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1. Introduction

Let p be a fixed prime number. Throughout this paper, Zp, Qp and Cp will denote the ring of
p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of Qp,
respectively. The p-adic norm | · |p is normalized as |p|p = 1/p.

It is common knowledge that the usual Bernoulli numbers Bn are given by the generating function
to be, for t ∈ Cp,

t
et − 1

=
∞

∑
n=0

Bn
tn

n!
,

which can be written symbolically as eBt = t/(et − 1), interpreted to mean that Bn must be replaced by
Bn. In addition, usual Bernoulli polynomials Bn(x) are defined by, for x ∈ Cp,

Bn(x) =
n

∑
l=0

(
n
l

)
Bl xn−l .

With the viewpoint of deformed Bernoulli polynomials, the Daehee polynomials Dn(x) for n ≥ 0
are defined [1] by the generating function to be , for t, x ∈ Cp,

log (1 + t)
t

(1 + t)x =
∞

∑
n=0

Dn(x)
tn

n!
.

When x = 0, we call Dn = Dn(0) the Daehee numbers. For more information on the Bernoulli
numbers Bn = Bn(0), the Bernoulli polynomials Bn(x), the Daehee numbers Dn and the Daehee
polynomials Dn(x), please refer to [1–3] and the closely related references therein.

We say that f is a uniformly differentiable function, if for a given function f : Zp → Cp, there
exists a continuous function Ff (x, y)→ Cp where for all x, y ∈ Zp, x 6= y

Ff (x, y) =
f (x)− f (y)

x− y
.
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For a uniformly differentiable function f : Zp → Cp, the p-adic integral of f on Zp (or the
Volkenborn integral of f on Zp) is defined by the limit, if it exists

I( f ) =
∫
Zp

f (x)dµ(x) = lim
N→∞

1
p

pN−1

∑
x=0

f (x)

(see [4–6]). Here, the p-adic Haar distribution µ is given by

µ
(

a + pNZp

)
=

1
pN .

The application of the p-adic integral on Zp is an effective way to deduce many important results
for p-adic special numbers and polynomials. For more information, please refer to [1–3,7–16]. From
the above definition, we can derive

I( f1) = I( f ) + f ′(0),

where f1(x) = f (x + 1) and f ′(0) = d f (x)
dx |x=0.

In the recent year, Kims [11] considered the hyperbolic cosecant numbers by using p-adic integral
on Zp, and investigated many properties on such numbers. The hyperbolic cosecant numbers are
presented by p-adic integration on Zp, for t, x ∈ Cp with |t|p < p−1/(p−1),

t csch(t) =
∫
Zp

e(2x+1)tdµ(x)

=
2t

e2t − 1
et =

2t
et − e−t =

∞

∑
n=0

2nBn

(
1
2

)
tn

n!
.

Motivated by their hyperboric cosecant numbers, they considered the type 2 Daehee polynomials
by p-adic integrals on Zp as follows, for t, x, y ∈ Cp with |t|p < p−1/(p−1),

1
2

∫
Zp
(1 + t)x+2y+1dµ(y) =

log(1 + t)
(1 + t)2 − 1

(1 + t)x+1

=
∞

∑
n=0

dn(x)
tn

n!
,

(1)

when x = 0, we call dn = dn(0) the type 2 Daehee numbers. From Equation (1), we can rewrite the
generating function of type 2 Daehee polynomials as follows:

∞

∑
n=0

dn(x)
tn

n!
=

log(1 + t)
(1 + t)− (1 + t)−1 (1 + t)x. (2)

In the view of Equation (2), Kim et al. [10,11] considered the type 2 Bernoulli polynomials given
by, for t, x ∈ Cp

∞

∑
n=0

bn(x)
tn

n!
=

t
et − e−t ext. (3)

We can easily show that

bn(x) = 2n−1Bn

(
x + 1

2

)
, (n ≥ 0).

The purpose of this paper is to construct a new type of polynomials, the type 2 w-Daehee
polynomials, and to investigate some properties and identities of these polynomials. In addition, we
will offer some symmetric identities involving the higher order type 2 w-Daehee polynomials. These
identities extend and generalize some known results.
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2. Some Identities on Type 2 w-Daehee Numbers and Polynomials

The type 2 Daehee polynomials are considered by Kims [11] and various properties on their
polynomials are investigated. In Section 3, we want to try to present the symmetric identities of type 2
Daehee polynomials by p-adic integrals on Zp. On the way to establish such symmetric identities, we
need the concept of type 2 w-Daehee polynomials. Thus, in this section, we want to establish some
properties on the type 2 w-Daehee polynomials and numbers. Recently, we could see the nice results,
which express the central numbers of the second kind in terms of type 2 Bernoulli, type 2 Changhee
and type 2 Daehee numbers of negative order [11]. We might express our type 2 w-Daehee polynomials
related with new central numbers in the further study (Section 3).

In this section, we assume that t, x, y ∈ Cp with |t|p < p−1/(p−1) and w ∈ N. In the view of
Equations (2) and (3), we define type 2 w-Daehee polynomials by

log(1 + t)
(1 + t)w − (1 + t)−w (1 + t)x =

∞

∑
n=0

dn,w(x)
tn

n!
. (4)

Motivated by Equation (1), we present type 2 w-Daehee polynomials via p-adic invariant integral
on Zp as follows:

1
2w

∫
Zp
(1 + t)x+2wy+wdµ(y) =

∞

∑
n=0

dn,w(x)
tn

n!
. (5)

The following two theorems give us the relation between type 2 Bernoulli polynomials and type 2
w-Daehee polynomials.

Theorem 1. For n ≥ 0, we have

dn,w(x) =
n

∑
k=0

wk−1bk(x)s(n, k),

where s(n, k) is the Stirling number of the first kind which is defined as

(x)0 = 1, (x)n = x(x− 1) · · · (x− n + 1) =
n

∑
k=0

s(n, k)xk, (n ≥ 1).

Proof. Substituting w log (1 + t) for t in Equation (3) gives

w log (1 + t)
(1 + t)w − (1 + t)−w (1 + t)wx =

∞

∑
k=0

bk(x)
(w log(1 + t))k

k!

=
∞

∑
n=0

( n

∑
k=0

wkbk(x)s(n, k)
)

tn

n!
.

Comparing this with Equation (4) leads to the required identity.

Especially for the w = 1 case, we have

Corollary 1 ([11], Theorem 2.5). For n ≥ 0, we have

dn(x) =
n

∑
k=0

bk(x)s(n, k).

Theorem 2. For n ≥ 0, we have

bn

(
x
w

)
= w1−n

n

∑
k=0

dk,w(x)S(n, k),
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where S(n, k) for k ≥ 0 , which can be generated by

(ex − 1)k

k!
=

∞

∑
n=k

S(n, k)
xn

n!
,

stands for the Stirling number of the second kind.

Proof. Replacing t by et − 1 in Equation (4), we obtain

∞

∑
k=0

dk,w(x)
1
k!
(et − 1)k =

t
ewt − e−wt ext.

By Equation (3), it follows that

∞

∑
n=0

( n

∑
k=0

dk,w(x)S(n, k)
)

tn

n!
=

1
w

wt
ewt − e−wt ext =

∞

∑
n=0

bn

(
x
w

)
wn−1tn

n!
.

Equating coeffcients on the very ends of the above identity arrives at the required result.

For the case of w = 1, we have the following corollary.

Corollary 2 ([11], Theorem 2.4). For n ≥ 0, we have

bn =
n

∑
k=0

dk(x)S(n, k).

Recall from [9] that the w-Daehee polynomials Dn,w(x) and the w-Changhee polynomials Chn,w(x)
are generated by

log(1 + t)
(1 + t)w − 1

(1 + t)x =
∞

∑
n=0

Dn,w(x)
tn

n!
,

log(1 + t)
(1 + t)w + 1

(1 + t)x =
∞

∑
n=0

Chn,w(x)
tn

n!
.

(6)

The following theorem gives us the relation between type 2 w-Daehee polynomials, w-Daehee
and w-Changhee polynomials.

Theorem 3. For n ≥ 0, we have

dn,w(x) =
1
2

n

∑
l=0

(
n
l

)
Dl,w(x)Chn−l,w(w).

Proof. From Equations (4) and (6), it can be deduced that

∞

∑
n=0

dn,w
tn

n!
=

log(1 + t)
(1 + t)2w − 1

(1 + t)x+w

=
log(1 + t)
(1 + t)w − 1

(1 + t)x 1
2

log(1 + t)
(1 + t)w + 1

(1 + t)w

=

( ∞

∑
l=0

Dl,w(x)
tl

l!

)(
1
2

∞

∑
m=0

Chm,w(w)
tm

m!

)
=

1
2

∞

∑
n=0

n

∑
l=0

(
n
l

)
Dl,w(x)Chn−l,w(w)

tn

n!
.

The required result thus follows.
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For the case w = 1, we have

Corollary 3. For n ≥ 0, we have

dn(x) =
1
2

n

∑
l=0

(
n
l

)
Dl(x)Chn−l(1)

=
1
2

n

∑
l=0

(
n
l

)
Dl(1)Chn−l(x).

If we replace t by et − 1 in Equation (3),

∞

∑
n=0

dn,w
(et − 1)n

n!
=

t
e2wt − 1

e(x+w)t

=
t

ewt − 1
ext 2

ewt + 1
ewt

=

( ∞

∑
l=0

1
w

Bl,w

( x
w

) tl

l!

)(
1
2

∞

∑
m=0

Em(1)
wmtm

m!

)
=

∞

∑
n=0

[ n

∑
l=0

(
n
l

)
wn−l

2
Bl,w

( x
w

)
En−l(1)

]
tn

n!
.

Therefore, we obtain the following theorem.

Theorem 4. For n ≥ 0, we have

n

∑
k=0

S(n, k)dk,n(x) =
wn−k

2

n

∑
k=0

(
n
k

)
Bk,w

( x
w

)
En−k(1).

For the case w = 1, we have the following result.

Corollary 4. For n ≥ 0, we have

n

∑
k=0

S(n, k)dk(x) =
1
2

n

∑
k=0

(
n
k

)
Bk(x)En−k(1).

For g ∈ N, the distribution relation on p-adic integrals on Zp is well-known as follows.

Theorem 5. For g ∈ N, we have

∫
Zp

f (x)dµ(x) =
1
g

g−1

∑
a=0

∫
Zp

f (a + gx)dµ(x).

We apply the above theorem to the p-adic representation of type 2 w-Daehee polynomials, we
have the following identities.

Theorem 6. For g ∈ N, we have

(1) dn,w(x) =
g−1

∑
a=0

dn,wg(x− wg + 2wa + w),

(2) dn,w(x) =
n

∑
k=0

(wg)k−1
g−1

∑
a=0

bk

(
2wa + x + w

wg
− 1
)

s(n, k).
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Proof. (1) From Equation (5), we have

∞

∑
n=0

dn,w(x)
tn

n!
=

1
2w

∫
Zp
(1 + t)2wy+x+wdµ(y)

=
1

2wg

g−1

∑
a=0

∫
Zp
(1 + t)2w(a+gy)+x+wdµ(y)

=
g−1

∑
a=0

1
2wg

∫
Zp
(1 + t)2wgy+x+wg+2wa+w−wgdµ(y)

=
g−1

∑
a=0

∞

∑
n=0

dn,wg(x + 2wa + w− w f )
tn

n!
.

The required relation now follows with comparing the coefficients of tn on both sides.
(2) Similarly, we consider

∞

∑
n=0

dn,w(x)
tn

n!
=

1
2w

∫
Zp
(1 + t)2wy+x+wdµ(y)

=
1

2wg

g−1

∑
a=0

∫
Zp

e2wgy log(1+t)e(2wa+x+w) log (1+t)dµ(y)

=
1

2wg

g−1

∑
a=0

e
2wg log(1+t)

2wg log (1+t)−1 e(2wa+x+w) log (1+t)

=
1

wg

g−1

∑
a=0

e
wg log(1+t)

wg log (1+t)−e−wg log (1+t) e
(

2wa+x+w
wg −1

)
wg log (1+t)

=
1

wg

g−1

∑
a=0

∞

∑
k=0

bk

(
2wa + x + w

wg
− 1
)

(wg)k(log (1 + t))k

k!

=
∞

∑
n=0

(
(wg)k−1

∞

∑
k=0

bk

(
2wa + x + w

wg
− 1
)

s(n, k)

)
tn

n!
,

which immediately gives the required result.

For the case w = 1 in Theorem 6, we have the following corollary.

Corollary 5. For g ∈ N, we have

(1) dn(x) =
g−1

∑
a=0

dn,g(x− g + 2a + 1),

(2) dn,w(x) =
n

∑
k=0

g−1

∑
a=0

gk−1bk

(
2a + x + 1

g
− 1
)

s(n, k).

3. Symmetric Identities of Higher Order Type 2 w-Daehee Polynomials

In order to study symmetric identities related to type 2 w-Daehee numbers, we need to introduce
type 2 w-Daehee polynomials with order α ∈ R, d(α)n,w(x) as follows, for t, x ∈ Cp with |t|p < p−1/(p−1)

and w ∈ N,

∞

∑
n=0

d(α)n,w(x)
tn

n!
=

(
log (1 + t)

(1 + t)2w − 1

)α

(1 + t)x+wα =

(
log (1 + t)

(1 + t)w − (1 + t)−w

)α

(1 + t)x. (7)
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When x = 0, d(α)n,w = d(α)n,w(0) are called type 2 w-Daehee numbers of order α. In particular for

w = 1 and α = 1, we have type 2 Daehee numbers in Equation (2) dn = d(1)n,1. For the proof of main
theorem, we consider the quotient of p-adic integrals

n
∫
Zp
(1 + t)2x+1dµ(x)∫

Zp
(1 + t)2nxdµ(x)

=
1

2(1 + t) log (1 + t)

[∫
Zp
(1 + t)2x+2n+1dµ(x)−

∫
Zp
(1 + t)2x+1dµ(x)

]
=

n−1

∑
l=0

(1 + t)2l =
∞

∑
k=0

n−1

∑
l=0

(2l)k
tk

k!
=

∞

∑
k=0

2kTk(n− 1 | (l)k, 1
2
)

tk

k!
,

(8)

where the function Tk(n | (l)n,λ) = ∑n
l=0(l)k,λ for each λ ∈ R. In addition, (l)n,λ is the well-known

λ-falling factorial

(l)n,λ =

{
l(l − λ)(l − 2λ) · · · (l − (n− 1)λ), if n ≥ 1,

1, if n = 0.

Now, we start out to state and prove our main results.

Theorem 7. For w1, w2 ∈ N, n ≥ 0 and m ≥ 1, one has

w2

n

∑
j=0

(
n
j

) j

∑
k=0

(
j
k

)
d(m)

n−j,w1
(2w1w2x)wk

2Tk(w1 − 1 | (l + 1)k, 1
2w
)d(m−1)

j−k,w2
(2w1w2y)

= w1

n

∑
j=0

(
n
j

) j

∑
k=0

(
j
k

)
d(m)

n−j,w2
(2w1w2x)wk

1Tk(w2 − 1 | (l + 1)k, 1
2w
)d(m−1)

j−k,w1
(2w1w2y).

Proof. Consider Tm(w1, w2) as

Tm(w1, w2) =

(
2w1 log (1 + t)
(1 + t)2w1 − 1

)m

(1 + t)2w1w2x+mw1
(1 + t)2w1w2 − 1

2w1w2(1 + t) log (1 + t)

×
(

2w2 log (1 + t)
(1 + t)2w2 − 1

)m

(1 + t)2w1w2y+mw2 .
(9)

It is clear that Tm(w1, w2) is symmetric in w1 and w2, i.e., Tm(w1, w2) = Tm(w2, w1). The above
equation can be rewritten as the quotient of p-adic integral form

Tm(w1, w2) =

∫
Zm

p
(1 + t)2w1(x1+x2+···+xm+w2x)+mw1 dµ(x1)dµ(x2) · · · dµ(xm)∫

Zp
(1 + t)2w1w2xdµ(x)

×
∫
Zm

p

(1 + t)2w2(x1+x2+···+xm+w1y)+mw2 dµ(x1)dµ(x2) · · · dµ(xm),

(10)

where
∫
Zm

p
f (x1 + x2 + · · · + xm)dµ(x1)dµ(x2) · · · dµ(xm) =

∫
Zp

∫
Zp
· · ·
∫
Zp

f (x1 + x2 + · · · +
xm)dµ(x1)dµ(x2) · · · dµ(xm).
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Accordingly, by virtue of Equations (8) and (10), we can represent as follows:

Tm(w1, w2)

=

( ∞

∑
l=0

(2w1)
md(m)

l,w1
(2w1w2x)

tl

l!

)(
1

w1

∞

∑
k=0

(2w2)
kTk(w1 − 1 | (l + 1)k, 1

2w2
)

tk

k!

)
×
( ∞

∑
i=0

(2w2)
md(m−1)

i,w2
(2w1w2y)

ti

i!

)
=

( ∞

∑
l=0

(2w1)
md(m)

l,w1
(2w1w2x)

tl

l!

)

×
(

1
w1

∞

∑
j=0

( j

∑
k=0

(
j
k

)
(2w2)

kTk(w1 − 1 | (l + 1)k, 1
2w2

)(2w2)
md(m−1)

j−k,w2
(2w1w2y)

)
tj

j!

)

=
∞

∑
n=0

[ n

∑
j=0

(
n
j

)
(2w1)

md(m)
n−j,w1

(2w1w2x)

× 1
w1

j

∑
k=0

(
j
k

)
Tk(w1 − 1)(2w2)

md(m−1)
j−k,w2

(2w1w2y)
]

tn

n!

= 4mwm−1
1 wm

2

×
∞

∑
n=0

[ n

∑
j=0

j

∑
k=0

(
n
j

)(
j
k

)
d(m)

n−j,w1
(2w1w2x)(2w2)

kTk(w1 − 1 | (l + 1)k, 1
2w2

)d(m−1)
j−k,w2

(2w1w2y)
]

tn

n!
.

(11)

By the symmetry of w1 and w2 in Tm(w1, w2), we obtain the following expression:

Tm(w1, w2) = 4mwm
1 wm−1

2

∞

∑
n=0

[ n

∑
j=0

j

∑
k=0

(
n
j

)(
j
k

)
d(m)

n−j,w2
(2w1w2x)

× (2w1)
kTk(w2 − 1 | (l + 1)k, 1

2w1
)d(m−1)

j−k,w1
(2w1w2y)

]
tn

n!
.

Combinig this with Equation (11) yields the required identity.

Letting y = 0 and m = 1 in Theorem 7 results in

Corollary 6. For w1, w2 ∈ N, n ≥ 0, one has

w2

n

∑
j=0

(
n
j

)
dn−j,w1 (2w1w2x)Tj(w1 − 1) = w1

n

∑
j=0

(
n
j

)
dn−j,w2 (2w1w2x)wj

1Tj(w2 − 1 | (l + 1)j, 1
2w1

).

Let us take w2 = 1 in Corollary 6. Then, we have

Corollary 7. For w1 ∈ N, n ≥ 0, one has

dn(2w1x) =
n

∑
j=0

(
n
j

)
dn−j,w1(2w1x)Tj(w1 − 1 | (l + 1)j, 1

2
).

Next, we consider the symmetric identities of higher order type 2 w-Daehee polynomials via
generating function in the following theorem.

Theorem 8. For w1, w2 ∈ N, n ≥ 0, m ≥ 1, we have

n

∑
k=0

w1−1

∑
l=0

(
n
k

)
d(m)

k,w1
(2w1w2x + 2w2l)d(m−1)

n−k (2w1w2y + w2)

=
n

∑
k=0

w2−1

∑
l=0

(
n
k

)
d(m)

k,w2
(2w1w2x + 2w1l)d(m−1)

n−k (2w1w2y + w1).
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Proof. It follows from (9) that

Tm(w1, w2)

=

(
2w1 log (1 + t)
(1 + t)2w1 − 1

)m

(1 + t)2w1w2x+w1m 1
w1

w1−1

∑
l=0

(1 + t)2w2l

×
(

2w2 log (1 + t)
(1 + t)2w2 − 1

)m−1

(1 + t)2w1w2y+w2m

=

(
2w1 log (1 + t)

(1 + t)w1 − (1 + t)−w1

)m 1
w1

w1−1

∑
l=0

(1 + t)2w1w2x+2w2l

×
(

2w2 log (1 + t)
(1 + t)w2 − (1 + t)−w2

)m−1

(1 + t)2w1w2y+w2

= 22m−1(w1w2)
m−1

w1−1

∑
l=0

∞

∑
k=0

d(m)
k,w1

(2w1w2x + 2w2l)
tk

k!

×
∞

∑
j=0

d(m−1)
n−k (2w1w2y + w2)

tj

j!

= 22m−1(w1w2)
m−1

×
∞

∑
n=0

[w1−1

∑
l=0

n

∑
k=0

(
n
k

)
d(m)

k,w1
(2w1w2x + 2w2l)d(m−1)

n−k (2w1w2y + w2)

]
tn

n!
.

(12)

Furthermore, we observe that

Tm(w1, w2) = 22m−1(w1w2)
m−1

×
∞

∑
n=0

[w2−1

∑
l=0

n

∑
k=0

(
n
k

)
d(m)

k,w2
(2w1w2x + 2w1l)d(m−1)

n−k (2w1w2y + w1)

]
tn

n!
.

Combination of this identity with Equation (12) leads to the required identity.

Let y = 0 and m = 1 in Theorem 8. Then, we have the following symmetric identities for type 2
w-Daehee polynomials.

Corollary 8. For w1, w2 ∈ N, n ≥ 0, we have

w1−1

∑
l=0

dn,w1(2w1w2x + 2w2l) =
w2−1

∑
l=0

dn,w2(2w1w2x + 2w1l).

Finally, taking w2 = 1 in Corollary 8 leads to

Corollary 9. For w1 ∈ N, n ≥ 0, one has

dn(2w1x) =
w1−1

∑
l=0

dn,w1(2w1x + 2l).

Now, we want to provide some other properties of type 2 w-Daehee numbers related with central
factorial numbers of the second kind and the type 2 Bernoulli numbers of order α.

For n ≥ 0, the central factorial is defined as

x[0] = 1, x[n] = x
(

x +
n
2
− 1
) (

x +
n
2
− 2
)
· · ·
(

x− n
2
+ 1
)

, (n ≥ 1).
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Then, the central factorial numbers of the second kind are given by, for n ≥ 1

xn =
n

∑
k=0

T(n, k)x[k].

Recall from [11] that the type 2 Bernoulli polynomials of order α are generated as follows,
for t, x ∈ Cp (

t
et − e−t

)α

=
∞

∑
n=0

b(α)n (x)
tn

n!
.

Proposition 1 ([11]). For k ≥ 0, we have

(1)
1
k!

(
e

t
2 − e−

t
2

)k
=

∞

∑
n=k

T(n, k)
tn

n!

(2) 2n+kT(n + k, k) =
(

n + k
k

)
b(−k)

n .

Let us take α = −k ∈ Z and x = 0 in (7), and replacing t by et/2w − 1 leads to(
t

2w

e
t
2 − e−

t
2

)−k

=
∞

∑
n=0

d(−k)
l

(e
t

2w − 1)l

l!

=
∞

∑
n=0

[
1

(2w)n

n

∑
l=0

d(−k)
l,w S2(n, l)

]
tn

n!
.

On the other hand, the left-hand side of the above equation, by Proposition 1, can be presented by
the central factorial numbers of the second kind as follows:(

2w
t

)k (
e

t
2 − e−

t
2

)k
= wk2k

∞

∑
n=0

T(n + k, k)
1

(n+k
k )

tn

n!
.

Therefore, we obtain the following property:

wk2k
∞

∑
n=0

T(n + k, k) =
(

n + k
k

) n

∑
l=0

d(−k)
l,w S2(n, l).

In addition, the application of Proposition 1 to this gives us

2nwnb(−k)
n =

n

∑
l=0

d(−k)
l,w S2(n, l).

We can summarize these results as follows:

Theorem 9. For n, k ≥ 0, we have

(1) (2w)n+kT(n + k, k) =
(

n + k
k

) n

∑
l=0

d(−k)
l,w S2(n, l),

(2) (2w)nb(−k)
n =

n

∑
l=0

d(−k)
l,w S2(n, l).

4. Discussion

For the case of w = 1, w = 1
2 and w = 1

4 , the symmetry of the type 2 w-Daehee polynomials are
related to the works of the type 2 Daehee polynomials, those of well-known Daehee polynomials [1],
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and we can modify relate to those of the Catalan Daehee polynomials in [9], respectively. Recently,
many works are done on some identities of special polynomials in the viewpoint of degenerate
sense [12,13]. Our new type 2 w-Daehee polynomials could also be developed in other directions, i.e,
on the symmetric identities of the degenerate type 2 w-Daehee polynomials.

Finally, we remark that our work on symmetry of two variables could be extended to the three
variable case.

5. Conclusions

In this paper, we have defined the type 2 w-Daehee polynomials and numbers by the generating
function, for t, x ∈ Zp and w ∈ N

log(1 + t)
(1 + t)w − (1 + t)−w (1 + t)x =

∞

∑
n=0

dn,w(x)
tn

n!
.

These are motivated from the pursuit of the symmetric properties of the type 2 Daehee
polynomials and numbers, which are defined and investigated by Kims [11]. Our type 2 w-Daehee
polynomials are related with λ-Daehee polynomials in [17] and also Catalan Daehee polynomials [9].

We obtained two relations between type 2 Bernoulli polynomials and type 2 w-Daehee
polynomials in Theorems 1 and 2. In the Theorem 3, we gave the relationship between type 2
w-Daehee polynomials with w-Daehee and w-Changhee polynomials. After that, we relate type 2
w-Daehee polynomials with w-Bernoulli polynomials and usual Euler polynomials in Theorem 4. In
addition, in Theorem 6, we have the distribution relation of type 2 w-Daehee polynomials. In Section 3,
we gave symmetric identities involving the type 2 w-Daehee polynomials, which are derived from the
p-adic invariant integral on Zp. In addition, we expressed our type 2 w-Daehee polynomials related
with new central numbers.
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