be written as

ˆ̃f nm =

N1−1∑
k=1

YnN1
m,k f̃nk for n = −M..M, m = 1..N1 − 1 (93)

In matrix terms, this shows that each row of f̃nk is nth-order DHT’ed to yield ˆ̃f nm. The nth row is
nth order DHT’ed (with some loose interpretation of row counters since in this case the index n takes

on negative values). A scaling operation then gives the Fourier coefficients of the 2D DFT ˆ̃f nm → F̃nm

such that:

F̃nm =
i−n

jnN1

ˆ̃f nm =
i−n

jnN1

N1−1∑
k=1

YnN1
m,k f̃nk for n = −M..M, m = 1..N1 − 1 (94)

It is noted that Equation (94) exactly parallels the equivalent step of the continuous form of the
transform where Fn(ρ) = 2π i−nHn

{
fn(r)

}
, see [4,6]. If the symmetric form of the kernel is used, that is,

Equation (33), then Equation (94) is replaced with F̃nm = i−n ˆ̃f nm.
The final step to compute the forward 2D DFT in polar coordinates is then a standard inverse 1D

DFT. Here, each column of F̃nm → Fqm is transformed so that the n subscript is (inverse) transformed to
the q subscript via

Fqm =
1

N2

M∑
n=−M

F̃nme+in 2πq
N2 for q = −M..M, m = 1..N1 − 1 (95)

This last step is a 1D IDFT for each column of F̃nm to obtain Fqm. It was shown in [2,4] that a
continuous 2D Fourier transform in polar coordinates is a sequence of operations consisting of (i) a
Fourier series transform (transforming the continuous function to its discrete set of Fourier coefficients),
(ii) a Hankel transform for each Fourier coefficient (an nth order transform for the nth coefficient), and
(iii) an inverse Fourier series transform (a set of Fourier coefficients is transformed back to a continuous
function via the infinite Fourier series summation). Hence, we have shown here that the proposed 2D
DFT in polar coordinates consists of the same sequence of transforms: a forward DFT, a forward DHT
and then an inverse DFT.

8.2. Interpretation of the 2D Inverse DFT in Polar Coordinates

Similarly, we can decompose the inverse 2D DFT in polar coordinates, from Equation (40)
written as:

fpk =
1

N2

M∑
n=−M

jnN1
ine+i 2πnp

N2

N1−1∑
m=1

2Jn

(
jnm jnk
jnN1

)
jnN1 J2

n+1( jnm)


M∑

q=−M

Fqme−i 2πnq
N2

 (96)

The steps of the inverse 2D DFT are the reverse of those outlined for the forward 2DDFT. First
Fqm → F̃nm via a forward 1D DFT:

F̃nm =
M∑

q=−M

Fqme−i 2πnq
N2 n = −M..M, m = 1..N1 − 1 (97)
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This is followed by a discrete Hankel transform to obtain F̃nm →
ˆ̃Fnk

ˆ̃Fnk =

N1−1∑
m=1

YnN1
k,m F̃nm for n = −M..M, k = 1..N1 − 1 (98)

The next step is a scaling operation to obtain ˆ̃Fnk → f̃nk via:

f̃nk = jnN1
i+n ˆ̃Fnk for n = −M..M, k = 1..N1 − 1 (99)

The step in Equation (99) follows the pattern of the continuous form transform, where fn(r) =
in
2π Hn

{
Fn(ρ)

}
, see [2,4,6]. As before, if the symmetric form of the kernel is used (Equation (33)), then

Equation (99) is replaced with f̃nk = i+n ˆ̃Fnk. Finally, an inverse 1D DFT is used to obtain f̃nk → fpk via:

fpk =
1

N2

M∑
n=−M

f̃nke+i 2πnp
N2 for p = −M..M, k = 1..N1 − 1 (100)

As previously mentioned, this parallels the steps taken for the continuous case, with each
continuous operation (Fourier series, Hankel transform) replaced by its discrete counterpart (DFT, DHT).

For both forward and inverse 2D DFT, the same sequence of steps are followed. The operations
are a 1D DFT of each column of the given matrix, then a DHT of each row, then a term-by-term scaling,
and finally an IDFT of each column.

9. Conclusions

In this paper, a discrete 2D Fourier transform in polar coordinates was motivated and proposed
by applying a discretization and truncation approach to the continuous 2D Fourier transform in polar
coordinates. This new transform stands in its own right and, unlike previous approaches to a polar
FT, is not an evaluation of the Cartesian form of the transform on a polar grid. This approach yields
two possible kernels for the discrete 2D transform in polar coordinates. One of these two kernels
is closer to the continuous version of the transform and the second kernel is symmetric, in that the
kernel for the forward transform is the complex conjugate of the kernel for the inverse transform. Both
versions of the kernel yield a 2D transform that transform a 2-subscripted entity (matrix) to another
one. The standard set of shift, modulation, multiplication and convolution rules were derived for both
kernels and are the same for either form of the kernel. However, only the symmetric kernel yields the
expected Parseval relationship. It was also shown that the 2D discrete transform can be interpreted as
a 1D discrete Fourier transform (DFT), followed by a 1D discrete Hankel transform (DHT), followed
by a 1D inverse DFT. This DFT-DHT-IDFT pattern mimics the manner in which the continuous 2D
Fourier transform in polar coordinates is evaluated. In conclusion, part I of the paper proposes the
form of the 2D DFT in polar coordinates, and demonstrates the expected operational rules for this
transform. Part II of the paper will examine how the proposed 2D DFT in polar coordinates can be
used to approximate the continuous FT at certain discrete points.
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Appendix A

The following appendices give important definitions for Hankel transforms (Appendix A.1),
Fourier Bessel series (Appendix A.2), finite Fourier transforms (Appendix A.5) and also contain
statements of the orthogonality of the discrete complex exponential (Appendix A.3) and the discrete
Bessel functions (Appendix A.4). Section Appendix A.6 contains a discussion on the sampling points
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and how they affect the proposed evaluation of the discrete Fourier coefficients at the chosen sampling
points. Proofs of the orthogonality of the proposed kernel can be found in Appendix A.7.

Appendix A.1. Hankel Transform

The nth order Hankel transform is defined by the integral [3]:

_
f

n
(ρ) =

∞∫
0

f (r)Jn(ρr)rdr (A1)

where Jn(z) is the nth order Bessel function with the overhat indicating a Hankel transform as shown
in Equation (A1). Here, n may be an arbitrary real or complex number. The Hankel transform is
self-reciprocating and the inversion formula is given by:

f (r) =

∞∫
0

_
f

n
(ρ)Jn(ρr)ρdρ (A2)

The Hankel transform exists only if the Dirichlet condition is satisfied, i.e.,
∞∫
0

∣∣∣r1/2 f (r)
∣∣∣dr exists

and is particularly useful for problems involving cylindrical symmetry.

Appendix A.2. Fourier–Bessel Series

Functions defined on a finite portion of the real line [0, R] in the radial coordinate can be expanded
in terms of a Fourier–Bessel series [16] given by:

f (r) =


∞∑

k=1
fk Jn

( jnkr
R

)
r ≤ R

0 r > R
(A3)

where Jn(z) is the nth order Bessel function, the order of the Bessel function in (A3) is arbitrary and
jnk denotes the kth root of the nth Bessel function. The kth order Fourier–Bessel coefficients fk of the
function f (r) can be found from:

fk =
2

R2 J2
n+1( jnk)

R∫
0

f (r)Jn

(
jnkr
R

)
r dr (A4)

Equations (A3) and (A4) can be considered to be a transform pair where the continuous function
f (r) is forward-transformed to the discrete vector fk given by the finite integral in (A4). The summation
in Equation (A3) is then taken as the inverse transformation which returns f (r) when starting with fk.
The Fourier–Bessel series is the cylindrical coordinate counterpart of the Fourier series. Just as the
Fourier series is defined for a finite interval and has a counterpart, the continuous Fourier transform
over an infinite interval, so the Fourier–Bessel series has a counterpart over an infinite interval, namely
the Hankel transform.
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Appendix A.3. Orthogonality of the Discrete Complex Exponential

The success of the discrete Fourier transform (DFT) is based on the exploitation of known discrete
orthogonality relationships for the complex exponential evaluated at a finite number of certain special
points [23]. This relationship is given by:

N−1∑
p=0

e−
ip2πn

N e+
ip2πm

N = Nδmn (A5)

where m, n, p, N are integers. In Equation (A5), δmn is the Kronecker delta function, defined as:

δmn =

{
1 if m = n

0 otherwise
(A6)

It can easily be shown by a simple change of variables that the following orthogonality relationship
is true:

M∑
p′=−M

e−
ip′2πn

N e+
ip′2πm

N = Nδmn (A7)

Appendix A.4. Discrete Orthogonality of the Bessel Functions

It is shown in [24] that the following discrete orthogonality relationship is true:

N−1∑
k=1

Jn
( jnm jnk

jnN

)
Jn

( jni jnk
jnN

)
J2
n+1( jnk)

=
j2nN
4

J2
n+1( jnm)δmi (A8)

where jnm represents the mth zero of Jn(x).
It is noted that Equation (A8) is the discrete version of the Bessel orthogonality relationship on a

finite interval given by:
1∫

0
Jn(rjnm)Jn(rjni)rdr =

J2
n+1( jnm)

2 δmi

b∫
0

Jn

(
r′ jnm

b

)
Jn

(
r′ jni

b

)
r′dr′ =

b2 J2
n+1( jnm)

2 δmi

(A9)

From Watson in [25], the following expressions are also valid:

Wρ∫
0

Jn

(
jnkρ
Wρ

)
Jn(rρ)ρdρ =

jnk
j2nk
W2
ρ
−r2

Jn+1( jnk)Jn
(
rWρ

)
R∫

0
Jn

( jnkr
R

)
Jn(ρr)rdr =

jnk
j2nk
R2 −ρ

2
Jn+1( jnk)Jn(ρR)

(A10)

Appendix A.5. Fourier Series and Finite Fourier Transform

A function of angular position f (θ), where −π ≤ θ ≤ π can be expanded into a Fourier series as:

f (θ) =
∞∑

n=−∞
fn einθ (A11)
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where the Fourier coefficients are given by:

fn =
1

2π

π∫
−π

f (θ) e−inθdθ (A12)

A principal application of the finite Fourier transform (FFT) is to approximately compute samples
of the Fourier transform of a function. We define the FFT partial sum of the samples f

( 2πp
N2

)
of the

continuous function f (θ) as:

f n =
1

N2

M∑
p=−M

f
(

2πp
N2

)
e−i 2πnp

N2 n ∈ [−M, M] (A13)

where N2 is an integer such that N2 = 2M + 1 for some other integer M. The over square-hat notation
f indicates the taking of a (finite) Fourier transform. Clearly, Equation (A13) is a Riemann sum for
the integral in (A12). It is generally asserted in the signal processing literature that f n ≈ fn, and it is
specifically shown in [17] that f n provides a uniformly good estimate for fn for n ∈ [−M, M].

It is also shown in [17] that the finite Fourier transform partial sum given by:

f (θ) =
M∑

n=−M

f neinθ (A14)

is almost as good an approximation to f (θ) as the usual partial sum:

f N2(θ) =
M∑

n=−M

fn einθ (A15)

Appendix A.6. Sampling Points

In this section, the difference between including the radial sampling points in the index of
summation for the discrete Fourier transform is discussed. We noted above in Equation (18) that the
radial sampling point is included in the index of summation of the discrete Fourier transform. In other
words, we wrote for n ∈ [−M, M] that:

Fn

(
jnl

R

)
=

1
N2

M∑
p=−M

F
( jpl

R
,

2πp
N2

)
e−i 2πnp

N2 (i) (A16)

However, strictly speaking, the radial sampling points should be fixed to the value of the radial
sampling point on the left hand side, that is the expected discrete definition of Fn

( jnl
R

)
should be given by:

Fn

(
jnl

R

)
=

1
N2

M∑
p=−M

F
(

jnl

R
,

2πp
N2

)
e−i 2πnp

N2 (ii) (A17)

Note that in both Equations (A16) and (A17), the index of summation is p, and the radial sampling
point is jpl in (A16) but jnl in (A17).

Which of the definitions for Fn

( jnl
R

)
is correct? Definition (i), as given in Equation (A16), or

definition (ii) as given in Equation (A17)? Traditionally, (ii) of Equation (A17) would be expected but
taking this form does not allow the 2D discrete transform that ensues to be invertible. We showed
above in the main text of the manuscript, that version (i) with Equation (A16) leads to an invertible,
discrete 2D transform. We show in this section that if we confine ourselves to the chosen sampling
points, then both versions are equivalent.
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Considering the reconstruction formula based on (A14) which says:

F
(

jml

R
,θ

)
=

M∑
n=−M

Fn

(
jml

R

)
einθ (A18)

Then, sampling at θ = 2πm
N2

gives:

F
(

jml

R
,

2πm
N2

)
=

M∑
n=−M

Fn

(
jml

R

)
ei 2πnm

N2 (A19)

So now consider the right hand side of Equation (A19) under the two different sampling assumptions
implied by (i) or (ii). That is:

M∑
n=−M


1

N2

M∑
p=−M

F
( jpl

R
,

2πp
N2

)
︸               ︷︷               ︸

Fn(
jml
R ) using (i)

e−i 2πnp
N2


ei 2πnm

N2 (i)

M∑
n=−M


1

N2

M∑
p=−M

F
(

jml

R
,

2πp
N2

)
︸                ︷︷                ︸

Fn(
jml
R ) using (ii)

e−i 2πnp
N2


ei 2πnm

N2 (ii)

(A20)

Equation (A20) (i) gives:

M∑
p=−M

F
( jml

R , 2πp
N2

) 1
N2

M∑
n=−M

e−i 2πnp
N2 ei 2πnm

N2

︸                     ︷︷                     ︸
N2δpm

=
M∑

p=−M
F
( jml

R , 2πp
N2

)
δpm = F

( jml
R , 2πm

N2

) (A21)

Therefore, the (i) version works the way it is expected to work. Now considering the (ii) version:

M∑
p=−M

F
( jml

R , 2πp
N2

) 1
N2

M∑
n=−M

e−i 2πnp
N2 ei 2πnm

N2

︸                     ︷︷                     ︸
N2δpm

=
M∑

p=−M
F
( jml

R , 2πp
N2

)
δpm = F

( jml
R , 2πm

N2

) (A22)

Therefore, the (ii) version also works the way it is expected to work. Therefore, both (i) and (ii)
work properly.
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However, if we try evaluating at different values of angular position, say θ = 2πr
N2

where now the
sampling index on the angle and the Bessel function do not match, in other words:

F
(

jml

R
,

2πr
N2

)
=

M∑
n=−M

Fn

(
jml

R

)
ei 2πnr

N2 (A23)

Then,

F
( jml

R , 2πr
N2

)
=

M∑
n=−M

 1
N2

M∑
p=−M

F
(

jpl
R , 2πp

N2

)
e−i 2πnp

N2

ei 2πnr
N2

=
M∑

p=−M
F
(

jpl
R , 2πp

N2

)
δpr = F

( jrl
R , 2πr

N2

)
(i)

F
( jml

R , 2πr
N2

)
=

M∑
n=−M

 1
N2

M∑
p=−M

F
( jml

R , 2πp
N2

)
e−i 2πnp

N2

ei 2πnr
N2

=
M∑

p=−M
F
( jml

R , 2πp
N2

)
δpr = F

( jml
R , 2πr

N2

)
(ii)

(A24)

In this case, (ii) does not yield the expected result, but (i) does. So the question of (i) vs (ii) becomes
a question of where on the theta (angular position) the total function needs to be evaluated—not only a
question of evaluating on a discrete radial position. However, if the fixed set of sampling points that
have been proposed for the discrete 2D transform are used, where the indices on radial and angular
position match, then the results are as expected.

Appendix A.7. Proofs of Orthogonality of the Proposed Kernel

In what follows, we assume the ranges of the variables are such that p, k, q, m, n, N1, and N2 are
integers such that −M ≤ n ≤M, where 2M + 1 = N2 1 ≤ m, k,≤ N1 − 1 and 0 ≤ p, q ≤ N2 − 1.

Appendix A.7.1. Proof of Orthogonality of the Kernel over the Frequency Indices

We state and prove that the following relationship is true:

N1−1∑
m=1

M∑
q=−M

E−qm;pkE+
qm;p′k′ = δpp′δkk′ (A25)

The proof is as follows. We start by substituting the definition of the kernel into the expression:

N1−1∑
m=1

M∑
q=−M

E−qm;pkE+
qm;p′k′ =

N1−1∑
m=1

M∑
q=−M

4
N2

2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

i−ne−in 2πp
N2 e+in 2πq

N2
M∑

n′=−M

Jn′

(
jn′m jn′k′

jn′N1

)
J2
n′+1

( jn′m)
in
′

e+i 2πn′p′
N2 e−i 2πn′q

N2

(A26)

Summing over the index q and using the orthogonality of the discrete complex exponential
(Appendix A.3) returns a N2δnn′ so that n′ = n and Equation (A26) becomes:

4
N2

N1−1∑
m=1

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

e−in 2πp
N2

Jn

(
jnm jnk′

jnN1

)
J2
n+1( jnm)

e+i 2πnp′
N2 (A27)

This can be rewritten as:
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1
N2

M∑
n=−M

e−i 2πnp
N2 e+i 2πnp′

N2

N1−1∑
m=1

4Jn

(
jnk jnm
jnN1

)
Jn

(
jnm jnk′

jnN1

)
j2nN1

J2
n+1( jnk)J2

n+1( jnm)︸                               ︷︷                               ︸
=δkk′

(A28)

Now, summing over the index and using the discrete orthogonality relationship of the Bessel
functions (Appendix A.4) gives:

1
N2

M∑
n=−M

e−i 2πnp
N2 e+i 2πnp′

N2 δkk′ = δpp′δkk′ (A29)

where the orthogonality relationship of the discrete complex exponential has been used again.

Appendix A.7.2. Proof of Orthogonality of the Kernel over the Spatial Indices

It can be similarly shown that the following orthogonality relationship is also true:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk = δqq′δmm′ (A30)

The proof is as follows. We start by substituting the definition of the kernel into the expression:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk

=
N1−1∑
k=1

M∑
p=−M

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
2i−ne

−in
2πp
N2 e

+in
2πq
N2

j2nN1
J2
n+1( jnk)

1
N2

M∑
n′=−M

Jn′

(
jn′m′ jn′k

jn′N1

)
2in
′
e
+i

2πn′p
N2 e

−i
2πn′q′

N2

J2
n′+1

( jn′m′ )

(A31)

Summation over p gives:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk

=
N1−1∑
k=1

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

2i−ne+in 2πq
N2 1

N2

M∑
n′=−M

Jn′

(
jn′m′ jn′k

jn′N1

)
J2
n′+1

( jn′m′ )
2in
′

e−i 2πn′q′
N2 N2δnn′

=
N1−1∑
k=1

1
N2

M∑
n=−M

Jn

(
jnk jnm
jnN1

)
j2nN1

J2
n+1( jnk)

2e+in 2πq
N2

Jn

(
jnm′ jnk

jnN1

)
J2
n+1( jnm′ )

2e−i 2πnq′
N2

(A32)

Now summation over k gives the right hand side of (A32) and using the discrete orthogonality of
the Bessel functions (Appendix A.4) gives for the right hand side:

1
N2

M∑
n=−M

δmm′e
+in 2πq

N2 e−i 2πnq′
N2 (A33)

Then, finally summation over n and using the orthogonality of the discrete complex exponential
(Appendix A.3) finally gives:

N1−1∑
k=1

M∑
p=−M

E−qm;pkE+
q′m′;pk = δmm′δqq′ (A34)

as required.
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