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Abstract: In this paper, Thiele–Newton’s blending expansion of a bivariate function is firstly
suggested by means of combining Thiele’s continued fraction in one variable with Taylor’s polynomial
expansion in another variable. Then, the Viscovatov-like algorithm is given for the computations of
the coefficients of this rational expansion. Finally, a numerical experiment is presented to illustrate
the practicability of the suggested algorithm. Henceforth, the Viscovatov-like algorithm has been
considered as the imperative generalization to find out the coefficients of Thiele–Newton’s blending
expansion of a bivariate function.

Keywords: bivariate function; divided difference; inverse difference; blending difference; continued
fraction; Thiele–Newton’s expansion; Viscovatov-like algorithm

1. Introduction

The interpolation and expansion of a function are two of the oldest and most interesting
branches in both computational mathematics and approximation theory. Most often, they have
a natural link with their corresponding algorithms, such as Newton’s interpolatory formula and
its divided-difference algorithm, Thiele’s interpolating continued fraction and its inverse-difference
algorithm, Thiele’s expansion of a univariate function and its Viscovatov’s algorithm, and so on.
For the function f being a univariate function, such problems have been extensively investigated,
and abundant research results have been achieved. Some surveys and a complete literature
for the problems in single variable interpolation and expansion can be found in Cheney [1],
Hildebrand [2], Davis [3], Alfio et al. [4], Gautschi [5], Burden et al. [6], and the references therein.
However, in comparison to the broad research and application of the univariate interpolation and
expansion problems, much less attention has been paid to the problems associated with multivariate
interpolation and expansion, and the study of multivariate rational interpolation and expansion is
even less. However, fortunately, there exists some literature discussing the multivariate rational
interpolation and expansion problems. We mention the works of Baker et al. [7,8], Kuchminskaya [9],
Skorobogatko [10], Siemaszko [11], Viscovatov [12], Graves-Morris [13], Cuyt and Verdonk [14–17],
Möller [18], Zhu et al. [19], Gu et al. [20,21], Tan et al. [22–28], and the references therein for results
concerning the multivariate rational interpolation and expansion.

Skorobogatko applied the idea of the branch to the continued fraction from about the 1960s to
the 1980s, which ushered in a new era of the research on the theories and methods of the continued
fraction [10]. In 1983, the concept of the Thiele-type interpolation by the continued fraction in one
variable was generalized to the multivariate case by Siemaszko [11], and the Thiele-type branched
continued fractions were obtained and an algorithm for the computation of the limiting case of
branched continued fractions for bivariable functions suggested. Furthermore, in the 1980s, based
on the so-called symmetric branched continued fraction, Cuyt et al. [14–16] introduced a symmetric
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interpolation scheme and studied the expansion of a bivariate function by using this method and
technique. By following the prior works, in 1995, Zhu et al. [19,22] discussed the vector-valued rational
interpolants by branched continued fractions. In 1997, Gu et al. [20,21] investigated the problem
about matrix-valued rational interpolants. In the meantime, Tan et al. engaged in studying bivariate
rational interpolants and obtained tremendous scholarly achievements in this field [22–28]. In 2007,
Tan summarized the research results concerning the theory of the continued fraction and published
the famous book The Theory of Continued Fractions and Their Applications. This book has played an
important role in promoting some modern research about the continued fraction. Furthermore, there
are a few works and references about the application of the continued fraction in image processing,
such as the literature of Hu and Tan [29,30], Li et al. [31].

As we all know, Taylor’s expansion of a function is likely to be the best known and most
widely-used formula for the function approximation problem. If f is a function of a univariate
x and the derivatives of all orders are uniformly bounded in a neighborhood 0(ξ), then for each x in
0(ξ), f (x) can be expanded into the following Taylor’s formula about ξ:

f (x) = C0 + C1(x− ξ) + C2(x− ξ)2 + · · ·+ Ck(x− ξ)k + · · · ,

where Ck =
1
k! f (k)(ξ), k = 0, 1, 2, . . .. On the other hand, the function f (x) can also be expanded about

ξ in terms of the continued fraction, which is in the form of the following:

f (x) = d0 +
x− ξ

d1
+

x− ξ

d2
+ · · ·+ x− ξ

dn
+ · · · ,

where dk ∈ R, k = 0, 1, 2, . . .. Here, the above formula is called Thiele’s expansion for f (x) about ξ.
There is a famous algorithm to compute the coefficients d0, d1, d2, . . . , of Thiele’s expansion, which is
called Viscovatov’s algorithm. We can see the references [16,28].

Motivated by the results concerning the univariate function, in this paper, we consider the rational
expansion by Thiele’s continued fraction of a bivariate function and give a Viscovatov-like algorithm
for the computations of the coefficients. As a preliminary to our discussions, Thiele–Newton’s
interpolation needs to be introduced first. In the works [25,28], the so-called Thiele–Newton’s
interpolation was suggested to construct bivariate interpolants by Tan et al. Its main idea is to combine
Thiele’s interpolating continued fraction in one variable with Newton’s interpolating polynomial in
another variable to hybridize a new interpolation, which is defined as below:

TNm,n(x, y) = t0(y) +
x− x0

t1(y)
+

x− x1

t2(y)
+ · · ·+ x− xm−1

tm(y)
, (1)

where:

ti(y) =ϕTN [x0, · · · , xi; y0] + (y− y0)ϕTN [x0, · · · , xi; y0, y1]

+ · · ·+ (y− y0)(y− y1) · · · (y− yn−1)ϕTN [x0, · · · , xi; y0, · · · , yn] (2)

for i = 0, 1, . . . , m, both X = {xi|i ∈ N} and Y = {yj|j ∈ N} are two sets of points belonging to
R, and ϕTN [x0, · · · , xi; y0, · · · , yj] denotes the blending difference of the function f (x, y) at points
x0, . . . , xi; y0, . . . , yj. Suppose that any blending difference ϕTN [x0, · · · , xi; y0, · · · , yj] exists. Then,
one can easily confirm that:

TNm,n(xi, yj) = f (xi, yj), i = 0, 1, . . . , m; j = 0, 1, . . . , n.

The limiting case of Thiele’s interpolating continued fraction expansion of a univariate function
has been discussed in the literature [26]. With the inspiration of the limiting case, Thiele–Newton’s
expansion of a bivariate function is yielded when all the points in sets X = {xi|i ∈ N} and Y = {yj|j ∈
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N} are coincident with certain points ξ and ζ, respectively, from Equations (1) and (2), or in other
words, a bivariate function f (x, y) has Thiele–Newton’s expansion of the following form:

f (x, y) = l0(y) +
x− ξ

l1(y)
+

x− ξ

l2(y)
+ · · ·+ x− ξ

lm(y)
, (3)

where:

li(y) = ai,0 + ai,1(y− ζ) + ai,2(y− ζ)2 + ai,3(y− ζ)3 + · · · (4)

for all i ∈ N. Therefore, there exists a question about how to calculate the unknowns ai,j, i =

0, 1, 2, . . . , j = 0, 1, 2, . . ., in Equation (4).
The aim of this paper is to find an algorithm for the computations of the coefficients of

Thiele–Newton’s expansion of a bivariate function. The paper is organized as follows. In Section 2,
we briefly recall some preliminaries for Thiele’s continued fraction and Thiele–Newton’s blending
interpolation. In Section 3, we suggest Thiele–Newton’s blending rational expansion and prove the
Viscovatov-like algorithm. In Section 4, numerical examples are given to illustrate the application
of the Viscovatov-like algorithm. Throughout the paper, we let N and R stand for the set of natural
numbers and the set of real numbers, respectively.

2. Preliminaries

In this section, we briefly review some basic definitions and results for Thiele’s continued fraction,
Thiele’s expansion of a univariate function, and blending interpolation. Some surveys and complete
literature about the continued fraction could be found in Cuyt et al. [14–16], Zhu et al. [19], Gu
et al. [20,21], and Tan et al. [25,26,28].

Definition 1. Assume that G is a subset of the complex plane and X = {xi|i ∈ N} is a set of points belonging
to G. Suppose, in addition, that f (x) is a function defined on G. Let:

f [xi] = f (xi), i ∈ N,

f [xi, xj] =
f [xi]− f [xj]

xi − xj
,

f [xi, xj, xk] =
f [xi, xk]− f [xi, xj]

xk − xj

and:

f [xi, . . . , xj, xk, xl ] =
f [xi, . . . , xj, xl ]− f [xi, . . . , xj, xk]

xl − xk
.

Then, f [xi, . . . , xj, xk] is called the divided difference of f (x) with respect to points xi, . . . , xj, xk.

Definition 2. Assume that G is a subset of the complex plane and X = {xi|i ∈ N} is a set of points in G.
Suppose, in addition, that f (x) is a function defined on G. We let:

ρ[xi] = f (xi), i ∈ N,

ρ[xi, xj] =
xi − xj

ρ[xi]− ρ[xj]
,

ρ[xi, xj, xk] =
xk − xj

ρ[xi, xk]− ρ[xi, xj]
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and:

ρ[xi, . . . , xj, xk, xl ] =
xl − xk

ρ[xi, . . . , xj, xl ]− ρ[xi, . . . , xj, xk]
.

Then, ρ[xi, . . . , xj, xk] is called the inverse difference of f (x) with respect to points xi, . . . , xj, xk.

Definition 3. Assume that G is a subset of the complex plane and X = {xi|i ∈ N} ⊆ G is a set of points.
In addition, let f (x) be a function defined on G, and let:

Rn(x) = ρ[x0] +
x− x0

ρ[x0, x1]
+ · · ·+ x− xn−1

ρ[x0, x1, . . . , xn]
, (5)

where ρ[x0, x1, . . . , xi], i = 0, 1, 2, . . . , n, is the inverse difference of f (x) with respect to points x0, x1, . . . , xi.
Then, Rn(x) is called Thiele’s interpolating continued fraction of order n. It is easy to verify that the rational
function satisfies the following conditions:

Rn(xi) = f (xi), i = 0, 1, 2, . . . , n.

When all the points in the set X = {xi|i ∈ N} are coincident with a certain point ξ ∈ G, Thiele’s
expansion of a univariate function f (x) at x = ξ is obtained as follows:

f (x) = d0 +
x− ξ

d1
+

x− ξ

d2
+ · · ·+ x− ξ

dn
+ · · · , (6)

where dk ∈ R, k = 0, 1, 2, . . .. Moreover, if f (x) is a function with derivatives of all orders in a
neighborhood 0(ξ), then Taylor’s expansion of the function f (x) at x = ξ is denoted as below:

f (x) =
∞

∑
n=0

C(0)
n (x− ξ)n,

where C(0)
n = 1

n! f (n)(ξ), n = 0, 1, 2, . . . A famous method, called Viscovatov’s algorithm (see [16,28]),
is available for the computations of the coefficients d0, d1, d2, . . . , of Thiele’s expansion, which is
formulated as follows.

Algorithm 1. Viscovatov’s algorithm to calculate the coefficients d0, d1, d2, . . . :

C(0)
i = f (i)(ξ)/i!, i = 0, 1, 2, . . . ,

d0 = C(0)
0 ,

d1 = 1/C(0)
1 ,

C(1)
i = −C(0)

i+1/C(0)
1 , i > 1,

dl = C(l−2)
1 /C(l−1)

1 , l > 2,

C(l)
i = C(l−2)

i+1 − dlC
(l−1)
i+1 , i > 1, l > 2.

Remark 1. Clearly, by applying Viscovatov’s algorithm, we can carry out computations step by step for the
coefficients d0, d1, d2, . . ..

In [25,28], the method known as Thiele–Newton’s blending interpolation was suggested to
construct bivariate interpolants by Tan et al. Before the method can be introduced, we recall the
definition concerning the blending difference.



Mathematics 2019, 7, 696 5 of 15

Definition 4. Assume that Πm,n = Xm × Yn, where Xm = {xi|i = 0, 1, 2, . . . , m} ⊂ [a, b] ⊂ R and
Yn = {yj|j = 0, 1, 2, . . . , n} ⊂ [c, d] ⊂ R are two sets of points. Suppose that f (x, y) is a function of two
variables defined on D = [a, b]× [c, d]. Let:

ϕTN [xi; yj] = f (xi, yj), (xi, yj) ∈ D,

ϕTN [xi; yp, yq] =
ϕTN [xi; yq]− ϕTN [xi; yp]

yq − yp
,

ϕTN [xi; yp, . . . , yq, yr, ys] =
ϕTN [xi; yp, . . . , yq, ys]− ϕTN [xi; yp, . . . , yq, yr]

ys − yr
,

ϕTN [xi, xj; yp] =
xj − xi

ϕTN [xj; yp]− ϕTN [xi; yp]
,

ϕTN [xi, . . . , xj, xk, xl ; yp] =
xl − xk

ϕTN [xi, . . . , xj, xl ; yp]− ϕTN [xi, . . . , xj, xk; yp]

and:

ϕTN [xi, . . . , xl ; yp, . . . , yq, yr, ys] =
ϕTN [xi, . . . , xl ; yp, . . . , yq, ys]− ϕTN [xi, . . . , xl ; yp, . . . , yq, yr]

ys − yr
.

Then, ϕTN [x0, . . . , xi; y0, . . . , yj] is called Thiele–Newton’s blending difference of f (x, y) with respect to
the set of points Πi,j.

Remark 2. From Definition 4, it is easy to see that the first recurrence relations on Thiele–Newton’s blending
difference ϕTN [x0, . . . , xi; y0, . . . , yj] are just the inverse difference of f (x, y) with respect to the variable x, and
the second recurrence relations are only the divided difference of f (x, y) with respect to the variable y.

Next, recall Thiele–Newton’s interpolation TNm,n(x, y), as shown in Equations (1) and (2). In
order to calculate this rational interpolation, we need to utilize the following algorithm whose main
operation is matrix transformations (see [23,28]).

Algorithm 2. Four main steps for the algorithm to calculate Thiele–Newton’s interpolation are as follows:

• Step 1: Initialization. For i = 0, 1, . . . , m; j = 0, 1, . . . , n, let f (0,0)
i,j = f (xi, yj). Define the

following initial information matrix:

M0 =


f (0,0)
0,0 f (0,0)

1,0 · · · f (0,0)
m,0

f (0,0)
0,1 f (0,0)

1,1 · · · f (0,0)
m,1

...
...

. . .
...

f (0,0)
0,n f (0,0)

1,n · · · f (0,0)
m,n

 .

• Step 2: Thiele’s recursion along the X-axis. For j = 0, 1, . . . , n; p = 1, 2, . . . , m; i = p, p +

1, . . . , m, compute:

f (p,0)
i,j =

xi − xp−1

f (p−1,0)
i,j − f (p−1,0)

p−1,j
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and construct the following information matrix:

M1 =


f (0,0)
0,0 f (1,0)

1,0 · · · f (m,0)
m,0

f (0,0)
0,1 f (1,0)

1,1 · · · f (m,0)
m,1

...
...

. . .
...

f (0,0)
0,n f (1,0)

1,n · · · f (m,0)
m,n

 .

• Step 3: Newton’s recursion along the Y-axis. For i = 0, 1, . . . , m; q = 1, 2, . . . , n; j = q, q +

1, . . . , n, compute:

f (i,q)i,j =
f (i,q−1)
i,j − f (i,q−1)

i,q−1

yj − yq−1

and construct the following information matrix:

M2 =


f (0,0)
0,0 f (1,0)

1,0 · · · f (m,0)
m,0

f (0,1)
0,1 f (1,1)

1,1 · · · f (m,1)
m,1

...
...

. . .
...

f (0,n)
0,n f (1,n)

1,n · · · f (m,n)
m,n

 .

• Step 4: Establish Thiele–Newton’s interpolation. For i = 0, 1, . . . , m, let:

ti,n(y) = f (i,0)i,0 + (y− y0) f (i,1)i,1 + · · ·+ (y− y0)(y− y1) · · · (y− yn−1) f (i,n)i,n .

Then, Thiele–Newton’s interpolation is established as follows:

TNm,n(x, y) = t0,n(y) +
x− x0

t1,n(y)
+

x− x1

t2,n(y)
+ · · ·+ x− xm−1

tm,n(y)
,

which satisfies:

TNm,n(xi, yj) = f (xi, yj)

for i = 0, 1, . . . , m; j = 0, 1, . . . , n.

Remark 3. Obviously, for any i ∈ {0, 1, . . . , m}, by using the elements f (i,j)i,j , j = 0, 1, . . . , n, in the (i + 1)th
column of the information matrix M2, Newton’s interpolating polynomial ti,n(y) with respect to the variable y
can be constructed.

3. Thiele–Newton’s Blending Expansion and the Viscovatov-Like Algorithm

In this section, our main objective is to expound on Thiele–Newton’s blending rational
expansion of a bivariate function and show the Viscovatov-like algorithm that finds the coefficients of
Thiele–Newton’s expansion.

3.1. Thiele–Newton’s Blending Expansion

Definition 5. Assume that Π = X × Y with Π ⊂ D = [a, b]× [c, d], where X = {xi|i = 0, 1, 2, . . .} ⊂
[a, b] ⊂ R and Y = {yj|j = 0, 1, 2, . . .} ⊂ [c, d] ⊂ R are two sets of points. Suppose, in addition, that the point
(ξ, ζ) ∈ D and f (x, y) is a bivariate function defined on D. Let all the points in the set X = {xi|i = 0, 1, 2, . . .}
and Y = {yj|j = 0, 1, 2, . . .} be coincident with the given points ξ and ζ, respectively. Then, Thiele–Newton’s
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interpolation TNm,n(x, y) of a bivariate function f (x, y) defined in Section 2 turns into Thiele–Newton’s
blending expansion of the bivariate function f (x, y) as shown below:

f (x, y) = d0(y) +
x− ξ

d1(y)
+

x− ξ

d2(y)
+

x− ξ

d3(y)
+ · · · , (7)

where:

di(y) = ai,0 + ai,1(y− ζ) + ai,2(y− ζ)2 + ai,3(y− ζ)3 + · · · (8)

for any i ∈ N.

Obviously, a main topic for further discussion is how to calculate the coefficients di(y), i =

0, 1, 2, . . ., in Equation (7), or in other words, how to compute the coefficients ai,j, i = 0, 1, 2, . . . ; j =
0, 1, 2, . . . , in Equation (8). In order to handle the problem that we are facing in the bivariate case, we
introduce the following algorithm.

3.2. Viscovatov-Like Algorithm

Suppose that f (x, y) is a bivariate function of two variables x and y. If y is held constant, say
y = ζ, then f (x, ζ) is a function of the single variable x. Likewise, f (ξ, y) is also a function of the single
variable y when x is regarded as a constant, i.e., x = ξ. We use the notation: Dm

x f (x, y) denotes the
m-order partial derivative of f (x, y) with respect to x. Similarly, the n-order partial derivative of f (x, y)
with respect to y is denoted by Dn

y f (x, y). Furthermore, Dm
x f (ξ, ζ) and Dn

y f (ξ, ζ) denote the values of
Dm

x f (x, y) and Dn
y f (x, y) about the point (x, y) = (ξ, ζ), respectively. Let:

C(0)
k (y) =

1
k!

Dk
x f (ξ, y), k = 0, 1, 2, . . . .

Then, the bivariate function f (x, y) can be expanded formally about the point ξ as follows:

f (x, y) = C(0)
0 (y) + C(0)

1 (y)(x− ξ) + · · ·+ C(0)
k (y)(x− ξ)k + · · · . (9)

From Equations (7)–(9), we give the Viscovatov-like algorithm, which finds out the coefficients of
Thiele–Newton’s expansion di(y), i = 0, 1, 2, . . . , and ai,j, i = 0, 1, 2, . . . ; j = 0, 1, 2, . . ., as described by
the following algorithm.

Algorithm 3. Viscovatov-like algorithm to calculate the coefficients di(y), i = 0, 1, 2, . . . , and ai,j, i =

0, 1, 2, . . . ; j = 0, 1, 2, . . .:

C(0)
i (y) = Di

x f (ξ, y)/i!, i = 0, 1, 2, . . . ,

d0(y) = C(0)
0 (y) = f (ξ, y),

d1(y) = 1/C(0)
1 (y),

C(1)
i (y) = −C(0)

i+1(y)/C(0)
1 (y), i > 1,

dl(y) = C(l−2)
1 (y)/C(l−1)

1 (y), l > 2,

C(l)
i (y) = C(l−2)

i+1 (y)− dl(y)C
(l−1)
i+1 (y), i > 1, l > 2,

ai,j = Dj
ydi(ζ)/j!, i = 0, 1, 2, . . . ; j = 0, 1, 2, . . . .

Proof of Algorithm 3. First, we compute the coefficients d0(y) and d1(y). Considering the two
expansions (7) and (9), we have:

C(0)
0 (y) + C(0)

1 (y)(x− ξ) + C(0)
2 (y)(x− ξ)2 + · · · = d0(y) +

x− ξ

d1(y)
+

x− ξ

d2(y)
+

x− ξ

d3(y)
+ · · · . (10)
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Letting x = ξ, from Equation (10), one can clearly get:

d0(y) = C(0)
0 (y). (11)

Combining Equation (11) with Equation (10), we have:

d1(y) +
x− ξ

d2(y)
+

x− ξ

d3(y)
+ · · · = 1

C(0)
1 (y) + C(0)

2 (y)(x− ξ) + C(0)
3 (y)(x− ξ)2 + · · ·

. (12)

Let x = ξ in Equation (12). Then, we can easily obtain:

d1(y) =
1

C(0)
1 (y)

. (13)

Next, by mathematical induction, we shall prove that the following equation:

dl(y) =
C(l−2)

1 (y)

C(l−1)
1 (y)

(14)

is true for all l > 2.
When l = 2, we shall verify that Equation (14) holds. Substituting Equation (13) into Equation (12),

we have:

x− ξ

d2(y)
+

x− ξ

d3(y)
+ · · · = 1

C(0)
1 (y)

[
1 + C(0)

2 (y)

C(0)
1 (y)

(x− ξ) +
C(0)

3 (y)

C(0)
1 (y)

(x− ξ)2 + · · ·
] − 1

C(0)
1 (y)

=−

C(0)
2 (y)

C(0)
1 (y)

(x− ξ) +
C(0)

3 (y)

C(0)
1 (y)

(x− ξ)2 + · · ·

C(0)
1 (y) + C(0)

2 (y)(x− ξ) + C(0)
3 (y)(x− ξ)2 + · · ·

, (15)

which implies that:

d2(y) +
x− ξ

d3(y)
+

x− ξ

d4(y)
+ · · · =

C(0)
1 (y) + C(0)

2 (y)(x− ξ) + C(0)
3 (y)(x− ξ)2 + · · ·

−C(0)
2 (y)

C(0)
1 (y)

− C(0)
3 (y)

C(0)
1 (y)

(x− ξ)− C(0)
4 (y)

C(0)
1 (y)

(x− ξ)2 − · · ·
. (16)

Let:

C(1)
i (y) = −

C(0)
i+1(y)

C(0)
1 (y)

, i = 1, 2, 3, . . . . (17)

Then, it follows from the identity (16) that:

d2(y) +
x− ξ

d3(y)
+

x− ξ

d4(y)
+ · · · =

C(0)
1 (y) + C(0)

2 (y)(x− ξ) + C(0)
3 (y)(x− ξ)2 + · · ·

C(1)
1 (y) + C(1)

2 (y)(x− ξ) + C(1)
3 (y)(x− ξ)2 + · · ·

. (18)

Using x = ξ in Equation (18) yields:

d2(y) =
C(0)

1 (y)

C(1)
1 (y)

, (19)

which implies that Equation (14) is true for l = 2.
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When l > 3, assume that Equation (14) holds for any l = n, n = 3, 4, . . .. Then, let us prove that
Equation (14) is also true for l = n + 1.

By assumption, we have the following equation:

dn(y) =
C(n−2)

1 (y)

C(n−1)
1 (y)

(20)

holds.
Referring to Equation (18), we assume that the following equation:

dn(y) +
x− ξ

dn+1(y)
+

x− ξ

dn+2(y)
+ · · · =

C(n−2)
1 (y) + C(n−2)

2 (y)(x− ξ) + C(n−2)
3 (y)(x− ξ)2 + · · ·

C(n−1)
1 (y) + C(n−1)

2 (y)(x− ξ) + C(n−1)
3 (y)(x− ξ)2 + · · ·

(21)

is true, where:

C(k)
i (y) = C(k−2)

i+1 (y)− dk(y)C
(k−1)
i+1 (y), k = n− 2, n− 1; n ≥ 2; i = 1, 2, 3, . . . . (22)

Combining Equation (20) with Equation (21), one has:

x− ξ

dn+1(y)
+

x− ξ

dn+2(y)
+ · · ·

=
C(n−2)

1 (y) + C(n−2)
2 (y)(x− ξ) + C(n−2)

3 (y)(x− ξ)2 + · · ·

C(n−1)
1 (y)

[
1 + C(n−1)

2 (y)

C(n−1)
1 (y)

(x− ξ) +
C(n−1)

3 (y)

C(n−1)
1 (y)

(x− ξ)2 + · · ·
] − C(n−2)

1 (y)

C(n−1)
1 (y)

=

(
C(n−2)

2 (y)− dn(y)C
(n−1)
2 (y)

)
(x− ξ) +

(
C(n−2)

3 (y)− dn(y)C
(n−1)
3 (y)

)
(x− ξ)2 + · · ·

C(n−1)
1 (y) + C(n−1)

2 (y)(x− ξ) + C(n−1)
3 (y)(x− ξ)2 + · · ·

. (23)

Let:

C(n)
i (y) = C(n−2)

i+1 (y)− dn(y)C
(n−1)
i+1 (y), i = 1, 2, 3, . . . . (24)

Then, Equation (23) is rewritten as follows:

dn+1(y) +
x−ξ

dn+2(y)
+ x−ξ

dn+3(y)
+ · · · = C(n−1)

1 (y)+C(n−1)
2 (y)(x−ξ)+C(n−1)

3 (y)(x−ξ)2+···
C(n)

1 (y)+C(n)
2 (y)(x−ξ)+C(n)

3 (y)(x−ξ)2+···
, (25)

Using the above Equation (25) with x = ξ produces:

dn+1(y) =
C(n−1)

1 (y)

C(n)
1 (y)

, (26)

which means that Equation (14) holds for l = n + 1.
As is shown above, Equation (14) is true by mathematical induction for all l > 2. Meanwhile, we

show that Equation (24) is also true for any l = n, n > 2.
Moreover, by differentiating Equation (8) j times with respect to the variable y, one has:

Dj
ydi(y) = ai,j j! + ai,j+1

(j + 1)!
1!

(y− ζ) + ai,j+2
(j + 2)!

2!
(y− ζ)2 + · · · . (27)
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Notice y = ζ, from Equation (27), and we immediately obtain:

ai,j =
Dj

ydi(ζ)

j!
(28)

for i ∈ N and j ∈ N.
Therefore, associating Equation (28) with Equations (11), (13), (14), (17), and (24), we have shown

the desired conclusion denoted by Algorithm 3. This completes the proof.

4. Numerical Experiments

In the section, we give the results of numerical experiments to compare the efficiency of
Thiele–Newton’s blending expansion (7) with series expansion of bivariate functions.

For |x| < 1, |y| < 1 and x 6= y, given the following two test functions:

f1(x, y) =
1

y− x
[ln (1− x)− ln (1− y)] (29)

and:

f2(x, y) =
x2

(1− x)(x− y)2 +
y2

(1− y)(x− y)2 +
2xy [ln (1− x)− ln (1− y)]

(x− y)3 , (30)

where ln(z) gives the natural logarithm of z (logarithm to base e). We shall discuss Thiele–Newton’s
blending expansions of Equations (29) and (30), respectively.

First of all, let us consider Thiele–Newton’s blending expansion of the bivariate function f1(x, y)
defined by Equation (29) at the point (ξ, ζ) = (0, 0). Therefore, using the Viscovatov-like algorithm, we
can obtain the coefficient using the notation a f1

i,j of Thiele–Newton’s expansion of f1(x, y). Some values

of a f1
i,j , i = 0, 1, 2, . . . , m, . . . ; j = 0, 1, 2, . . . , n, . . . , are shown in Table 1.

Table 1. The coefficients a f1
i,j of Thiele–Newton’s expansion of f1(x, y) given by Equation (29).

a f1
i,j j = 0 j = 1 j = 2 j = 3 j = 4 · · ·

i = 0 1 1
2

1
3

1
4

1
5 · · ·

i = 1 2 − 4
3 − 1

9 − 8
135 − 31

810 · · ·

i = 2 − 3
4 − 7

16 − 293
960 − 299

1280 − 33869
179200 · · ·

i = 3 16 − 88
15 − 191

225 − 10264
23625 − 194491

708750 · · ·
...

...
...

...
...

...
. . .

Thus, Thiele–Newton’s blending expansion of f1(x, y) at (ξ, ζ) = (0, 0) is denoted in the form:

f1(x, y) = R f1(x, y) =1 +
1
2

y +
1
3

y2 +
1
4

y3 +
1
5

y4 + · · ·

+
x

2− 4
3 y− 1

9 y2 − 8
135 y3 − 31

810 y4 + · · ·

+
x

− 3
4 −

7
16 y− 293

960 y2 − 299
1280 y3 − 33869

179200 y4 + · · ·

+
x

16− 88
15 y− 191

225 y2 − 10264
23625 y3 − 194491

708750 y4 + · · ·
+ · · · . (31)
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For m = 2, n = 3, taking into account the truncated Thiele–Newton’s blending expansion
R f1

m,n(x, y) of R f1(x, y) expressed by the above Equation (31), one can have:

R f1
2,3(x, y) = 1 +

y
2
+

y2

3
+

y3

4
+

x
2− 4

3 y− 1
9 y2 − 8

135 y3 − x
3
4+

7
16 y+ 293

960 y2+ 299
1280 y3

. (32)

On the other hand, the bivariate function f1(x, y) defined by Equation (29) can be expanded at
the point (ξ, ζ) = (0, 0) by means of the Appell series F1 f1(a, b, c; d; x, y) denoted for |x| < 1, |y| < 1
and x 6= y by the following bivariate series (see [17]):

F1 f1(a, b, c; d; x, y) =
∞

∑
i,j=0

(a)i+j(b)i(c)j

(d)i+ji!j!
xiyj, (33)

where a = b = c = 1, d = 2, and the Pochhammer symbol (τ)k represents the rising factorial:

(τ)k = τ(τ + 1)(τ + 2) · · · (τ + k− 1) (34)

for any τ ∈ R+ (see [17,32]). In particular, (1)0 = 1, (1)k = k!, (2)k = (k + 1)!.
For Equation (33), the following polynomial:

F1 f1
m,n(a, b, c; d; x, y) =

m

∑
i=0

n

∑
j=0

(a)i+j(b)i(c)j

(d)i+ji!j!
xiyj (35)

is defined as the (m, n)-order truncated Appell series, where m ∈ N and n ∈ N.
By Equations (33)–(35), we have:

f1(x, y) = F1 f1(1, 1, 1; 2; x, y) =
∞

∑
i,j=0

1
i + j + 1

xiyj (36)

and for m = 2, n = 3, the (2, 3)-order truncated Appell series is given by:

F1 f1
2,3(1, 1, 1; 2; x, y) = 1 +

x
2
+

x2

3
+

y
2
+

xy
3

+
x2y
4

+
y2

3
+

xy2

4
+

x2y2

5
+

y3

4
+

xy3

5
+

x2y3

6
. (37)

Second, performing similar operations for the bivariate function f2(x, y) defined by Equation (30),
this gives the coefficient of Thiele–Newton’s expansion, which is denoted by the notation a f2

i,j . Some

values of a f2
i,j , i = 0, 1, 2, . . . , m, . . . ; j = 0, 1, 2, . . . , n, . . . , are listed in Table 2.

Table 2. The coefficients a f2
i,j of Thiele–Newton’s expansion of f2(x, y) given by Equation (30).

a f2
i,j j = 0 j = 1 j = 2 j = 3 j = 4 · · ·

i = 0 1 1 1 1 1 · · ·

i = 1 1 − 4
3

5
18

4
135

17
1620 · · ·

i = 2 −1 − 7
6 − 221

180 − 151
120 − 10721

8400 · · ·
...

...
...

...
...

...
. . .
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Therefore, according to the values of a f2
i,j , i = 0, 1, 2, . . . , ; j = 0, 1, 2, . . . , in Table 2,

the Thiele–Newton’s blending expansion of f2(x, y) at (ξ, ζ) = (0, 0) can be written as:

f2(x, y) = R f2(x, y) =1 + y + y2 + y3 + y4 + · · ·

+
x

1− 4
3 y + 5

18 y2 + 4
135 y3 + 17

1620 y4 + · · ·

+
x

−1− 7
6 y− 221

180 y2 − 151
120 y3 − 10721

8400 y4 + · · ·
+ · · · . (38)

The corresponding truncated Thiele–Newton’s blending expansion R f2
2,3(x, y) of R f2(x, y) is:

R f2
2,3(x, y) = 1 + y + y2 + y3 +

x
1− 4

3 y + 5
18 y2 + 4

135 y3 − x
1+ 7

6 y+ 221
180 y2+ 151

120 y3

. (39)

By a similar technique, consider the Appell series for the bivariate function f2(x, y) expanded
about the point (ξ, ζ) = (0, 0),

F1 f2(1, 2, 2; 2; x, y) =
∞

∑
i,j=0

(1)i+j(2)i(2)j

(2)i+ji!j!
xiyj =

∞

∑
i,j=0

(i + 1)(j + 1)
i + j + 1

xiyj. (40)

The (2, 3)-order truncated Appell series for f2(x, y) is:

F1 f2
2,3(1, 2, 2; 2; x, y) = 1 + x + x2 + y +

4
3

xy +
3
2

x2y + y2 +
3
2

xy2 +
9
5

x2y2 + y3 +
8
5

xy3 + 2x2y3. (41)

Considering the errors, we let:

e fk
2,3 = fk(x, y)− R fk

2,3(x, y) (42)

and:

E fk
2,3 = fk(x, y)− F1 fk

2,3(a, b, c; d; x, y) (43)

for k = 1, 2.
Table 3 lists various values of (x, y), together with the values of the bivariate function f1(x, y),

the truncated Thiele–Newton’s blending expansion R f1
2,3(x, y), and the truncated Appell series

F1 f1
2,3(1, 1, 1; 2; x, y). Furthermore, for comparison purposes, the values of errors e f1

2,3 and E f1
2,3 are

given in this table. It can be seen from Table 3 that the error e f1
2,3 using the truncated Thiele–Newton’s

blending expansion R f1
2,3(x, y) is less than when using the truncated Appell series F1 f1

2,3(1, 1, 1; 2; x, y),

which gives the error E f1
2,3. Similarly, displayed in Table 4 are the numerical results for the bivariate

function f2(x, y) defined by Equation (30). Thus, these results illustrate that the approximation by the
truncated Thiele–Newton’s blending expansion is clearly superior in the two test examples.
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Table 3. Comparison of the numerical results by using R f1
2,3(x, y) and F1 f1

2,3(1, 1, 1; 2; x, y).

(x, y) f1(x, y) R f1
2,3(x, y) e f1

2,3 F1 f1
2,3(1, 1, 1; 2; x, y) E f1

2,3

(0.6,0.5) 2.231435513142 2.175811138576 5.56244× 10−2 2.007583333333 2.23852× 10−1

(0.5,0.4) 1.823215567940 1.801574172062 2.16414× 10−2 1.731400000000 9.18156× 10−2

(0.4,0.3) 1.541506798273 1.534197264544 7.30953× 10−3 1.506843333333 3.46635× 10−2

(0.3,0.2) 1.335313926245 1.333336425463 1.97750× 10−3 1.324153333333 1.11606× 10−2

(0.2,0.1) 1.177830356564 1.177455592535 3.74764× 10−4 1.175210000000 2.62036× 10−3

(0.09,0.1) 1.104983618659 1.104936257854 4.73608× 10−5 1.104746383333 2.37235× 10−4

(0.08,0.09) 1.092907053219 1.092875387558 3.16657× 10−5 1.092744392933 1.62660× 10−4

(0.07,0.08) 1.081091610422 1.081071421327 2.01891× 10−5 1.080985191467 1.06419× 10−4

(0.05,0.06) 1.058210933054 1.058204252599 6.68046× 10−6 1.058173883333 3.70497× 10−5

(0.06,0.05) 1.058210933054 1.058202709844 8.22321× 10−6 1.058150458333 6.04747× 10−5

(0.04,0.05) 1.047129986730 1.047126709307 3.27742× 10−6 1.047111416666 1.85701× 10−5

(0.05,0.04) 1.047129986730 1.047125552862 4.43387× 10−6 1.047095800000 3.41867× 10−5

(0.03,0.02) 1.025650016719 1.025649181797 8.34922× 10−7 1.025642954533 7.06219× 10−6

(0.02,0.03) 1.025650016719 1.025649615899 4.00820× 10−7 1.025647765133 2.25159× 10−6

(0.02,0.01) 1.015237146402 1.015236912398 2.34003× 10−7 1.015235095400 2.05100× 10−6

(0.01,0.02) 1.015237146402 1.015237085235 6.11671× 10−8 1.015236857467 2.88935× 10−7

Table 4. Comparison of the numerical results by using R f2
2,3(x, y) and F1 f2

2,3(1, 2, 2; 2; x, y).

(x, y) f2(x, y) R f2
2,3(x, y) e f2

2,3 F1 f2
2,3(1, 2, 2; 2; x, y) E f2

2,3

(0.4,0.3) 2.527646365268 2.541958340395 −1.43120× 10−2 2.314840000000 2.12806× 10−1

(0.3,0.2) 1.833375742200 1.834880020667 −1.50428× 10−3 1.774760000000 5.86157× 10−2

(0.2,0.1) 1.399789684856 1.399902542529 −1.12858× 10−4 1.387786666667 1.20030× 10−2

(0.09,0.1) 1.225048763570 1.225046790051 1.97352× 10−6 1.223971000000 1.07776× 10−3

(0.08,0.09) 1.197590738753 1.197589594868 1.14389× 10−6 1.196860955200 7.29784× 10−4

(0.07,0.08) 1.171129067101 1.171128457172 6.09930× 10−7 1.170657476267 4.71591× 10−4

(0.06,0.07) 1.145615802753 1.145615507616 2.95138× 10−7 1.145329149600 2.86653× 10−4

(0.05,0.06) 1.121005830888 1.121005702793 1.28095× 10−7 1.120845560000 1.60271× 10−4

(0.06,0.05) 1.121005830888 1.121006469601 −6.38713× 10−7 1.120749100000 2.56731× 10−4

(0.04,0.05) 1.097256671169 1.097256621117 5.00525× 10−8 1.097177266667 7.94045× 10−5

(0.05,0.04) 1.097256671169 1.097256985627 −3.14458× 10−7 1.097113306667 1.43365× 10−4

(0.03,0.02) 1.052182967898 1.052183005275 −3.73770× 10−8 1.052154046400 2.89215× 10−5

(0.02,0.03) 1.052182967898 1.052182961331 6.56692× 10−9 1.052173533600 9.43430× 10−6

(0.02,0.01) 1.030785077555 1.030785083180 −5.62544× 10−9 1.030776771467 8.30609× 10−6

(0.01,0.02) 1.030785077555 1.030785075750 1.80440× 10−9 1.030783868267 1.20929× 10−6

5. Conclusions

From Section 3 in the paper, it is clear to see that we generalized Thiele’s expansion of a
univariate function to the bivariate case. Thus, we obtained a rational approximation method,
say Thiele–Newton’s blending expansion of a bivariate function. Furthermore, we suggested the
Viscovatov-like algorithm, which calculates the coefficients of Thiele–Newton’s expansion and
gave the proof of this algorithm. Finally, the application of the Viscovatov-like algorithm was
given. Numerical experiments and comparisons were presented in Tables 3 and 4, showing that
Thiele–Newton’s blending expansion performed much better approximation than the polynomial
expansion. Moreover, the next step in the research work is the consideration of a vector case by a
similar technique.
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