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Abstract: In the present paper, we study geodesic mappings of special pseudo-Riemannian manifolds
called Vn(K)-spaces. We prove that the set of solutions of the system of equations of geodesic
mappings on Vn(K)-spaces forms a special Jordan algebra and the set of solutions generated by
concircular fields is an ideal of this algebra. We show that pseudo-Riemannian manifolds admitting
a concircular field of the basic type form the class of manifolds closed with respect to the geodesic
mappings.
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1. Introduction

The problem of geodesic mappings of the pseudo-Riemannian manifold was first studied by
Levi-Civita [1]. There exist many monographs and papers devoted to the theory of geodesic mappings
and transformations [1–37]. Geodesic mappings play an important role in the general theory of
relativity [8,26].

Let An = (Mn,∇) be an n-dimensional manifold Mn with an affine connection∇ without torsion.
We denote the ring of smooth functions on Mn by f (Mn), the Lie algebra of smooth vector fields on
Mn by X(Mn) and arbitrary smooth vector fields on Mn by X, Y, Z.

A diffeomorphism f : An → Ān is called a geodesic mapping of An onto Ān if f maps any geodesic
curve on An onto a geodesic curve on Ān [6,24–26,33].

A manifold An admits a geodesic mapping onto Ān if and only if the equation [6,24–26,33]

∇̄XY = ∇XY + ψ(X)Y + ψ(Y)X

holds for any vector fields X, Y and where ψ is a differential form on Mn(= M̄n).
If ψ = 0 then geodesic mapping is called trivial and nontrivial if ψ 6= 0.
Let Vn = (Mn, g) be an n-dimensional pseudo-Riemannian manifold with a metric tensor g and

∇ be a Levi-Civita connection.
A pseudo-Riemannian manifold Vn admits a geodesic mapping onto a pseudo-Riemannian

manifold V̄n if and only if there exists a differential form ψ on Vn such that the Levi-Civita equation
[6,24,26,33]

(∇Z ḡ)(X, Y) = 2ψ(Z)ḡ(X, Y) + ψ(X)ḡ(Y, Z) + ψ(Y)ḡ(X, Z) (1)

holds for any vector field X, Y, Z.
Or in the coordinate form

ḡij,k = 2ψk ḡij + ψi ḡjk + ψj ḡik, (2)
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where ψi = ∇iΨ, Ψ is a scalar field, ḡij are components of the metric ḡ and comma “ , ” denotes a
covariant derivative with respect to ∇.

The Levi-Civita Equation (1) is not linear so it is not convenient for investigations.
Sinyukov [24,33] proved that a pseudo-Riemannian manifold Vn admits a geodesic mapping if and
only if there exist a differential form λ and a regular symmetric bilinear form a on Vn such that
the equation

(∇Za)(X, Y) = λ(X)g(Y, Z) + λ(Y)g(X, Z) (3)

holds for any vector field X, Y, Z. Or in the coordinate form

aij,k = λigjk + λjgik, (4)

where aij and λi are components of a and λ, respectively. Note that λi = ∇iΛ, Λ is a scalar field.
Solutions of (2) and solutions of (4) are related by the equalities

aij = exp(2Ψ(x)) · ḡαβ giα gjβ and λi = − exp(2Ψ(x)) · ḡαβ giα ψβ

where gij are components of the metric g, (gij) = (gij)
−1 and (ḡij) = (ḡij)

−1.
If Vn (n > 2) admits two linearly independent solutions not proportional to the metric tensor g

then [24]
(∇Yλ)(X) = K a(X, Y) + µ g(X, Y) and ∇Xµ = 2K λ(X), (5)

where K is a constant and µ is a scalar field on Vnor in the coordinate form

∇jλi = K aij + µ gij and ∇kµ = 2K λk. (6)

A pseudo-Riemannian manifold satisfying the Equations (3) and (5) is called a Vn(K)-space.
These spaces for Riemannian manifolds were introduced by Solodovnikov [34] as V(K)-space

and in another problem for pseudo-Riemannian manifolds were introduced by Mikeš [14,24] as
Vn(B)-space (in this case B = −K).

A vector field ϕ on a pseudo-Riemannian manifold Vn is called concircular if

(∇Y ϕ)X = $ g(X, Y), (7)

where $ is a scalar field on Vn, see Reference [24] (p. 247), Reference [33] (p. 83) and Yano [38].
If $ 6= 0 a concircular field belongs to the basic type otherwise it belongs to the exceptional type.
A pseudo-Riemannian manifold Vn admitting a concircular field is called an equidistant space

[24,33]. The equidistant space belongs to the basic type if it admits a concircular field of the basic type
and it belongs to the exceptional type if it admits concircular fields only of the exceptional type [33].

Concircular fields play an important role in the theories of conformal and geodesic mappings
and transformations. They were studied by a number of geometers: Brinkmann [39], Fialkow [40],
Yano [38], Sinyukov [33], Aminova [3], Mikeš [13–16,24], Shandra [28–31] and so forth.

Let us denote the linear space of all concircular fields on Vn by Con(Vn). If
1
ϕ , . . . ,

m
ϕ is a basis in

Con(Vn) then the tensor field

a =
m

∑
α,β=1

C
αβ

(
α
ϕ ⊗

β
ϕ )

is a solution of the system (3), where C
αβ

(= C
βα
) are some constants. So Vn admits the geodesic mapping.

Pseudo-Riemannian manifolds admitting concircular fields form the class of manifolds which is
closed with respect to the geodesic mappings [24,33]. Let a pseudo-Riemannian manifold Vn admit a
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geodesic mapping onto a pseudo-Riemannian manifold V̄n , if there exists a concircular field ϕ on Vn

then there exists a concircular field ϕ̄ on V̄n such that

$̄ = exp(Ψ) ($ + gij ϕiψj). (8)

A concircular field ϕ is said to be special if

Z($) = K g(Z, ϕ), (9)

where K is a constant and it is said to be convergent if $ is a constant. A pseudo-Riemannian manifold Vn

admitting a convergent field is called a Shirokov space, see References [24,31–33].
If there exist two linearly independent concircular fields on Vn then all concircular fields on Vn

are special with the same constant K, see Reference [24]. A pseudo-Riemannian manifold Vn admitting
a special concircular field is a Vn(K)-space. On a Vn(K)-space any concircular field is special.

2. Shirokov Spaces and Vn(K) Spaces (K 6= 0)

Lemma 1. Let a pseudo-Riemannian manifold Vn+1 = (Mn+1, G) admit convergent fields ϕ̃ such that

a) ‖ϕ̃‖ < 0 and b) (∇̃Ỹ ϕ̃)X̃ = K · G(X̃, Ỹ), (10)

for any vector field X̃, Ỹ on Mn+1, where K ( 6= 0) is a constant. Then there exists the adapted coordinate system
(xI) = (x0, xi) in which the components GI J of the metric G are reduced to the form

GI J = exp(2 K x0) ·

 −1 0

0
gij(xk)

K

 (11)

where gij(xk) are the components of the metric of some Vn=(Mn, g), I, J, . . .= 1, . . . , n+1, i, j, . . .= 1, . . . , n.

Proof. Let ϕ̃I be the components of the vector fields ϕ̃ g-conjugate with a convergent fields ϕ̃ in a
coordinate system (xI) on Vn+1 = (Mn+1, G). Then due to (10b) they satisfy

∇̃J ϕ̃I = K δI
J . (12)

Let D be the linear space of all vector fields on Vn+1 which are orthogonal to
∗
ϕ . It is easy to check

that D is involutive. So if we use as a natural basis of X(Mn+1) the basis {eI} = {
∗
ϕ , ei}, where {ei}, is

the basis in D, we get the coordinate system (xI) = (x0, xi) in which

a) ϕ̃I = δI
0; b) Gi0 = 0. (13)

In these coordinates the Equations (12) are equivalent to

Γ̃I
0J = K δI

J , (14)

where Γ̃I
JK are the components of the Levi-Civita connection of the metric G.

Let us consider the conditions (14). If I = 0, J = j we have

∂jG00 = 0. (15)

If I = 0, J = 0 we get
∂jG00 = 2K G00. (16)
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It follows from (15) and (16) that G00 = C · exp (2K x0), where C is a constant. Due to (10a) it
holds C < 0. We can choose it such that C = −1. So

G00 = − exp (2K x0). (17)

If I = i, J = j we obtain ∂0Gij = 2K Gij. So

Gij = exp (2K x0)
gij(xk)

K
. (18)

It follows from (13b), (17) and (18) that in the coordinate system (xI) = (x0, xi) the components
GI J reduce to the form (11).

Conversely, if the components GI J of the metric G in the coordinate system (xI) = (x0, xi) reduce
to the form (11) then the components Γ̃I

JK of the Levi-Civita connection reduce to the form:

Γ̃0
00 = K, Γ̃0

0j = 0, Γ̃i
0j = δi

j, Γ̃0
ij = gij, Γ̃k

ij = Γk
ij, (19)

where Γk
ij are the components of the Levi-Civita connection of the metric g. Using direct calculations

it is easy to verify that a vector field with components ϕ̃I
0 = δI

0 by virtue (19) satisfies the conditions
(10a) and (12).

Remark 1. The components GI J of the inverse metric G in the adapted coordinate system (xI) = (x0, xi)

reduce to the form

GI J = exp(−2 K x0)

(
−1 0

0 K gij(xk)

)
. (20)

Lemma 2. The pseudo-Riemannian manifold Vn+1 = (Mn+1, G) with the metric defined by the conditions (11)
admits an absolutely parallel covector field ϕ̃ if and only if its components in the adapted coordinate system
(xI) = (x0, xi) reduce to the form

ϕ̃I = exp(Kx0)
(

$(xk), ϕi(xk)
)

, (21)

where $(xk) and ϕi(xk) satisfy the following equations on Vn = (Mn, g):

∇j ϕi = $ gij, (22)

∇j$ = K ϕj. (23)

Proof. Let ϕ̃I be the components of an absolutely parallel covector field ϕ̃ in the adapted coordinate
system (xI) = (x0, xi) on Vn+1 = (Mn+1, G). So

∇̃J ϕ̃I = 0 (24)

If I = 0, J = 0 we get from (24) by virtue (19): ∂0 ϕ̃0 − K ϕ̃0 = 0.
Thus

ϕ̃0 = exp(Kx0) $(xk). (25)

If I = i, J = 0: ∂0 ϕ̃i − K ϕ̃i = 0. Hence,

ϕ̃i = exp(Kx0) ϕ̃i(xk). (26)
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If I = 0, J = j: ∂j ϕ̃0 − K ϕ̃j = 0. Due to (25) and (26) we have (23) and
if I = i, J = j: ∂j ϕ̃i − gij ϕ̃0 − Γa

ij ϕ̃a = 0. Thus, we obtain (22).
Conversely, using direct calculations it is easy to check that if the covector field ϕ̃ has components

ϕ̃i = exp(Kx0) ($(xk), ϕi(xk)) in the adapted coordinate system (xI) = (x0, xi) on Vn+1 = (Mn+1, G)

with metric (11), where $(xk) and ϕi(xk) satisfy the Equations (22) and (23) on Vn = (Mn, g), then ϕ̃

due to (19) it is absolutely parallel.

Remark 2. The Equations (22) and (23) are the coordinate forms of the Equations (7) and (9) defining a
special concircular field. So the conditions (21) establish a one-to-one correspondence between absolutely parallel
covector fields on the Shirokov space Vn+1 = (Mn+1, G) and special concircular fields on the Vn(K)-space
K 6= 0.

In a similar way, it is possible to prove the following statement.

Lemma 3. The pseudo-Riemannian manifold Vn+1 = (Mn+1, G) with the metric defined by the conditions (11)
admits an absolutely parallel symmetric bilinear form ã if and only if its components in the adapted coordinate
system (xI) = (x0, xi) reduce to the form

ãI J = exp(2 K x0)

(
µ(xk) λi(xk)

λj(xk) aij(xk)

)
(27)

where aij(xk), λi(xk) and µ(xk) satisfy the Equations (4) and (6) on Vn = (Mn, g).

Remark 3. The Equations (4) and (6) define a Vn(K)-space. So the conditions (27) establish a one-to-one
correspondence between absolutely parallel symmetric bilinear forms on the Shirokov space Vn+1 = (Mn+1, G)

and solutions of the system (4) and (6) defining geodesic mappings of the Vn(K)-space (K 6= 0).

Remark 4. The set of absolutely parallel symmetric bilinear forms on Vn = (Mn, g) is a special Jordan algebra

J0 with the operation of multiplication
1
A ∗

2
A = {

1
A ;

2
A}, where A is the linear operator g-conjugate with a

bilinear form a, defined by g(AX, Y) = a(X, Y) and {
1
A ;

2
A} are Jordan brackets

{
1
A ;

2
A} = 1

2

(
1
A

2
A +

2
A

1
A
)

. (28)

The condition (28) can be rewritten in the vector form as

2 {1
a ;

2
a}(X, Y) =

1
a
(

2
A X, Y

)
+

1
a
(

2
AY, X

)
(29)

or in the coordinate form

2 {1
a ;

2
a}ij = gab

(
1
a ai

2
a bj +

1
a aj

2
a bi

)
. (30)

This statement follows from the Lemma 2.

Theorem 1. The set of solutions of the system (4) and (6) on a Vn(K)-space (K 6= 0) forms a special Jordan

algebra J with the operation of multiplication
{
(

1
a ,

1
λ ,

1
µ ); (

2
a ,

2
λ ,

2
µ )

}
= (

3
a ,

3
λ ,

3
µ ), where

2
3
a (X, Y) = K

(
1
a (

2
A X, Y) +

1
a (

2
AY, X)

)
−
(

1
λ ⊗

2
λ +

2
λ ⊗

1
λ

)
(X, Y), (31)
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2
3
λ (X) = K

(
1
λ (

2
A X) +

2
λ (

1
A X)

)
−
(

1
µ

2
λ (X) +

2
µ

1
λ (X)

)
, (32)

3
µ = K g−1

(
1
λ

2
λ

)
− 1

µ
2
µ . (33)

The algebra J is isomorphic to the special Jordan algebra J0 of absolutely parallel symmetric bilinear forms
on the Shirokov space Vn+1 = (Mn+1, G) with the metric (11).

Proof of the theorem follows immediately from the Lemma 2 and (20), (27) and (30).

Remark 5. Due to (29) the unit of the algebra J0 is G so the unit of the algebra J is
( g

K
, 0,−1

)
.

Remark 6. If there exists a convergent field ϕ̃ on Vn+1 = (Mn+1, G) such that ‖ϕ̃‖ > 0, then there exists the
adapted coordinate system (xI) = (x0, xi) in which the components GI J of the metric G reduce to the form

GI J = exp(2 K x0)

 1 0

0
−gij(xk)

K

 ,

where gij(xk) are the components of the metric of some Vn = (Mn, g). Using this metric and (29) we can define

a new operation of multiplication {·, ·}2. It is obvious that {
1
A ;

2
A} = −{

1
A ;

2
A}2.

Corollary 1. Let Vn = (Mn, g) be a Vn(K)-space (K 6= 0) then there exists the solution (a, λ, µ) of the
system (4) and (6) satisfying the following conditions:

K a(AX, Y)− (λ⊗ λ)(X, Y) =
e g(X, Y)

K
, (34)

K λ(AX)− µ λ(X) = 0, (35)

K g−1(λ, λ)− µ2 = −e, (36)

where e takes values ±1, 0.

Proof. Let b̃ be an absolutely parallel symmetric bilinear form on the Shirokov space Vn+1 = (Mn+1, G)

with the metric (11). Then as it has been shown in Reference [11] there exists the absolutely parallel
symmetric bilinear form ã on Vn+1 = (Mn+1, G) such that Ã2 = e or in the equivalent form

ã(ÃX̃, Ỹ) = e G(X̃, Ỹ). (37)

The Equation (37) means that {ã, ã} = e G. Hence if (a, λ, µ) is the corresponding solution of the
system (4) and (6) on the Vn(K)-space (K 6= 0) then taking into account (31)–(33) we get (34)–(36).

As mentioned above concircular fields generate a solution of the Equation (2). Denote this set of
solutions by Jc.

Theorem 2. Jc is an ideal of J.

Proof. To prove that Jc is an ideal of J on Vn = (Mn, g) it is equivalent to prove that J0c is an ideal of J0

on Vn+1 = (Mn+1, G), where J0c is the set of absolutely parallel symmetric bilinear forms generated by
absolutely parallel covector fields.
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Let
1
ϕ , . . . ,

m
ϕ be a basis of the linear space Conv(Vn+1) of absolutely parallel covector fields on

Vn+1 = (Mn+1, G). Then any absolutely parallel symmetric bilinear form generated by absolutely
parallel covector fields has the components

b̃I J =
m

∑
α,β=1

C
αβ
(

α
ϕ I

β
ϕ J),

where C
αβ

(= C
βα
) are some constants. Let ãI J be the components of the arbitrary absolutely parallel

symmetric bilinear form ã. We should prove that {ã, b̃} ∈ J0c. We have

2{ã, b̃} =GDT
m

∑
α,β=1

C
αβ
(

α
ϕ I

β
ϕ D ãTJ +

α
ϕ J

β
ϕ D ãTI) =

m

∑
α,β=1

C
αβ
(

α
ϕ I

β

Φ J +
α
ϕ J

β

Φ I), (38)

where
β

Φ I =
β
ϕ D ãTI GDT is an absolutely parallel covector field. Therefore,

β

Φ I =
m

∑
γ=1

Fβ
γ

γ
ϕ I (39)

where Fβ
γ are some constants. It follows from (38) and (39) that

2 {ã, b̃}I J =
m

∑
α,β,γ=1

(
Fγ

β C
αγ

+ Fγ
α C

βγ

)
α
ϕ I

β
ϕ J .

Thus, {ã, b̃} ∈ J0c.

3. Vn(0)-Spaces

Let (Mn.g) be a Vn(0)-space, then there exists a solution of the system

∇kaij = λigjk + λjgik, (40)

∇kλi = µ gik, (41)

where µ is a constant and λi = ∇iΛ. Thus, a Vn(0)-space is a Shirokov space.

Lemma 4. If the Vn(0)-space does not admit any convergent field of the basic type and ϕ is an absolutely
parallel covector field on it, then there exists the sequence of absolutely parallel covector fields

{
α
ϕ
}

(α ∈ N)
such that

a)
α+1
ϕ (X) =

α
ϕ (AX)−

α
f λ(X), b)

α
ϕ (λ∗) = 0, ∀α ∈ N, (42)

where
1
ϕ = ϕ, d

α
f =

α
ϕ , λ∗ is the vector field g-conjugate with λ.

Proof. Taking into account that the Vn(0) does not admit any convergent fields of the basic type we
obtain from (41) that

∇kλi = 0. (43)

Let ϕi be the components of an absolutely parallel covector field ϕ on a Vn(0). Denote
1
ϕ = ϕ.

Consider the covector field
2
ϕ i = at

i
1
ϕ −

1
f λi, (44)
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where at
i are components of the linear operator A (aj

i = gjlail). It follows from (44) due to (40) and (43)

∇k
2
ϕ i =

1
ϕ tλ

tgik, (45)

where λt = gtiλi. According to our assumption it follows from (45) that

1
ϕ tλ

t = 0 and ∇k
2
ϕ i = 0.

Applying now similar argumentation to the covector
2
ϕ i and continuing the process in this way,

we obtain the desired sequence.

Remark 7. The Equation (42b) due to (42a) can be rewritten as

ϕ(
α−1
λ ∗) = 0, ∀α ∈ N, (46)

where
α
A is the α-s power of the linear operator A.

Theorem 3. Let a pseudo-Riemannian manifold Vn be a Vn(0)-space. Then there exists a convergent field of

the basic type on Vn or there exists the sequence of linearly independent absolutely parallel covector fields {
α
λ},

(α = 1, 2 . . . , p ≤ n− 1) such that

α+1
λ (X) =

α
λ (AX)−

α
Λ α(X), λ(

α−1
A λ∗) = 0, ∀α ∈ A, (47)

p
λ (AX) =

p
Λ λ(X), (48)

where
1
λ = λ, λ∗ is the vector field g-conjugate with λ.

Proof. (1) It follows from (41) that if µ 6= 0 then λ is a convergent field of the basic type on Vn(0).
(2) Let µ = 0, then ∇λ = 0. According to the Lemma 4 and the Remark 7 we can construct the

sequence of absolutely parallel covector fields {
α
λ} (α ∈ N) such that

α+1
λ (X) =

α
λ (AX)−

α
Λ λ(X), λ(

α−1
A λ∗) = 0, ∀α ∈ N.

This sequence contains no more than p (≤ n− 1) linearly independent covectors. Otherwise,
Vn(0) will be locally flat and so it will admit a convergent field of the basic type. Thus,

p+1
λ =

p

∑
α=1

Cα

α
λ ,

where Cα are constants and
1
λ , . . . ,

p
λ are linearly independent. Changing

α
Λ (defined to a constant) we

can make
p+1
λ = 0. So we get (48).

Corollary 2. If the Vn(0)-space does not admit any converging fields of the basic type and ϕ is an absolutely
parallel covector field on it, then

α−1
λ (ϕ∗) = 0, ∀α ∈ N (49)

where ϕ∗ is the vector field g-conjugate with ϕ.
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Proof. We get from (46): (
α−1
A λ∗) =

α−1
A λ(ϕ∗) =

α−1
λ (ϕ∗) = 0.

The following statement holds.

Theorem 4. Let a pseudo-Riemannian manifold Vn admit a geodesic mapping onto a pseudo-Riemannian
manifold V̄n if there exists a concircular field of the basic type on V̄n, then there exists a concircular field of the
basic type on Vn.

Proof. Let ϕ̄ be a concircular field of the basic type on V̄n ($̄ 6= 0), then there exists a concircular
field ϕ on Vn. Let us suppose the contrary, namely that Vn does not admit concircular fields of the
basic type. It means that $ = 0. So ϕ is an absolutely parallel covector field and, therefore, Vn is a
Vn(0)-space [30]. So according to Theorem 3 there exists a Vn on the sequence of linearly independent

absolutely parallel covector fields {
α
λ} (α = 1, 2, . . . , p ≤ n− 1) satisfying (47) and (48). The Equation

(48) in the coordinate form can be written as

at
i

p
λ t =

p
Λ λi. (50)

Contracting (50) with āi
j (the inverse operator to ai

j) by i and taking into account that λi = −at
i ψt

we get
p
λ j = −

p
Λ ψj. (51)

The condition (49) means that ϕt
p
λ t = 0. Hence, due to

p
Λ 6= 0 it follows from (51) that ϕtψt = 0.

On the other hand since $̄ 6= 0 and $ = 0 the Equation (8) gives us ϕtψt 6= 0. This contradiction proves
the theorem.

Remark 8. The Theorem 4 shows that pseudo-Riemannian manifolds admitting a concircular field of the
basic type (i.e., equidistant spaces of the basic type) form the class of manifolds closed with respect to the
geodesic mappings. The same properties have spaces of constant curvature [24,33], Einstein spaces [17,24]
and Vn(K)-spaces [24].

Corollary 3. Let an equidistant space of the exeptional type Vn admit a geodesic mapping onto a
pseudo-Riemannian manifold V̄n, then V̄n is an equidistant space of the exeptional type.
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