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Abstract

:

In the paper, by virtue of the p-adic invariant integral on Zp, the authors consider a type 2 w-Daehee polynomials and present some properties and identities of these polynomials related with well-known special polynomials. In addition, we present some symmetric identities involving the higher order type 2 w-Daehee polynomials. These identities extend and generalize some known results.
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1. Introduction


Let p be a fixed prime number. Throughout this paper, Zp, Qp and Cp will denote the ring of p-adic integers, the field of p-adic rational numbers and the completion of the algebraic closure of Qp, respectively. The p-adic norm |·|p is normalized as |p|p=1/p.



It is common knowledge that the usual Bernoulli numbers Bn are given by the generating function to be, for t∈Cp,


tet−1=∑n=0∞Bntnn!,








which can be written symbolically as eBt=t/(et−1), interpreted to mean that Bn must be replaced by Bn. In addition, usual Bernoulli polynomials Bn(x) are defined by, for x∈Cp,


Bn(x)=∑l=0nnlBlxn−l.











With the viewpoint of deformed Bernoulli polynomials, the Daehee polynomials Dn(x) for n≥0 are defined [1] by the generating function to be, for t,x∈Cp,


log(1+t)t(1+t)x=∑n=0∞Dn(x)tnn!.











When x=0, we call Dn=Dn(0) the Daehee numbers. For more information on the Bernoulli numbers Bn=Bn(0), the Bernoulli polynomials Bn(x), the Daehee numbers Dn and the Daehee polynomials Dn(x), please refer to [1,2,3] and the closely related references therein.



We say that f is a uniformly differentiable function, if for a given function f:Zp→Cp, there exists a continuous function Ff(x,y)→Cp where for all x,y∈Zp, x≠y


Ff(x,y)=f(x)−f(y)x−y.











For a uniformly differentiable function f:Zp→Cp, the p-adic integral of f on Zp (or the Volkenborn integral of f on Zp) is defined by the limit, if it exists


I(f)=∫Zpf(x)dμ(x)=limN→∞1p∑x=0pN−1f(x)








(see [4,5,6]). Here, the p-adic Haar distribution μ is given by


μa+pNZp=1pN.











The application of the p-adic integral on Zp is an effective way to deduce many important results for p-adic special numbers and polynomials. For more information, please refer to [1,2,3,7,8,9,10,11,12,13,14,15,16]. From the above definition, we can derive


I(f1)=I(f)+f′(0),








where f1(x)=f(x+1) and f′(0)=df(x)dx|x=0.



In the recent year, Kims [11] considered the hyperbolic cosecant numbers by using p-adic integral on Zp, and investigated many properties on such numbers. The hyperbolic cosecant numbers are presented by p-adic integration on Zp, for t,x∈Cp with |t|p<p−1/(p−1),


tcsch(t)=∫Zpe(2x+1)tdμ(x)=2te2t−1et=2tet−e−t=∑n=0∞2nBn(12)tnn!.











Motivated by their hyperboric cosecant numbers, they considered the type 2 Daehee polynomials by p-adic integrals on Zp as follows, for t,x,y∈Cp with |t|p<p−1/(p−1),


12∫Zp(1+t)x+2y+1dμ(y)=log(1+t)(1+t)2−1(1+t)x+1=∑n=0∞dn(x)tnn!,



(1)




when x=0, we call dn=dn(0) the type 2 Daehee numbers. From Equation (1), we can rewrite the generating function of type 2 Daehee polynomials as follows:


∑n=0∞dn(x)tnn!=log(1+t)(1+t)−(1+t)−1(1+t)x.



(2)







In the view of Equation (2), Kim et al. [10,11] considered the type 2 Bernoulli polynomials given by, for t,x∈Cp


∑n=0∞bn(x)tnn!=tet−e−text.



(3)







We can easily show that


bn(x)=2n−1Bnx+12,(n≥0).











The purpose of this paper is to construct a new type of polynomials, the type 2 w-Daehee polynomials, and to investigate some properties and identities of these polynomials. In addition, we will offer some symmetric identities involving the higher order type 2 w-Daehee polynomials. These identities extend and generalize some known results.




2. Some Identities on Type 2 w-Daehee Numbers and Polynomials


The type 2 Daehee polynomials are considered by Kims [11] and various properties on their polynomials are investigated. In Section 3, we want to try to present the symmetric identities of type 2 Daehee polynomials by p-adic integrals on Zp. On the way to establish such symmetric identities, we need the concept of type 2 w-Daehee polynomials. Thus, in this section, we want to establish some properties on the type 2 w-Daehee polynomials and numbers. Recently, we could see the nice results, which express the central numbers of the second kind in terms of type 2 Bernoulli, type 2 Changhee and type 2 Daehee numbers of negative order [11]. We might express our type 2 w-Daehee polynomials related with new central numbers in the further study (Section 3).



In this section, we assume that t,x,y∈Cp with |t|p<p−1/(p−1) and w∈N. In the view of Equations (2) and (3), we define type 2 w-Daehee polynomials by


log(1+t)(1+t)w−(1+t)−w(1+t)x=∑n=0∞dn,w(x)tnn!.



(4)







Motivated by Equation (1), we present type 2 w-Daehee polynomials via p-adic invariant integral on Zp as follows:


12w∫Zp(1+t)x+2wy+wdμ(y)=∑n=0∞dn,w(x)tnn!.



(5)







The following two theorems give us the relation between type 2 Bernoulli polynomials and type 2 w-Daehee polynomials.



Theorem 1.

For n≥0, we have


dn,w(x)=∑k=0nwk−1bk(x)s(n,k),








where s(n,k) is the Stirling number of the first kind which is defined as


(x)0=1,(x)n=x(x−1)⋯(x−n+1)=∑k=0ns(n,k)xk,(n≥1).













Proof. 

Substituting wlog(1+t) for t in Equation (3) gives


wlog(1+t)(1+t)w−(1+t)−w(1+t)wx=∑k=0∞bk(x)(wlog(1+t))kk!=∑n=0∞∑k=0nwkbk(x)s(n,k)tnn!.











Comparing this with Equation (4) leads to the required identity. □





Especially for the w=1 case, we have



Corollary 1 

([11], Theorem 2.5). For n≥0, we have


dn(x)=∑k=0nbk(x)s(n,k).













Theorem 2.

For n≥0, we have


bn(xw)=w1−n∑k=0ndk,w(x)S(n,k),








where S(n,k) for k≥0, which can be generated by


(ex−1)kk!=∑n=k∞S(n,k)xnn!,








stands for the Stirling number of the second kind.





Proof. 

Replacing t by et−1 in Equation (4), we obtain


∑k=0∞dk,w(x)1k!(et−1)k=tewt−e−wtext.











By Equation (3), it follows that


∑n=0∞(∑k=0ndk,w(x)S(n,k))tnn!=1wwtewt−e−wtext=∑n=0∞bn(xw)wn−1tnn!.











Equating coeffcients on the very ends of the above identity arrives at the required result. □





For the case of w=1, we have the following corollary.



Corollary 2 

([11], Theorem 2.4). For n≥0, we have


bn=∑k=0ndk(x)S(n,k).













Recall from [9] that the w-Daehee polynomials Dn,w(x) and the w-Changhee polynomials Chn,w(x) are generated by


log(1+t)(1+t)w−1(1+t)x=∑n=0∞Dn,w(x)tnn!,log(1+t)(1+t)w+1(1+t)x=∑n=0∞Chn,w(x)tnn!.



(6)







The following theorem gives us the relation between type 2 w-Daehee polynomials, w-Daehee and w-Changhee polynomials.



Theorem 3.

For n≥0, we have


dn,w(x)=12∑l=0nnlDl,w(x)Chn−l,w(w).













Proof. 

From Equations (4) and (6), it can be deduced that


∑n=0∞dn,wtnn!=log(1+t)(1+t)2w−1(1+t)x+w=log(1+t)(1+t)w−1(1+t)x12log(1+t)(1+t)w+1(1+t)w=(∑l=0∞Dl,w(x)tll!)(12∑m=0∞Chm,w(w)tmm!)=12∑n=0∞∑l=0nnlDl,w(x)Chn−l,w(w)tnn!.











The required result thus follows. □





For the case w=1, we have



Corollary 3.

For n≥0, we have


dn(x)=12∑l=0nnlDl(x)Chn−l(1)=12∑l=0nnlDl(1)Chn−l(x).













If we replace t by et−1 in Equation (3),


∑n=0∞dn,w(et−1)nn!=te2wt−1e(x+w)t=tewt−1ext2ewt+1ewt=(∑l=0∞1wBl,wxwtll!)(12∑m=0∞Em(1)wmtmm!)=∑n=0∞∑l=0nnlwn−l2Bl,wxwEn−l(1)tnn!.











Therefore, we obtain the following theorem.



Theorem 4.

For n≥0, we have


∑k=0nS(n,k)dk,n(x)=wn−k2∑k=0nnkBk,wxwEn−k(1).













For the case w=1, we have the following result.



Corollary 4.

For n≥0, we have


∑k=0nS(n,k)dk(x)=12∑k=0nnkBk(x)En−k(1).













For g∈N, the distribution relation on p-adic integrals on Zp is well-known as follows.



Theorem 5.

For g∈N, we have


∫Zpf(x)dμ(x)=1g∑a=0g−1∫Zpf(a+gx)dμ(x).













We apply the above theorem to the p-adic representation of type 2 w-Daehee polynomials, we have the following identities.



Theorem 6.

For g∈N, we have


(1)dn,w(x)=∑a=0g−1dn,wg(x−wg+2wa+w),(2)dn,w(x)=∑k=0n(wg)k−1∑a=0g−1bk2wa+x+wwg−1s(n,k).













Proof. 

(1) From Equation (5), we have


∑n=0∞dn,w(x)tnn!=12w∫Zp(1+t)2wy+x+wdμ(y)=12wg∑a=0g−1∫Zp(1+t)2w(a+gy)+x+wdμ(y)=∑a=0g−112wg∫Zp(1+t)2wgy+x+wg+2wa+w−wgdμ(y)=∑a=0g−1∑n=0∞dn,wg(x+2wa+w−wf)tnn!.











The required relation now follows with comparing the coefficients of tn on both sides.



(2) Similarly, we consider


∑n=0∞dn,w(x)tnn!=12w∫Zp(1+t)2wy+x+wdμ(y)=12wg∑a=0g−1∫Zpe2wgylog(1+t)e(2wa+x+w)log(1+t)dμ(y)=12wg∑a=0g−1e2wglog(1+t)2wglog(1+t)−1e(2wa+x+w)log(1+t)=1wg∑a=0g−1ewglog(1+t)wglog(1+t)−e−wglog(1+t)e2wa+x+wwg−1wglog(1+t)=1wg∑a=0g−1∑k=0∞bk2wa+x+wwg−1(wg)k(log(1+t))kk!=∑n=0∞(wg)k−1∑k=0∞bk2wa+x+wwg−1s(n,k)tnn!,








which immediately gives the required result. □





For the case w=1 in Theorem 6, we have the following corollary.



Corollary 5.

For g∈N, we have


(1)dn(x)=∑a=0g−1dn,g(x−g+2a+1),(2)dn,w(x)=∑k=0n∑a=0g−1gk−1bk2a+x+1g−1s(n,k).














3. Symmetric Identities of Higher Order Type 2 w-Daehee Polynomials


In order to study symmetric identities related to type 2 w-Daehee numbers, we need to introduce type 2 w-Daehee polynomials with order α∈R, dn,w(α)(x) as follows, for t,x∈Cp with |t|p<p−1/(p−1) and w∈N,


∑n=0∞dn,w(α)(x)tnn!=(log(1+t)(1+t)2w−1)α(1+t)x+wα=(log(1+t)(1+t)w−(1+t)−w)α(1+t)x.



(7)







When x=0, dn,w(α)=dn,w(α)(0) are called type 2 w-Daehee numbers of order α. In particular for w=1 and α=1, we have type 2 Daehee numbers in Equation (2) dn=dn,1(1). For the proof of main theorem, we consider the quotient of p-adic integrals


n∫Zp(1+t)2x+1dμ(x)∫Zp(1+t)2nxdμ(x)=12(1+t)log(1+t)∫Zp(1+t)2x+2n+1dμ(x)−∫Zp(1+t)2x+1dμ(x)=∑l=0n−1(1+t)2l=∑k=0∞∑l=0n−1(2l)ktkk!=∑k=0∞2kTk(n−1∣(l)k,12)tkk!,



(8)




where the function Tk(n∣(l)n,λ)=∑l=0n(l)k,λ for each λ∈R. In addition, (l)n,λ is the well-known λ-falling factorial


(l)n,λ=l(l−λ)(l−2λ)⋯(l−(n−1)λ),ifn≥1,1,ifn=0.











Now, we start out to state and prove our main results.



Theorem 7.

For w1,w2∈N, n≥0 and m≥1, one has


w2∑j=0nnj∑k=0jjkdn−j,w1(m)(2w1w2x)w2kTk(w1−1∣(l+1)k,12w)dj−k,w2(m−1)(2w1w2y)=w1∑j=0nnj∑k=0jjkdn−j,w2(m)(2w1w2x)w1kTk(w2−1∣(l+1)k,12w)dj−k,w1(m−1)(2w1w2y).













Proof. 

Consider Tm(w1,w2) as


Tm(w1,w2)=(2w1log(1+t)(1+t)2w1−1)m(1+t)2w1w2x+mw1(1+t)2w1w2−12w1w2(1+t)log(1+t)×(2w2log(1+t)(1+t)2w2−1)m(1+t)2w1w2y+mw2.



(9)







It is clear that Tm(w1,w2) is symmetric in w1 and w2, i.e., Tm(w1,w2)=Tm(w2,w1). The above equation can be rewritten as the quotient of p-adic integral form


Tm(w1,w2)=∫Zpm(1+t)2w1(x1+x2+⋯+xm+w2x)+mw1dμ(x1)dμ(x2)⋯dμ(xm)∫Zp(1+t)2w1w2xdμ(x)×∫Zpm(1+t)2w2(x1+x2+⋯+xm+w1y)+mw2dμ(x1)dμ(x2)⋯dμ(xm),



(10)




where ∫Zpmf(x1+x2+⋯+xm)dμ(x1)dμ(x2)⋯dμ(xm)=∫Zp∫Zp⋯∫Zpf(x1+x2+⋯+xm)dμ(x1)dμ(x2)⋯dμ(xm).



Accordingly, by virtue of Equations (8) and (10), we can represent as follows:


Tm(w1,w2)=(∑l=0∞(2w1)mdl,w1(m)(2w1w2x)tll!)(1w1∑k=0∞(2w2)kTk(w1−1∣(l+1)k,12w2)tkk!)×(∑i=0∞(2w2)mdi,w2(m−1)(2w1w2y)tii!)=(∑l=0∞(2w1)mdl,w1(m)(2w1w2x)tll!)×(1w1∑j=0∞(∑k=0jjk(2w2)kTk(w1−1∣(l+1)k,12w2)(2w2)mdj−k,w2(m−1)(2w1w2y))tjj!)=∑n=0∞[∑j=0nnj(2w1)mdn−j,w1(m)(2w1w2x)×1w1∑k=0jjkTk(w1−1)(2w2)mdj−k,w2(m−1)(2w1w2y)]tnn!=4mw1m−1w2m×∑n=0∞[∑j=0n∑k=0jnjjkdn−j,w1(m)(2w1w2x)(2w2)kTk(w1−1∣(l+1)k,12w2)dj−k,w2(m−1)(2w1w2y)]tnn!.



(11)







By the symmetry of w1 and w2 in Tm(w1,w2), we obtain the following expression:


Tm(w1,w2)=4mw1mw2m−1∑n=0∞[∑j=0n∑k=0jnjjkdn−j,w2(m)(2w1w2x)×(2w1)kTk(w2−1∣(l+1)k,12w1)dj−k,w1(m−1)(2w1w2y)]tnn!.











Combinig this with Equation (11) yields the required identity. □





Letting y=0 and m=1 in Theorem 7 results in



Corollary 6.

For w1,w2∈N, n≥0, one has


w2∑j=0nnjdn−j,w1(2w1w2x)Tj(w1−1)=w1∑j=0nnjdn−j,w2(2w1w2x)w1jTj(w2−1∣(l+1)j,12w1).













Let us take w2=1 in Corollary 6. Then, we have



Corollary 7.

For w1∈N, n≥0, one has


dn(2w1x)=∑j=0nnjdn−j,w1(2w1x)Tj(w1−1∣(l+1)j,12).













Next, we consider the symmetric identities of higher order type 2 w-Daehee polynomials via generating function in the following theorem.



Theorem 8.

For w1,w2∈N, n≥0, m≥1, we have


∑k=0n∑l=0w1−1nkdk,w1(m)(2w1w2x+2w2l)dn−k(m−1)(2w1w2y+w2)=∑k=0n∑l=0w2−1nkdk,w2(m)(2w1w2x+2w1l)dn−k(m−1)(2w1w2y+w1).













Proof. 

It follows from (9) that


Tm(w1,w2)=(2w1log(1+t)(1+t)2w1−1)m(1+t)2w1w2x+w1m1w1∑l=0w1−1(1+t)2w2l×(2w2log(1+t)(1+t)2w2−1)m−1(1+t)2w1w2y+w2m=(2w1log(1+t)(1+t)w1−(1+t)−w1)m1w1∑l=0w1−1(1+t)2w1w2x+2w2l×(2w2log(1+t)(1+t)w2−(1+t)−w2)m−1(1+t)2w1w2y+w2=22m−1(w1w2)m−1∑l=0w1−1∑k=0∞dk,w1(m)(2w1w2x+2w2l)tkk!×∑j=0∞dn−k(m−1)(2w1w2y+w2)tjj!=22m−1(w1w2)m−1×∑n=0∞[∑l=0w1−1∑k=0nnkdk,w1(m)(2w1w2x+2w2l)dn−k(m−1)(2w1w2y+w2)]tnn!.



(12)




Furthermore, we observe that


Tm(w1,w2)=22m−1(w1w2)m−1×∑n=0∞[∑l=0w2−1∑k=0nnkdk,w2(m)(2w1w2x+2w1l)dn−k(m−1)(2w1w2y+w1)]tnn!.











Combination of this identity with Equation (12) leads to the required identity. □





Let y=0 and m=1 in Theorem 8. Then, we have the following symmetric identities for type 2 w-Daehee polynomials.



Corollary 8.

For w1,w2∈N, n≥0, we have


∑l=0w1−1dn,w1(2w1w2x+2w2l)=∑l=0w2−1dn,w2(2w1w2x+2w1l).













Finally, taking w2=1 in Corollary 8 leads to



Corollary 9.

For w1∈N, n≥0, one has


dn(2w1x)=∑l=0w1−1dn,w1(2w1x+2l).













Now, we want to provide some other properties of type 2 w-Daehee numbers related with central factorial numbers of the second kind and the type 2 Bernoulli numbers of order α.



For n≥0, the central factorial is defined as


x[0]=1,x[n]=xx+n2−1x+n2−2⋯x−n2+1,(n≥1).











Then, the central factorial numbers of the second kind are given by, for n≥1


xn=∑k=0nT(n,k)x[k].











Recall from [11] that the type 2 Bernoulli polynomials of order α are generated as follows, for t,x∈Cp


tet−e−tα=∑n=0∞bn(α)(x)tnn!.











Proposition 1 (

[11]). For k≥0, we have


(1)1k!et2−e−t2k=∑n=k∞T(n,k)tnn!(2)2n+kT(n+k,k)=n+kkbn(−k).













Let us take α=−k∈Z and x=0 in (7), and replacing t by et/2w−1 leads to


t2wet2−e−t2−k=∑n=0∞dl(−k)(et2w−1)ll!=∑n=0∞1(2w)n∑l=0ndl,w(−k)S2(n,l)tnn!.











On the other hand, the left-hand side of the above equation, by Proposition 1, can be presented by the central factorial numbers of the second kind as follows:


2wtket2−e−t2k=wk2k∑n=0∞T(n+k,k)1n+kktnn!.











Therefore, we obtain the following property:


wk2k∑n=0∞T(n+k,k)=n+kk∑l=0ndl,w(−k)S2(n,l).











In addition, the application of Proposition 1 to this gives us


2nwnbn(−k)=∑l=0ndl,w(−k)S2(n,l).











We can summarize these results as follows:



Theorem 9.

For n,k≥0, we have


(1)(2w)n+kT(n+k,k)=n+kk∑l=0ndl,w(−k)S2(n,l),(2)(2w)nbn(−k)=∑l=0ndl,w(−k)S2(n,l).














4. Discussion


For the case of w=1, w=12 and w=14, the symmetry of the type 2 w-Daehee polynomials are related to the works of the type 2 Daehee polynomials, those of well-known Daehee polynomials [1], and we can modify relate to those of the Catalan Daehee polynomials in [9], respectively. Recently, many works are done on some identities of special polynomials in the viewpoint of degenerate sense [12,13]. Our new type 2 w-Daehee polynomials could also be developed in other directions, i.e, on the symmetric identities of the degenerate type 2 w-Daehee polynomials.



Finally, we remark that our work on symmetry of two variables could be extended to the three variable case.




5. Conclusions


In this paper, we have defined the type 2 w-Daehee polynomials and numbers by the generating function, for t,x∈Zp and w∈N


log(1+t)(1+t)w−(1+t)−w(1+t)x=∑n=0∞dn,w(x)tnn!.











These are motivated from the pursuit of the symmetric properties of the type 2 Daehee polynomials and numbers, which are defined and investigated by Kims [11]. Our type 2 w-Daehee polynomials are related with λ-Daehee polynomials in [17] and also Catalan Daehee polynomials [9].



We obtained two relations between type 2 Bernoulli polynomials and type 2 w-Daehee polynomials in Theorems 1 and 2. In the Theorem 3, we gave the relationship between type 2 w-Daehee polynomials with w-Daehee and w-Changhee polynomials. After that, we relate type 2 w-Daehee polynomials with w-Bernoulli polynomials and usual Euler polynomials in Theorem 4. In addition, in Theorem 6, we have the distribution relation of type 2 w-Daehee polynomials. In Section 3, we gave symmetric identities involving the type 2 w-Daehee polynomials, which are derived from the p-adic invariant integral on Zp. In addition, we expressed our type 2 w-Daehee polynomials related with new central numbers.
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